Forecasting explosions at Sinabung Volcano, Indonesia, based on SO2 emission rates

Kunrat, Syegi and Kern, Christoph and Alfianti, Hilma and Lerner, Allan H. (2022) Forecasting explosions at Sinabung Volcano, Indonesia, based on SO2 emission rates. Frontiers in Earth Science, 10. ISSN 2296-6463

[thumbnail of pubmed-zip/versions/2/package-entries/feart-10-976928-r1/feart-10-976928.pdf] Text
pubmed-zip/versions/2/package-entries/feart-10-976928-r1/feart-10-976928.pdf - Published Version

Download (2MB)

Abstract

Dome-building volcanic eruptions are often associated with frequent Vulcanian explosions, which constitute a substantial threat to proximal communities. One proposed mechanism driving such explosions is the sealing of the shallow volcanic system followed by pressurization due to gas accumulation beneath the seal. We investigate this hypothesis at Sinabung Volcano (Sumatra, Indonesia), which has been in a state of eruption since August 2010. In 2013, the volcano began erupting a lava dome and lava flow, and frequent explosions produced eruptive columns that rose many kilometers into the atmosphere and at times sent pyroclastic density currents down the southeast flanks. A network of scanning Differential Optical Absorption Spectrometers (DOAS) was installed on the volcano’s eastern flank in 2016 to continuously monitor SO2 emission rates during daytime hours. Analysis of the DOAS data from October 2016 to September 2017 revealed that passive SO2 emissions were generally lower in the 5 days leading up to explosive events (∼100 t/d) than was common in 5-day periods leading up to days on which no explosions occurred (∼200 t/d). The variability of passive SO2 emissions, expressed as the standard deviation, also took on a slightly wider range of values before days with explosions (0–103 t/d at 1-sigma) than before days without explosions (43–117 t/d). These observations are consistent with the aforementioned seal-failure model, where the sealing of the volcanic conduit blocks gas emissions and leads to pressurization and potential Vulcanian explosions. We develop a forecasting methodology that allows calculation of a relative daily explosion probability based solely on measurements of the SO2 emission rate in the preceding days. We then calculate forecast explosion probabilities for the remaining SO2 emissions dataset (October 2017—September 2021). While the absolute accuracy of forecast explosion probabilities is variable, the method can inform the probability of an explosion occurring relative to that on other days in each test period. This information can be used operationally by volcano observatories to assess relative risk. The SO2 emissions-based forecasting method is likely applicable to other open vent volcanoes experiencing dome-forming eruptions.

Item Type: Article
Subjects: Apsci Archives > Geological Science
Depositing User: Unnamed user with email support@apsciarchives.com
Date Deposited: 01 Mar 2023 06:12
Last Modified: 28 Mar 2024 03:52
URI: http://eprints.go2submission.com/id/eprint/436

Actions (login required)

View Item
View Item