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Dome-building volcanic eruptions are often associated with frequent Vulcanian

explosions, which constitute a substantial threat to proximal communities. One

proposed mechanism driving such explosions is the sealing of the shallow

volcanic system followed by pressurization due to gas accumulation beneath

the seal. We investigate this hypothesis at Sinabung Volcano (Sumatra,

Indonesia), which has been in a state of eruption since August 2010. In

2013, the volcano began erupting a lava dome and lava flow, and frequent

explosions produced eruptive columns that rose many kilometers into the

atmosphere and at times sent pyroclastic density currents down the

southeast flanks. A network of scanning Differential Optical Absorption

Spectrometers (DOAS) was installed on the volcano’s eastern flank in

2016 to continuously monitor SO2 emission rates during daytime hours.

Analysis of the DOAS data from October 2016 to September 2017 revealed

that passive SO2 emissions were generally lower in the 5 days leading up to

explosive events (~100 t/d) than was common in 5-day periods leading up to

days on which no explosions occurred (~200 t/d). The variability of passive SO2

emissions, expressed as the standard deviation, also took on a slightly wider

range of values before days with explosions (0–103 t/d at 1-sigma) than before

days without explosions (43–117 t/d). These observations are consistent with

the aforementioned seal-failure model, where the sealing of the volcanic

conduit blocks gas emissions and leads to pressurization and potential

Vulcanian explosions. We develop a forecasting methodology that allows

calculation of a relative daily explosion probability based solely on

measurements of the SO2 emission rate in the preceding days. We then

calculate forecast explosion probabilities for the remaining SO2 emissions

dataset (October 2017—September 2021). While the absolute accuracy of

forecast explosion probabilities is variable, the method can inform the

probability of an explosion occurring relative to that on other days in each

test period. This information can be used operationally by volcano observatories

to assess relative risk. The SO2 emissions-based forecasting method is likely

applicable to other open vent volcanoes experiencing dome-forming

eruptions.
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1 Introduction

1.1 Forecasting volcanic events

Providing accurate forecasts of volcanic events is at the very

core of operational volcanology (Sparks, 2003). Pallister et al.,

2019a define a forecast as “the communication passed from an

observatory to governmental authorities and the public regarding

the probability of future volcanic events” and further state that “a

principal goal for a volcano observatory is to accurately

communicate results of scientific evaluations and forecasts

together with the associated uncertainties”. Agencies around

the world tasked with volcano monitoring strive to develop

forecasting capabilities that allow them to warn at-risk

populations of potentially dangerous volcanic phenomena

with the goal of protecting lives and property.

When producing forecasts, one key consideration is the time

scale for which the forecast is intended (Marzocchi and

Bebbington, 2012). Long-term forecasts address relevant

hazards over time frames of years or decades and provide a

basis for land use and emergency planning. Short-term forecasts

address possible events in the coming hours to weeks or months.

Short-term forecasts are perhaps the most critical type of

forecasts, as their outcome may require immediate action by

emergency managers and civil defense (Pallister et al., 2019b).

However, even at short time scales, volcanic activity forecasts are

generally not certain. Intrinsic uncertainties in model input

parameters and the non-linearity of complex volcanic

processes lead to uncertain outcomes (Sparks, 2003).

Volcanologists therefore increasingly rely on probabilistic

rather than deterministic forecasting methods, as these

provide not only a range of possible outcomes but also an

estimated probability for each (Marzocchi and Bebbington,

2012).

Probabilistic methods to forecast volcanic events largely fall

into two categories. One class of techniques relies solely on

stochastic analysis of the volcanic event time series itself

(i.e., explosions, collapses). For example, Sandri et al. (2021)

apply stochastic modelling of explosions at Galeras Volcano

(Colombia) to analyze parameters such as the typical inter-

event time and the tendency for events to temporally cluster

into “eruptive cycles”. Derived from the past observational

record, the statistical properties of the time series of explosive

events can then be used to assign probabilities for future events

(see Wickman (1976) for a general overview).

Another class of forecasting methods goes one step further

and attempts to identify patterns in volcano monitoring

parameters indicative of future behavior. In some cases, the

input monitoring data can be relatively general. For example,

a progression of seismic activity (event locations, changes in

earthquake types and magnitudes) consistent with a conceptual

model of magma ascending in a volcanic conduit was used to

forecast increased risk of eruption at Sinabung Volcano in

2010 and 2013–2014 (McCausland et al., 2019). Alternatively,

forecasts can be based on very specific patterns in monitoring

parameters, with these patterns being identified (manually or

automatically) in past datasets leading up to volcanic events (e.g.,

de Moor et al., 2016; Rouwet et al., 2019; Dempsey et al., 2020).

This method is most applicable when the volcanic events in

question occur frequently at a given volcano, as past time series of

monitoring data then provide sufficient test data to allow

identification of patterns indicative of a certain behavior.

In this study, we follow this second, monitoring-based

approach to develop short-term forecasts of explosions at

Sinabung Volcano, Indonesia. Specifically, we examine the

volcano’s SO2 degassing behavior in days leading up to

explosions and periods of explosive quiescence (i.e., when no

explosions occurred but lava effusion may have continued). We

develop a simple conceptual model for the relation between

degassing and Vulcanian explosions and investigate the ability

to derive explosion probabilities based on the volcano’s past SO2

emission rates. Relying exclusively on the magnitude and

variability of SO2 emission rates, we aim to demonstrate the

diagnostic power of these monitoring parameters but note that

continuous geochemical monitoring can also be used as input

data to more comprehensive forecasting tools (e.g., Marzocchi

et al., 2008, and references therein).

1.2 Sinabung Volcano, Indonesia

Sinabung Volcano is a stratovolcano located in North

Sumatra, Indonesia (Figure 1). Rising to approximately

2,460 m above sea level (ASL) and composed of lava flows

and pyroclastic density-current deposits, Sinabung’s edifice is

perched upon ignimbrite deposits from the Toba caldera and

Permian basement rocks (Indrastuti et al., 2019). Prior to 2010,

the last dated eruption at Sinabung was ~1,100 years ago (Iguchi

et al., 2012), and subsequent activity was limited to minor

fumarolic activity near the summit for at least the last

400 years (Iguchi et al., 2011). In August 2010, however,

Sinabung experienced a series of phreatic explosions. In 2013,

these were followed by additional explosions, with activity

quickly transitioning from phreatic to magmatic. In

September of that year, pyroclastic density currents reached

up to 5 km from the vent and entire villages had to be

evacuated, then permanently relocated, affecting over

30,000 citizens (Otneil Ketaren et al., 2016). Formation of a
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lava dome at the summit of the volcano began in December 2013.

Subsequent collapses of this dome and of the flow front of a

connected lava flow on the southeast portion of the edifice led to

pyroclastic density currents that have repeatedly reached up to

5 km from the summit (Pallister et al., 2019a). The eruption is

classified by the Global Volcanism Program as having a

maximum Volcanic Explosivity Index (VEI) of 4. (Global

Volcanism Program, 2013). The eruption at Sinabung

continues at the time of writing (June 2022) despite a

deflationary trend identified in 2014 that has continued

through at least 2016 (Hotta et al., 2019), though the eruption

has recently transitioned to predominantly effusive in nature.

Based on sulfur dioxide (SO2) emissions, Sinabung ranked

among the three most active degassing volcanoes in Indonesia

in the 2010–2019 period (Bani et al., 2022).

With the onset of phreatic eruptions in 2010, the Indonesian

Center for Volcanology and Geological Hazard Mitigation

(CVGHM) moved quickly to facilitate monitoring. A network of

seismometers, tiltmeters, Global Positioning System (GPS) receivers

and Electronic Distance Measurement (EDM) lines was installed,

with all data sent back to a newly established observatory

approximately 8 km southeast of the volcano (Gunawan et al.,

2019). At the local observatory (referred to as “pos” in Bahasa

Indonesia), CVGHM observers carefully documented activity, both

by visual observation and from the incoming geophysical data

streams. Together with international partners, the recorded data

were used to investigate the geology and eruptive processes

occurring at Sinabung, and at times provide forecasts of evolving

eruptive styles (Hotta et al., 2019; Indrastuti et al., 2019;McCausland

et al., 2019; Wright et al., 2019). One particularly important dataset

recorded by observers at the observatory was a time series of

explosive events occurring at the volcano’s summit. Explosions

occurred frequently, particularly after the volcano entered a

phase of cyclic Vulcanian events in August 2015 (Gunawan

et al., 2019; Nakada et al., 2019). In 2016, the Sinabung

monitoring network was expanded to include three scanning

Differential Optical Absorption Spectrometers (DOAS)

(Primulyana et al., 2019). As described in more detail in the

Methods section, these instruments measure the volcanic SO2

emission rate and were telemetered to the local observatory to

provide data in near-real time. This, for the first time, provided the

Sinabung observers and research volcanologists with continuous

information on volcanic gas emissions at high temporal resolution

(5–20 min during the day).

With these detailed time series of explosion occurrences and

SO2 emission rates at Sinabung, we sought to determine whether

FIGURE 1
(A) Volcano monitoring network maintained by CVGHM at Sinabung. The red symbols labeled SMLM (site ‘Simalem’), SKDB (site ‘Sukandebi’),
and JRYA (site ‘Jeraya’) indicate the locations of the NOVAC scanning DOAS instruments installed in 2016. Data from these instruments are
telemetered to the radio repeater KWR and then on to the pos (observatory; house symbol) in real time. Explosion column height observations are
also made from the pos. (B) Photograph of the DOAS station installed at JRYA in 2016. Photo by Syegi Kunrat, CVGHM.
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the SO2 emission record could be used to gain insights into the

processes leading to the explosive events at the volcano’s summit.

And if so, might explosive events be probabilistically forecast

based on the volcano’s SO2 emission rates?

2 Methods

2.1 Scanning Differential Optical
Absorption Spectroscopy

The CVGHM installed a network of three scanning DOAS

instruments at Sinabung in August 2016 (Primulyana et al.,

2019). The instruments were positioned east of the volcano’s

edifice (Figure 1) to best detect gas plumes that are transported

towards the scanners during the prevailing westerly wind

conditions. During daytime hours, each instrument scans the

sky from horizon to horizon along a conical geometry

surrounding the volcano, recording ultraviolet light scattered

in the atmosphere (Galle et al., 2010). Each scan takes ~5–20 min

to complete, depending on lighting conditions, so approximately

70 scans per day are obtained from each of the three scanners.

When SO2 gas is present in overhead volcanic plumes, the

characteristic absorption of SO2 is quantified in the recorded

spectra. The abundance of SO2 in the plume can be retrieved

from the depth of absorption features using standard DOAS

techniques (Galle et al., 2002; Platt and Stutz, 2008).

The DOAS instruments are part of the global Network for

Observation of Volcanic and Atmospheric Change (NOVAC),

and the data analysis is performed using the NOVAC

community’s software and general methodology (Arellano

et al., 2021; Galle et al., 2010, www.novac-community.org):

First, a standard DOAS analysis determines whether any SO2

absorption is present in the scan. In this step, spectra recorded

along all viewing directions within the scan are evaluated relative

to the spectrum recorded closest to the zenith. In the next step,

the average of the lowest 20% SO2 column densities retrieved

within the scan is subtracted from all columns retrieved within

the scan. This so-called ‘baseline correction’ assumes that plume-

free sky is visible somewhere within the scan. In situations where

the plume is located overhead, this correction converts relative

column densities to absolute column densities and ensures that

the lowest columns within the scan are approximately equal to 0

(Galle et al., 2010).

Scans without SO2 are excluded from further
consideration, as the plume is assumed to have traveled
away from the scanner at the time of measurement. The
software determines whether a scan captured a full or
partial SO2 plume by calculating a “plume completeness”
parameter C (Johansson, 2009)

C � 1 −
max(SL, SR)
max(Si) (1)

where Si is the SO2 slant column density measured along an

individual direction within the scan. SL and SR represent the

average of the five column densities measured closest to the left

and right edges of the scan, respectively. Only scans with C≥ 0.8

were included for further analysis.

Whenever multiple scanners detected the gas plume, the

plume height was triangulated, thus allowing calculation of

the SO2 burden in the plumes’ cross-sections (Galle et al.,

2010). Multiplication of this SO2 burden with the wind speed

at plume height yields the volcanic SO2 emission rate, typically

reported in metric tons per day (t/d). In this study, we used

wind information from the National Oceanic and

Atmospheric Administration (NOAA) National Center for

Environmental Predictions (NCEP) Global Forecast System

(GFS) at 0.5° resolution, interpolated to the volcano’s

geographic location and summit altitude, as an estimate of

plume speed (see de Moor et al., 2017 for a comparison of GFS

data with anemometer measurements).

As is described in the next section, explosive events at the

volcano’s summit were very common during our

2016–2021 observation period. Explosions varied greatly in

size, with some emitting gas and ash to almost 10 km ASL, and

others so small they had no noticeable effect on plume height.

During large explosions, significant volcanic ash loads were

entrained into the eruption clouds, making them appear dark

in color and at times leading to ash fallout downwind. The

scanning DOAS instruments are not well-suited for

quantifying gas emissions associated with large, ash-rich

eruption clouds. The problems are two-fold: for one, large

explosions often fill much of the visible sky with gas and ash,

making it impossible for the scanners to measure a clear-sky

spectrum relative to which the other measurements can be

evaluated. Also, significant ash concentrations in the large

eruptive clouds block solar radiation at all wavelengths,

preventing it from penetrating the plume core. If left

unmitigated, these conditions will lead to severe

underestimation of the gas emission rates (often referred to

as ‘light dilution’), as the majority of light collected by the

instruments has not passed through the plume at all (Kern

et al., 2010, 2013). Acknowledging these problems, our

analyses excluded SO2 emission rates recorded on calendar

days with explosion columns that reached >4,000 m ASL, or

about 1,500 m above the volcano’s summit, as the SO2

amounts within these significant explosion plumes were

likely underestimated. Days on which explosions with

unknown column heights occurred (189 days over 5 years)

were also removed from the SO2 record. Filtered in this way,

we obtained a robust measure of the volcano’s “passive” SO2

emissions. However, we note that the record is missing all

emissions associated with large explosive events (see

Primulyana et al., 2019 for some examples) and thus

represents a minimum constraint on the cumulative SO2

output over time.
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2.2 Identifying explosions and determining
column heights

Explosive events occurring at Sinabung produce

characteristic seismic signals that are recorded by the

volcano’s seismic network. These signals typically start as low-

frequency events (LFs) but transition to broadband tremor

within the first minute after onset. The CVGHM classifies

these as ‘Emission’-type events (Kushendratno et al., 2012;

McCausland et al., 2019) immediately preceded by impulsive

low-frequency shaking. These signals are thought to be caused by

magmatic gas and steam breaking through the upper conduit and

dome on their way to the surface (McCausland et al., 2019).

Data from the seismic network is telemetered to the Sinabung

observatory in Kabanjahe, North Sumatra, and sent to the CVGHM

headquarters building in Bandung in real time. Based on the

seismicity, an audible alarm at the Kabanjahe observatory alerts

the observers each time an explosion occurs, and explosions

occurring during the daytime are visually confirmed whenever

the weather allows. When possible, the observers also note the

color (dark/light), opacity, and estimated height of gas and ash

plumes stemming from explosions.

The eruptive column heights reported in this study were

determined by aiming a set of binoculars with an integrated

inclinometer at the top of the column. The inclination was noted

and, together with the known distance to the volcanic vent, the

approximate column altitude was triangulated. In each case, the

column height was determined immediately after the first

explosive pulse. At times, the eruption clouds may have lofted

further as they dispersed and drifted downwind, but this

additional lofting could not be quantitatively captured using

the methods at hand, so only the initial height was reported.

3 Measurement results

Running continuously since September 2016, the scanning

DOAS network at Sinabung has been able to record the passive

SO2 emission rates from Sinabung for the last 5 years (Figure 2). The

instruments were able to record at least one valid emission rate (i.e.,

C≥ 0.8) on approximately 80% of the days in the observation period.

On the remaining 20% of days, the plume was either blown to the

west where the instruments couldn’t capture the emissions, clouds

between the plume and the scanners prevented reliable

measurements, or a large explosion occurred, and the gas data

were discarded due to concerns about ash emission adversely

affecting data accuracy (see Section 2.1). Instantaneous passive

SO2 emission rates derived from individual scans ranged from

0 to ~4,800 t/d (maximum rate measured on 9 September 2021),

while the maximum daily average emission rate was ~2,600 t/d

(measured on 11 August 2020). The mean passive daily average

emission rate for the entire 2016–2021 reporting period was ~240 t/

d (N = 1,145 days).

Also shown in Figure 2, explosions were detected at Sinabung

on a total of 567 days between 1 October 2016 and 30 September

2021. Of these, 432 occurred between 1 September 2016 and

FIGURE 2
SO2 emission rates and explosive events measured at Sinabung Volcano from 1 October 2016 to 30 September 2021. Vertical grey bars depict
the range of instantaneous SO2 emission rates measured by the scanners in the DOAS network, while the solid black line represents the daily average
passive emission rate (see text for details). The timing and column height of explosions is indicated by the position of the stars. Explosive events with
unquantified column heights are indicated by stars at the top of the plot. The time windows used for training and testing explosion forecasts are
also indicated at the top and labeled ‘Training’, ‘Test A’, and ‘Test B’. Starting on 1 October 2017, the forecast daily explosion probabilities are
represented by the horizontal bar in varying colors, with the color scale given at right; stars indicating column heights are color-coded according to
the last valid forecast explosion probability before the corresponding explosion occurred (compare Figure 5C); red stars indicate explosions that
occurred during the training period when no forecast was available.
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20 May 2018, while 135 occurred in the remainder of the

observation period. Observations of column heights associated

with explosions ranged from 2,500 m (the volcano’s summit

elevation) to 9,500 m ASL. At least 30% of observed

explosions generated plume heights <4,000 m ASL, but the

exact percentage is unknown due to some explosions having

unquantified column heights. Of the known column heights, the

mean height was ~4,400 m and only 5% of explosive columns

reached >6,000 m ASL. Indeed, the majority of explosions were

relatively small; the warm, tropical environment likely aided

associated columns in rising to altitudes that would not have

been achieved in mid or high latitudes (Sparks, 1986).

4 Discussion

4.1 Statistical analysis of data collected in
the first year (2016–2017)

With the comprehensive record of SO2 emissions and the

large number of explosive events at Sinabung, we sought to

determine whether the degassing signals can be used to improve

the understanding of Sinabung’s activity and/or aid in forecasting

explosive events. Initially focusing on the first year of

measurements (1 October 2016 to 30 September 2017), we

calculated the mean passive SO2 emission rates during the five

preceding days on which explosions occurred. A histogram of

these 5-day mean emission rates is shown in red in Figure 3A.

Although the distribution encompasses occurrences of SO2

emission rates as high as 425 t/d, most days with explosions

were preceded by relatively low mean emissions ranging from

0 to 200 t/d, with a mode of about 100 t/d.

These observations can be compared to 5-day mean passive

SO2 emissions leading up to days on which no explosions occurred

(shown in blue in Figure 3A). Here, the probability distribution has

two separate peaks, one coinciding with the peak in pre-explosive

SO2 emissions and one towards higher gas emission rates.

Regardless of whether the bi-modal nature of the distribution is

truly significant, it appears that days of quiescence (no explosions)

tend to be preceded by higher 5-day mean passive SO2 emission

rates than days with explosions. Fitting a normal distribution to

the histogram of emissions preceding quiescence, we find that the

mode is closer to 200 t/d SO2, and 5-day periods with SO2

emission rates averaging >350 t/d were only once followed by

an explosion.

Besides the magnitude of SO2 emissions, we also examined

the inter-daily variability of SO2 emission rates leading up to

explosions by calculating the standard deviation (STD) of daily

FIGURE 3
Results of a statistical analysis of SO2 emission rates from Sinabung Volcano during October 2016 to September 2017. The mean (A) and
standard deviation (B) of the passive SO2 emission rate in the 5 days leading up to each day in this 1-year period were calculated. Histograms of these
parameters have been separated into days on which explosions occurred (red, N = 167) and days without explosions (blue, N = 177). Areas where the
histograms overlap appear purple. Note that days with explosions were more likely preceded by lower SO2 emissions than days of explosive
quiescence. Days without explosions were also typically preceded by standard deviations (STD) of SO2 emission rates between 50 and 150 t/d, while
days with explosions were preceded by a somewhat wider range of variability in emissions. Fitting normal distributions to the histograms (dotted
lines) and requiring that the sumof the two probabilities equals 1, an explosion probability was calculated for eachmean and STD value. Shown below
each histogram, these probabilities are only valid for the period assessed here (October 2016–September 2017).
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averaged SO2 emission rates for the same 5-day windows. We

found that periods preceding days with explosions generally have

SO2 emission rate STDs around 40 t/d, while the periods

preceding days of quiescence were more likely to be preceded

by STDs twice as high, around 80 t/d (Figure 3B). Fitting normal

distributions to the histograms, we also find that STDs greater

than about 150 t/d are more likely during periods leading up to

explosions than those leading to quiescence. In other words, the

range of realized STDs preceding days with explosions is higher

than that preceding quiescence. Collectively, we observe that SO2

emission rates are generally lower but exhibit a greater range of

variability in the 5-day periods preceding explosive events,

whereas SO2 emission rates in the 5-day period preceding

quiescent days are generally higher and vary over a narrower

range. We note that the 5-day timespan used here was chosen

after manually inspecting a range of other spans. The 5-day

window appeared to maximize the notable differences in

emissions before explosive vs. quiescent days while at the

same time encompassing sufficient data to allow means and

STDs to be calculated for most days.

These observations can now be used to calculate daily

explosion probabilities for the reference period. Since each

observation day falls either into the category of days with

explosions or days without explosions, the cumulative

probability at each position in the histograms in Figure 3

must equal 1. Using the fitted normal distributions rather

than the noise-prone data themselves, we calculate the

probability of an explosion occurring for observed mean SO2

emission rates and STDs in the preceding 5-day period. The

resulting probability curves are shown in the bottom panes of

Figure 3. The daily explosion probability increases for 5-day

periods of low SO2 emissions and for STDs either significantly

lower or higher than the 80 t/d typically associated with

quiescence.

4.2 A degassing model for Sinabung

Based on the multi-year SO2 emission record at Sinabung

and the statistical analysis of SO2 emissions preceding explosions

during October 2016—September 2017, we can develop a

conceptual model to explain our observations. First, the mean

SO2 emission rate of 240 t/d sustained over a 4-year interval

requires a steady supply of magma to relatively shallow depths. In

fact, similar emissions have been sustained for over a decade at

Sinabung (Primulyana et al., 2019), indicating a relatively

constant magma supply rate. The petrologic degassing

behavior of sulfur is complex and has not been explicitly

studied for Sinabung’s andesitic (Nakada et al., 2019) magmas.

However, research from other andesitic arc magmas (hydrous,

relatively oxidized) suggests that sulfur degassing occurs

throughout the mid- and upper-crust, where many magmas

are saturated in a H2O- and CO2-rich multicomponent vapor

phase (Métrich and Wallace, 2008; Fiege et al., 2014). At depths

shallower than ~4–6 km, the decreasing pressure causes sulfur to

increasingly partition into the vapor phase (Scaillet and

Pichavant, 2005; Burgisser et al., 2008; Lesne et al., 2011;

Wallace and Edmonds, 2011; Webster and Botcharnikov,

2011; Werner et al., 2020). Sulfur degassing at Sinabung is

therefore likely sourced from magmas ascending at various

levels within the crustal plumbing system (Christopher et al.,

2015; Iacovino, 2015), but particularly from relatively shallow

magmas.

A steady magma supply is also consistent with visual

observations of generally sustained lava extrusion from

Sinabung’s summit during 2016–2021. Photographs of the

summit (Figure 4A) show steam emissions, mostly focused

around the edges of the lava dome where degassing pathways

presumably follow stress fractures caused by dome extrusion and

growth. This combination of steady magma supply and fairly

open degassing pathways around the slowly extruding lava dome

allows for moderate gas emissions (100–400 t/d SO2) in a quasi-

steady state (Figure 4B). As the lava dome itself is likely

composed of material that previously degassed during slow

ascent up the conduit, it is likely to be a highly viscous,

crystalline lava (Nakada et al., 2019 measure crystallinities of

~40 volume % in juvenile lava fragments from 2014), and we

assume it is not very permeable to gas, consistent with the lack of

visible gas or steam plumes emanating from the dome itself

(Figure 4A).

Secondly, the decrease in SO2 emission rates in the days

preceding explosive events (Figure 3A) suggests that the

established degassing pathways can become sealed by the

viscous, degassed dome material, which causes pressurization

and eventual explosive rupture. The potential for a protracted

phase of repeating explosive events at Sinabung caused by

magma densification through degassing and vesicle collapse of

the lava dome and upper conduit was already recognized by

Primulyana et al. (2019) and Nakada et al. (2019), and this

prediction appears to hold true based on recent years of

observations. One possible trigger for sealing of the system is

a short-term reduction in magma supply rate from depth, which

could lead to a slight cooling and reduction in gas streaming

through the peripheral lava dome cracks, thus allowing ductile

dome material to seal the pathways. When this occurs, the SO2

emission rate measured downwind decreases, consistent with our

observations. Concomitantly, pressure will begin to build

beneath the seal as exsolved volatiles accumulate (Figure 4C).

Depending on the strength of the seal, the pressure building

beneath the dome may overwhelm it rather quickly. In this case,

gas which had begun to accumulate may be released in a non-

explosive manner, leading to a brief period of anomalously high

SO2 emissions. For example, in their detailed 2-week record of

SO2 emissions from 2016, Primulyana et al. (2019) discovered gas

emission events occurring at Sinabung that appeared to occur

contemporaneously with hybrid seismic events. Hybrid
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seismicity is often ascribed to brittle failure and resonance in fluid

filled cracks (Chouet, 1996; Chouet and Matoza, 2013;

McCausland et al., 2019), so these may well be manifestations

of the non-explosive gas release events which we postulate here.

When the volcanic system is in an unstable state of intermittent

or partial sealing of degassing pathways (Figure 4C), gas

emissions could well be more variable than during times

when steady-state degassing is occurring, which might explain

the greater range of standard deviations apparent in the October

2016—September 2017 SO2 emission rate data (Figure 3B).

However, if the degassing pathways become more robustly

sealed, pressurization will continue and eventually lead to an

explosion. In this process, the accumulated pressure may break

open an existing pathway for gas escape or create a new one. In

either case, the accumulated volatiles are rapidly released to the

atmosphere, and the top of the conduit is suddenly exposed to

near-atmospheric pressure causing additional degassing and

expansion of the volatile phase. Gas and magma fragments

are jetted from the conduit and form the observed explosive

eruption columns (Figure 4D). The magnitude of the explosion

and the height to which the resulting gas and ash plume ascends

depends on the pressure that was attained beneath the plug at the

volcano’s summit.

While we believe this simplistic seal-failure model explains

the observations of SO2 degassing and Vulcanian explosive

events at Sinabung, we acknowledge that other, more complex

models could also be valid. For example, in addition to exsolved

volatiles being trapped below a shallow seal, the exsolution of

FIGURE 4
Schematic of our conceptual seal-failure model for magmatic degassing and explosions at Sinabung. (A) Photograph by CVGHM scientists of
the lava dome perched in Sinabung Volcano’s summit crater on 25 November 2020. Degassing dominantly occurs from themargins of the dome. (B)
During periods of explosive quiescence, gases exsolving frommagma rising in the conduit escape through cracks in and pathways around the highly
viscous and relatively impermeable lava dome. (C) If the degassing pathways become sealed, SO2 emissions decrease and gas accumulating
beneath the dome begins to pressurize. Highly variable gas emissionsmay result if the seal is broken intermittently in a non-explosive manner before
a critical pressure is achieved. (D) Explosions occur if the pressure builds beyond the threshold for generating new or re-establishing preexisting
degassing pathways. Explosions are caused by the rapid depressurization of the shallow conduit. The magnitude of the resulting explosions will
depend on the strength of the seal, which determines the accumulated pressure beneath it.
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volatiles from rapidmicrolite crystallization within the lava dome

itself and/or the rapid heating of groundwater could also play a

role in producing overpressure that ultimately leads to Vulcanian

explosions (Morrissey andMastin, 2000). The information at our

disposal does not allow for definitive conclusions to be drawn

regarding the explosive processes. The model is also based only

on observations from October 2016 to September 2017 and is

therefore not necessarily valid outside this period. For example, if

the magma supply rate from depth changed drastically over time,

this would lead to significant changes in activity at the volcano’s

summit that would not necessarily be represented in our model.

On the other hand, if parameters such as magma supply,

magma chemistry, and lava effusion rates remained

approximately constant over time, we could expect future

activity to follow the same patterns as in the past. In this case,

the statistical results discussed above might be used to provide

forecasts of future behavior, regardless of whether the conceptual

model is correct or not.

4.3 A simple framework for forecasting
explosions based on SO2 emissions

As defined in our statistical analysis above, the daily

explosion probabilities are strictly accurate only for the

evaluated period (October 2016 to September 2017). However,

we can consider this a “training” period for a forecasting method

which aims to forecast future events. If the system behaved

exactly as it did during the training period, future explosions

would be expected to follow the same pattern. To produce a

forecast, the two separate diagnostics (i.e., mean SO2 emission

rate and standard deviation in the preceding 5 days) must first be

combined in some way, as they will typically produce different

results. For example, if a 5-day mean SO2 emission rate of 300 t/d

is accompanied by a STD of 200 t/d, the emission rate would

indicate an explosion probability of approximately 0.3 while the

STD of emissions would indicate a probability of 0.8 (see

Figure 3). In the absence of additional information, we choose

to weight the 5-day mean and 5-day STD metrics equally (in this

example yielding a combined explosion probability of 0.55).

Following this procedure, we can forecast explosion

probabilities for most days in our record. Ranging from 0.20 to

0.75, these daily forecasts are shown in a colored horizontal bar

spanning 1 October 2017–30 September 2021 in Figure 2. The

forecast record contains gaps because gas emissions could not be

constrained every day (e.g., when the plume was blown to the west),

and days on which large explosions may have occurred are removed

from the passive SO2 emission dataset (see Methods section).

Furthermore, in order to calculate meaningful STD values, we

only present forecasts for days where SO2 emissions data are

available on at least two of the five preceding days. In the end,

we were able to calculate forecasts on approximately 70% of days

during 1 October 2017–30 September 2021.

FIGURE 5
Results of several tests of the explosion forecast
methodology based on SO2 emission characteristics. (A) In Test A,
we applied the explosion forecast framework to data between
October 2017 and May 2018, a period that exhibited a similar
explosion frequency as the training period (October
2016—September 2017). (B) In Test B, the forecast was applied to
all available data collected between October 2017 and September
2021. A forecast explosion probability between 0 and 1 was
calculated for each day in the respective study, and these were
then binned in intervals of 0.1. The dotted line and right axis
indicate the number of forecast values in each bin. Dividing the
number of explosions that occurred on the days in each bin by the
total number of days in the bin yields the realized daily explosion
probability, which is indicated by the red bars (left axis). The
numbers above the bars give the number of days with observed
explosions per number of days in each forecast bin. In (C), we plot
the results of Test B, this time including all days in the test period,
not just those with a valid forecast. Days without a forecast were
assigned the last valid forecast that could be calculated. Note that
in all cases, the absolute forecast explosion probabilities were
higher than the realized probabilities, but in a relative sense, the
probability of an explosion occurring always increased with
increasing forecast probability.
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4.4 Evaluating forecast accuracy
(2017–2021)

We first focus on the period from 1 October 2017 to 31 May

2018 (marked “Test A” in Figure 2). This 8-month period directly

follows the 1-year training period and ends just before explosions

at Sinabung stopped for about a year in 2018–2019. The rationale

for choosing this test period is that the frequency of explosions

was similar to that of the training period, and thus the processes

driving explosions are likely to be similar to those occurring

during the training period.

Based on SO2 emission characteristics, a total of 145 daily

explosion probability forecasts were calculated during this 242-

day period, so a forecast could be provided on roughly 60% of

days. Forecast daily explosion probabilities ranged from 0.32 to

0.73. A histogram of forecast probabilities is given in Figure 5A.

Explosion probabilities between 0.4 and 0.5 were forecast for

55 days, and an additional 50 days had explosion probability

forecasts between 0.5 and 0.6. Thus, approximately 75% of all

forecast days fell into these two categories. Only 7 days yielded

explosion probabilities of less than 0.4, while explosion

probabilities >0.6 were forecast for 33 days.

Since this test period lies in the past, the accuracy of the

forecasts can be assessed by examining the realized daily

explosion probability, which is simply the number of days

with explosions divided by the total number of days in the

observation period. The bars in Figure 5A show the realized

explosion probability disaggregated by forecast explosion

probability, with the numbers above each bar indicating the

number of explosions per total number of days in the respective

bin. For all bins, realized explosion probabilities were lower than

the forecast values. For example, only nine explosions occurred

during the 55 days that had explosion probability forecasts

between 0.4 and 0.5, corresponding to a realized explosion

probability of 0.16, or less than half the forecast value. The

same holds true for all other bins, with the forecasts exceeding the

realized explosion probabilities by about a factor of 2. This

observation indicates that the absolute accuracy of the

explosion probability forecasts is rather poor, as our method

was not able to accurately forecast the total number of explosions

that occurred during the test period.

On the other hand, the forecasting method was quite

successful in discriminating days with a higher likelihood of

explosions from days with a relatively lower probability of an

explosion occurring. This is evidenced by the monotonic increase

of realized explosion probabilities with increasing forecast values.

Explosions were three times more likely on days in the

0.7–0.8 explosion probability forecast category (p = 4/9 =

0.44) than on days with forecasts <0.4 (p = 0.14). Therefore,

though the absolute daily explosion probability was

overestimated in all bins, the method still provided a means

for determining the relative likelihood of an explosion occurring

on a given day.

In a second test, we considered the entire available dataset

following the training period (labeled “Test B” in Figure 2).

Running from 1 October 2017 to 20 September 2021, this 4-year

period contains phases of frequent explosive activity, but also

phases of explosive quiescence that last for many months at a

time. Given the far lower average frequency of explosions in this

period and the results of the first test, we do not expect our

method to accurately forecast the total number of explosions or

absolute daily explosion probability in this test period. However,

if the processes that cause explosions remained the same as in the

training period, the forecast might again provide a relative

indication of daily explosion probability when compared with

other days in the period.

The test results appear to confirm this supposition. As shown

in Figure 5B, we were able to calculate explosion probability

forecasts on 1,011 of 1,450 days, or about 70% of days in the

period. Explosion probability forecasts ranged from 0.20 to 0.75,

with most days again falling in the range of 0.4–0.6. The realized

explosion probabilities were far lower than the forecast values.

However, the monotonic increase of realized explosion

probabilities with increasing forecast values remained, thus

again allowing for discrimination of days with relatively low

explosion probability from those with relatively high risk. In fact,

the realized likelihood of an explosion occurring on a day in the

0.7–0.8 bin (0.25) was now more than seven times greater than

that of one occurring on a day with forecast probability <0.4
(0.033).

Despite the relatively high number of days with valid

forecasts available, gaps in our ability to provide a forecast

tend to disproportionately occur during phases of frequent

explosions as SO2 emission rates are deemed unreliable (see

Methods). In a final test, we assigned the last valid forecast

probability to any day on which the probability could not be

calculated, thus filling the gaps in our forecast record. The results

of this procedure (Figure 5C) are generally consistent with what

we found previously. The absolute forecast explosion

probabilities were similarly low, but the monotonic increase of

realized probabilities with increasing forecast values remained.

Relying on the last valid forecast therefore seems to be an

acceptable method for dealing with forecast gaps due to

unmeasured SO2 emissions.

We envision the methodology described here could prove

useful not just at Sinabung, but also at other volcanoes with

dome-building eruptive activity. Notable examples include

Santiaguito Volcano, Guatemala, where observations of

degassing along the edges of a lava dome are strikingly similar

to activity at Sinabung’s summit (see Figure 1 in Bluth and Rose,

2004); Popocatépetl Volcano, Mexico, where SO2 camera data

revealed that a subset of explosions were preceded by low

emission rates attributed to the accumulation of gas beneath a

rapidly compacting dome (Campion et al., 2018); Colima

Volcano, Mexico, where measurements of gas flux appeared to

track the failure of a crystalized obstruction in the volcano’s
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shallow system prior to ash-rich explosions (Varley et al., 2010;

Cassidy et al., 2015); and Sakurajima Volcano, Japan, where SO2

emission rates were observed to decrease contemporaneously

with increased inflation of the edifice prior to explosions from

Showa crater (Yokoo et al., 2013; Kazahaya et al., 2016).

4.5 Future work

Although promising in its ability to provide a relative risk

metric, the utilized explosion forecasting approach clearly has

limitations. As the forecast output is based on a single training

period, the methodology will surely fail if the processes governing

explosions and volcanic activity overall at Sinabung Volcano

change. For example, if magma supply from depth decreases and

the years-long eruption trends towards its end, the forecast will

incorrectly predict high explosion probability levels as the mean

SO2 emission rate decreases. Similarly, the methodology fails to

forecast the long-term changes in explosion frequency exhibited

in our 5-year record. As long-term mean SO2 emissions did not

drop noticeably during periods of explosive quiescence, we

hypothesize that magma supply from depth likely continued

during these times, but other processes made for efficient

degassing and lack of pressurization and explosions. These

differences are not captured in our training data, and thus the

forecast is unable to predict them.

Also, some of the explosions included in our record were

caused by dome-collapse events during which portions of the lava

dome and flow broke off or collapsed, instantly decreasing the

lavastatic pressure on the upper conduit and leading to rapid

decompression, degassing, and explosion (Pallister et al., 2019a).

These types of explosions are unlikely to be preceded by changes

in degassing caused by variable permeability of the dome, but

instead depend on the structural integrity of the dome/lava flow

complex and the degree of oversteepening. A notable example of

an unforeseen explosion occurred on 9 June 2019 at 16:28 local

time. In what was one of the largest eruptive events in the last

5 years, a large explosion at Sinabung produced a thick, black

column of gas and ash which ascended to approximately 9,500 m

ASL. The explosion produced pyroclastic flows that traveled

more than 3 km down the south and southeast flanks of the

volcano. This paroxysmal event occurred on a day with a SO2-

emissions-derived explosion probability of only 0.4 according to

our forecast method. We attribute the failure to forecast this

event to a high likelihood that this explosion was caused by a

mechanism not described by our seal-failure model, possibly a

dome-collapse as mentioned above.

Although some of our method’s limitations are intrinsic to

forecasting itself, it may be possible to improve the forecast

accuracy in the future by providing additional information upon

which to base the projections. Examination of the explosion

record at Sinabung reveals that explosions tend to be temporally

clustered in phases of frequent activity, interspersed by periods of

relative explosive quiescence. If we assume that these phases are

significantly longer than our forecasting window, the absolute

probability of an explosion occurring on a given day likely

depends on which phase of activity the volcano is in and the

observed frequency of explosions in that phase. Considering the

history of explosions in recent weeks, months, or even years

along with the short-term (5-day) degassing behavior might then

improve the forecast accuracy. This could be implemented in an

approach similar to the Short-Term Average/Long-Term

Average (STA/LTA) algorithms which are commonly used in

event-detection applications based on geophysical data (Withers

et al., 1998; Trnkoczy, 2012; Brill et al., 2018; Power et al., 2021;

Viccaro et al., 2021). Alternatively, it may be beneficial to repeat

the training process intermittently, either at preset time intervals

or whenever volcanic activity is deemed to have entered a new

phase. Even a sliding window approach that constantly re-trains

the algorithm on a period of time immediately preceding the

current day could be implemented, though care must be taken to

include a sufficient number of events to avoid imbalanced

training data. Such improvements could be particularly

valuable when the magma supply rate at a given volcano

changes. The current transition towards a more effusive

eruption with fewer Vulcanian events at Sinabung may be

caused by a decrease in magma supply, which would in turn

negatively affect the absolute accuracy of the forecasting method

over time (as shown in Section 4.4) unless some sort of re-

calibration is performed.

Further improvements might come from a more rigorous

analysis of the optimal input features that lead to accurate

forecasts. In this study, we chose to base forecasts only on the

simple mean and standard deviation of emission rates over the last

5 days after manually inspecting a variety of other properties. Prior

maximum and minimum emission rates, short-term and long-term

trends in emissions, and the elapsed time since the last explosion all

did not appear to exhibit systematic differences leading up to

explosions when compared to explosive quiescence during

October 2016—September 2017. However, a more rigorous

investigation of these and other parameters, possibly even

employing machine learning algorithms to select optimal features

and produce forecasts, may yield improved results. The drawback of

such an approach is that the forecastmodel becomes less transparent

to the users, thus making it more difficult to link the observations to

a conceptual model for the explosions. Assessing whether the

forecasts remain valid in the face of a potential long-term change

in activity at Sinabung thus also becomes more complicated. For

these reasons, we have elected not to use machine learning

approaches here, instead favoring a simple statistical approach.

Perhaps the greatest improvement could come from

combining our forecasting method with others, particularly

with methods based on other monitoring parameters. As

discussed above, explosions at Sinabung may be caused by a

number of different processes, and not all are likely to be

preceded by significant changes in gas emissions. Therefore, a
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forecasting method based solely on degassing observations will

necessarily miss certain events. Pallister et al., 2019b show how

information from satellite remote sensing platforms was

instrumental in monitoring lava dome stability and forecast

dome/lava flow collapse events and pyroclastic flows at

Sinabung during 2013–2016. Tracking lava dome changes on

timescales comparable with the SO2-based forecasts (i.e., ~5-day

periods) could help determine whether our proposed conduit

sealing and gas accumulation model was accompanied by

observable lava dome inflation. Low lava dome extrusion rates

might also make the system more prone to sealing, and high

extrusion rates likely increase the chance of lava dome or flow

front collapse. Seismic and geodetic data also provide valuable

information about processes occurring at depth that can presage

changes in eruptive activity and inform forecasts (Hotta et al.,

2019; McCausland et al., 2019). For example, the processes that

cause ‘Emission’- or ‘Hembusan’-type (Caudron et al., 2015;

McCausland et al., 2019) and ‘Hybrid’-type (Primulyana et al.,

2019) seismic events are not yet fully understood. Coupling our

gas-based forecasts with those from other automated or process-

based forecasts would therefore provide complimentary

information and likely result in the most accurate forecasts,

particularly when compiled and discussed by a multi-

disciplinary team of analysists.

5 Conclusion

Using a relatively simple statistical analysis of passive SO2

emission rates recorded at Sinabung Volcano during a 1-year

period in 2016–2017, we found that explosions were often

preceded by below-average emission rates over the prior

5 days (Figure 3A). The absolute standard deviation of the

SO2 emission rate, while typically also lower than average,

took on a slightly greater range of values in the 5 days

leading up to explosions than before days without explosions

(Figure 3B). These findings could be explained by a simple

conceptual model in which degassing pathways from the

volcano’s conduit to the atmosphere are intermittently

blocked, allowing pressure to build and sometimes lead to

explosions. Based solely on the measurements of SO2

emissions and timing of explosions, the model is not unique

and other, more complex models might also explain the

observations. However, the diagnostic nature of the

statistical observations appears robust. Derived from the

observations of the 2016–2017 training period, a simple

method for forecasting explosion probabilities was tested on

the remainder of the available gas emission and explosion

dataset (2017–2021). Although the method failed to

accurately forecast the absolute probability of explosions, it

succeeded in providing a relative measure of the daily explosion

probability when compared to other days in each test period.

Based on these findings, we suggest that the explosion

probability forecasts be interpreted as relative rather than

absolute probabilities. These forecasts can then be used

operationally: days on which a high relative probability is

forecast are more likely than others in the same general time

window to have explosions occurring.

Forecast explosion probabilities can be obtained daily in a fully

automatic process. Interpretation of the relative probabilities

requires knowledge of the limitations of the methods used in

their calculation. For example, explosions caused by dome-

collapse events cannot be forecast with this technique as they are

generally not associated with precursory changes in gas emission

rates. Time will tell whether the forecasts of future activity at

Sinabung will remain accurate, or whether the volcano will

transition to a new phase of significantly different activity.

Regardless, we envision the described forecasting methodology

could well be applied to other volcanoes experiencing dome-

building eruptions.

Finally, this study adds to the growing body of research

demonstrating that important, actionable information on

volcanic activity and processes can be obtained from

continuous gas measurements and emphasizes the value of

establishing and maintaining continuous gas monitoring at

more active volcanoes worldwide (Aiuppa et al., 2007; Werner

et al., 2013; de Moor et al., 2016; Kern et al., 2017, 2022; Stix and

de Moor, 2018).
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