Assessing the Potential of Polymer Coated Urea and Sulphur Fertilization on Growth, Physiology, Yield, Oil Contents and Nitrogen Use Efficiency of Sunflower Crop under Arid Environment

Perveen, Sonia and Ahmad, Saeed and Skalicky, Milan and Hussain, Ijaz and Habibur-Rahman, Muhammad and Ghaffar, Abdul and Shafqat Bashir, Muhammad and Batool, Maria and Hassan, Montaser M. and Brestic, Marian and Fahad, Shah and EL Sabagh, Ayman (2021) Assessing the Potential of Polymer Coated Urea and Sulphur Fertilization on Growth, Physiology, Yield, Oil Contents and Nitrogen Use Efficiency of Sunflower Crop under Arid Environment. Agronomy, 11 (2). p. 269. ISSN 2073-4395

[thumbnail of agronomy-11-00269-v2.pdf] Text
agronomy-11-00269-v2.pdf - Published Version

Download (829kB)

Abstract

Nitrogen and sulphur are fundamental macronutrients for the production of sunflower crop. Nitrogen is required consistently in larger amounts for sunflower production while common urea has more losses due to high solubility. On the other hand, sulphur application increases oil contents and availability of other essential nutrients (N, P, and K). Therefore, combined application of polymer coated urea with sulphur fertilization might be a promising option which can increase achene yield, oil contents, and nitrogen use efficiency (NUE). However, no particular studies have been conducted to explore the main and interactive effects of polymer coated urea and sulphur fertilization on growth, physiology, yield, oil contents, and NUE under arid field conditions. Hence, the current field experiment consisted of two nitrogen fertilizers [polymer coated urea (PCU) and common urea (CU)] and three sulphur fertilizer rates [S0 (0), S1 (30) and S2 (60) kg ha−1)] in a split-plot arrangement under randomized complete block design (RCBD) during spring season of 2019 and 2020. Experimental results revealed that growth, physiology, yield, oil contents, and NUE of sunflower crop were significantly improved with the application of nitrogen fertilizers, sulphur fertilizer rates, and their interaction. Meanwhile, NUE, achene yield and oil contents were increased by 16.0–17.2%, 16.5–17.0%, and 2.96–3.19% respectively with the application of PCU compared with CU. Furthermore, NUE, achene yield and oil contents were also increased by 12.8–13.3%, 13.1–13.7%, and 10.7–10.9%, respectively, due to sulphur fertilization of 60 kg ha−1compared with no sulphur application. Similarly, NUE, achene yield, and oil contents were increased by 32.9–39.5%, 31.7–32.6%, and 13.1–13.2% respectively with the application of PCU in combination with sulphur fertilization of 60 kg ha−1compared with CU × S0, which also evidenced a clear and positive interaction between nitrogen and sulphur. Conclusively, PCU (130 kg ha−1) in combination with sulphur fertilization of 60 kg ha−1 is promising option for obtaining higher achene yield, oil contents, and NUE for sunflower crop under arid environment, and hence, it might be a good agronomic adaptation strategy for sustainable production of sunflower.

Item Type: Article
Subjects: Apsci Archives > Agricultural and Food Science
Depositing User: Unnamed user with email support@apsciarchives.com
Date Deposited: 20 Jan 2023 07:11
Last Modified: 20 Feb 2024 04:08
URI: http://eprints.go2submission.com/id/eprint/225

Actions (login required)

View Item
View Item