Verma, Shivam and Singh, Gurpreet and Chanda, Arnab (2023) A Novel Finite Element Model for the Study of Harmful Vibrations on the Aging Spine. Computation, 11 (5). p. 93. ISSN 2079-3197
computation-11-00093.pdf - Published Version
Download (1MB)
Abstract
The human spine is susceptible to a wide variety of adverse consequences from vibrations, including lower back discomfort. These effects are often seen in the drivers of vehicles, earth-moving equipment, and trucks, and also in those who drive for long hours in general. The human spine is composed of vertebrae, discs, and tissues that work together to provide it with a wide range of movements and significant load-carrying capability needed for daily physical exercise. However, there is a limited understanding of vibration characteristics in different age groups and the effect of vibration transmission in the spinal column, which may be harmful to the different sections. In this work, a novel finite element model (FEM) was developed to study the variation of vibration absorption capacity due to the aging effect of the different sections of the human spine. These variations were observed from the first three natural frequencies of the human spine structure, which were obtained by solving the eigenvalue problem of the novel finite element model for different ages. From the results, aging was observed to lead to an increase in the natural frequencies of all three spinal segments. As the age increased beyond 30 years, the natural frequency significantly increased for the thoracic segment, compared to lumber and cervical segments. A range of such novel findings indicated the harmful frequencies at which resonance may occur, causing spinal pain and possible injuries. This information would be indispensable for spinal surgeons for the prognosis of spinal column injury (SCI) patients affected by harmful vibrations from workplaces, as well as manufacturers of automotive and aerospace equipment for designing effective dampers for better whole-body vibration mitigation.
Item Type: | Article |
---|---|
Subjects: | Apsci Archives > Computer Science |
Depositing User: | Unnamed user with email support@apsciarchives.com |
Date Deposited: | 30 May 2023 11:35 |
Last Modified: | 12 Jan 2024 07:08 |
URI: | http://eprints.go2submission.com/id/eprint/1133 |