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Abstract

How do we scale biological science to the demand of next generation biology and medicine

to keep track of the facts, predictions, and hypotheses? These days, enormous amounts of

DNA sequence and other omics data are generated. Since these data contain the blueprint

for life, it is imperative that we interpret it accurately. The abundance of DNA is only one part

of the challenge. Artificial Intelligence (AI) and network methods routinely build on large

screens, single cell technologies, proteomics, and other modalities to infer or predict biologi-

cal functions and phenotypes associated with proteins, pathways, and organisms. As a first

step, how do we systematically trace the provenance of knowledge from experimental

ground truth to gene function predictions and annotations? Here, we review the main

challenges in tracking the evolution of biological knowledge and propose several specific

solutions to provenance and computational tracing of evidence in functional linkage

networks.

Introduction

Biological research has generated many foundational and translational discoveries with pro-

found impacts on health, wellness, biotechnology, and our scientific understanding of living

organisms. However, recent technological developments have challenged even the best scien-

tists in the largest centers to keep pace with the avalanche of data, predictions, and papers pro-

duced by high-throughput technologies, big computing that speeds up analyses coupled with

AI-driven interpretations, and the sheer size of the community using these technologies. This

landscape is even more challenging for small laboratories and has forced many laboratories

(big or small) to become more narrowly specialized in order to produce scholarly and repro-

ducible work at a time when reproducibility has become an urgent concern. While some argue

reproducibility problems have grown severe enough to produce a crisis, there’s no debate that

the great magnitude of data, analyses, predictions, and papers will only increase and potentially

overwhelm the community in the future. As Charles Darwin once said:
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“False facts are highly injurious to the progress of science, for they often endure long; but

false views, if supported by some evidence, do little harm, for everyone takes a salutary pleasure

in proving their falseness.”

In times past, the interpretation of novel DNA sequence depended almost completely on

experimental validation of the proteins encoded and direct tests of either biochemical or bio-

logical function. This, combined with genetic analysis, then enabled accurate descriptions of

function. However, because of the vast amount of DNA sequence now available, we no longer

have the time or luxury of experimentally validating function. We instead infer it from what is

known more generally about the function of related proteins in other, often model, organisms.

Usually, this is carried out by computational comparison and analysis and the concomitant

transfer of functional annotation using evolutionary, machine learning, or network analysis.

In the simplest case, consider that protein A is annotated with a function and protein B is

95% identical, then we can feel somewhat confident that the 2 proteins have the same function,

unless we have prior knowledge that just 1 or 2 changes to its sequence can alter function. If

protein A is an experimentally characterized protein, with a well-defined biochemical function,

then our inferences about protein B are on relatively solid ground. But what if the annotation of

protein A is itself based only on computational similarity to another protein? Then our confi-

dence in the annotation should be diminished for as one continues down the stream of infer-

ences, they inevitably become incorrect. We see this happening routinely in sequence databases.

What kind of evidence should be kept to document the “semantic path” between the newly

annotated gene and the experimentally tested protein? Clearly, we need trustworthy links to evi-

dence that are sufficient to either explain or question the validity of the new annotation.

The issues are equally applicable to the increasing number of systems that associate human

genes with phenotypes such as essentiality, aging, or disease risk [1]. In these systems, the ini-

tial experimental or clinical phenotype labels are obtained by genetic experimentation in

model organisms or from Online Mendelian Inheritance in Man (OMIM) for disease risk in

human populations. Then, these phenotype labels are propagated to other genes in functional

linkage networks and are combined with genetic data obtained from large genome-wide asso-

ciation studies (GWAS) studies to prioritize follow-ups. Relevant phenotype predictions and

GWAS scores are commonly integrated to elevate the priority of a follow-up study of a gene

associated with disease risk. Thus, provenance and transparency are equally desirable traits of

prediction algorithms that are used to prioritize human genes in resource-intensive GWAS

studies and their detailed and costly follow-ups by the biology community [1,2].

Few predictions have a provenance trace to experimental sources

We will first document our own experience and a startling observation we made in the project

COMBREX (Computational Bridges to Experiments) [3]. Consider the “simplest” of all bio-

logical questions. What does a gene do in a cell, or more specifically, what is the biochemical

function of the protein that the gene codes? COMBREX discovered that a tiny fraction

(roughly 1%) of bacterial function assignments to genes in microbial organisms are supported

by experimental evidence that can be explicitly and robustly traced to a publication [1]. But if

we do not have the provenance to the paper where the experiment was conducted, how do we

decode the context of the experiment that includes the organism, the biological conditions

(e.g., antibiotic stress or oxidative stress), the experimental platform, or even the exact DNA

sequence used in the experiment? Without provenance and a trace to experimental sources,

how can we be sure of the validity of functional annotation in current databases? However, vir-

tually none of the predictive methods used in AI or Machine Learning (ML)produce an auto-

matic trace to evidence.
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The early version of COMBREX [3] implemented a first-of-a-kind straw man heuristic

algorithm to provide a provenance link from a predicted annotation to its experimental

source. The simplest provenance prediction algorithm is based on similarity between proteins.

COMBREX, therefore, attempted to identify a similar protein with solid experimental evidence

stored in a Gold Standard Database that agrees with a biochemical function prediction. It is

not always possible to do. When it is possible, these links to evidence may not be sufficient to

prove the function of the new protein. However, it is useful to at least initiate the process of

evidence tracking to motivate and inform subsequent improvements. This COMBREX

method and many other simple heuristics can be used to construct putative evidence paths to

experimental knowledge [4]. We discuss more rigorous methods below for tracing predictions

to experimental sources in network based function prediction.

Network-based functional annotation: High popularity and low

interpretability

The annotation problems are further complicated by the lack of transparency through which

functional labels are produced by network-based computational predictions. The community is

increasingly using guilt by association in networks to assign hierarchical function descriptors

to proteins (e.g., Enzyme Commission (EC) numbers or GO labels), but these guilt propagation

methods are becoming increasingly complex and opaque. This multifaceted story continues to

grow in complexity as the gene function annotation community increasingly uses network

propagation techniques that we and others popularized in biology almost 20 years ago [5–7].

These belief and knowledge propagation methods deploy complex functional linkage networks

that we refer to as knowledge networks (KNs). These knowledge networks link facts, predic-

tions, and hypotheses to enable further belief or knowledge propagation [8]. Belief propagation

has a specific technical meaning in causal networks, whereas label propagation can take many

mathematical forms and algorithmic implementations. Thus, we use the informal term of KNs

to capture the use of networks to propagate beliefs and knowledge. In these KNs, a protein may

be hypothetically linked to many proteins (neighbors in the network), and each neighbor is

linked to many others with multiple functional assignments [1,2,9,10]. When a prediction is

made computationally by “belief, label, or knowledge propagation” from the entire network,

what are the most important sources of evidence that contributed to this new prediction?

In Fig 1, we first show 2 examples of the intuitive and commonly used language of func-

tional linkage graphs to display functional relationships between genes and the challenges of

network-based function prediction. We use the widely used Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) database to illustrate 2 important special cases of the

challenges of functional annotation in functional linkage graphs. In Fig 1A, we document our

own experience correcting the functional annotation of the gene rimO in Escherichia coli. This

gene was originally annotated as an RNA methyltransferase based on homology to miaB and

was called miaB-like methyltransferase. We later established experimentally that this gene is in

fact a protein methylthiotransferase that modifies a residue in a ribosomal protein S12, which

is conserved from bacteria to human [11].

In Fig 1B, we describe the functional linkage of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), a well-known moonlighting protein with a variety of biochemical and biological

functions. Such proteins pose more significant challenges for annotation that we believe can

be resolved by proper provenance links and enforcing consistency constraints during traceable

computational or manual annotation.

Our main concern is that automated annotation systems are now assigning functions to

genes based on complex learning and propagation algorithms in noisy knowledge networks
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making the provenance of a prediction even less traceable or transparent [6]. The predictions

most notably lack an evidential trail back to a protein of known function or the relevant exper-

imental data informing consequent annotations. Complex network propagation algorithms

are now widely used for phenotype prediction and drug repositioning or discovery studies

with significant medical and economic impact on future medical and biotechnology develop-

ment [1,2,12–14]. They are also used to identify new clinical targets. The lack of traceability, or

rigorous provenance, can lead to circular logic and self-incriminating paths of evidence, as

gene functions are propagated and then “statistically validated” using leaky training–testing

processes. That is, the annotation in testing sets used for validation is commonly obtained by

machine learning algorithms that previously propagated functional or phenotypic labels from

subsets of the training sets to statistically validate their predictions without tracking paths to

provenance. In other words, for each prediction, what is the trace to experimentally deter-

mined evidence via computationally propagated beliefs and annotation labels?

Provenance tracing to experimental sources in functional linkage

networks

There are many heuristic ideas for tracing provenance in networks. We document a simple

heuristic method for network diffusion–based prediction and additionally propose a new

methodological idea: using causal inference to trace provenance and evolution of biological

knowledge in networks used for gene function prediction. There is a real opportunity to

approach these challenges systematically using causal inference, graphical models, and related

techniques [8,15]. We intuitively sketch out the intuition in Fig 2B. The detailed algorithms

require technical developments beyond the scope of this essay.

The causal analysis research area is developing rapidly and generating widely available and

readily usable open access software. We suggest that tracing provenance can be implemented

using systematic causal inference frameworks [15–17] in addition to the heuristic solutions.

Why is causal inference applicable here? Consider the case where gene G1 was experimentally

annotated with a functional label that was subsequently propagated to genes G2, G3, and G4

from G1 (Fig 2B). The experimental evidence can be based on biochemical assays or

Fig 1. Functional linkage networks in bacteria and human genomes. The networks are produced by the STRING database. Functional linkage relationships could

be based on homology, coevolution, genomic context, protein–protein interaction screens, co-expression in a set of experiments, and other correlative or

experimental evidence and became standard representations in computational biology. Each node has an associated functional label produced either by experiment

or prediction. STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.

https://doi.org/10.1371/journal.pbio.3000999.g001
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perturbations. The experimental evidence is only available for G1, which is part of the Stan-

dard Database. More formally, our belief in the functional annotation of gene G2 given anno-

tations for genes G1, G3, G4, and G5 is conditionally independent of the beliefs associated

with G3, G4, and G5 given our knowledge about G1 (i.e., P(G2| G1, G3, G4, G5) = P(G2 |

G1)). In this case, we can clearly report G1 as the sole provenance for G2. This is a highly sim-

plified scenario. Often, multiple papers, experiments, and genes are needed to establish a prov-

enance for a functional label and to warrant its inclusion in the Gold Standard Database.

We note that a special case of causal tracing to experimental sources can be performed by

phylogenetic inference. For instance, an experimentally determined functional label in 1

organism is propagated to the ancestor of the protein in a phylogenetic tree and then can be

properly traced through orthology downwards to predicted annotations. Thus, our causal

annotation proposal generalizes the traditional tracing of evolutionary relationship in phyloge-

netic trees to the much broader framework of functional linkage graphs where the functional

inference is much more general and complex. There are many languages capturing causal rep-

resentations across data sciences going back to Sewell Wright’s seminal work on path analysis

in genetics. We suggest using modern AI-driven causality frameworks as a useful point for

building a probabilistic foundation of provenance for biological science.

Fig 2A shows that the annotation of genes G1 and G3 can both be directly traced to the

functional label F1. Gene G2 requires a longer provenance trace via G1 (illustrated with a red

connector). We cannot annotate G2 just with a provenance link to F1 because if G1 is tested

and results in a different function, the provenance link is no longer valid. In fact, G4 is linked

directly to 2 proteins with 2 different functions F2 and F3. Both links can be stored. However,

G4 is also indirectly linked to F4 via G5. This creates a potentially multifunctional assignment

to G4 with multiple provenance links. Resolving this type of conflict can be theoretically done

by network-based function prediction used in the field. [8].

Fig 2. Tracing provenance in functional linkage graphs (2A) and causal networks (2B). The nodes correspond to genes, and the colors are adopted from COMBREX.

This coloring scheme was inspired by skiing signs (green, blue, black slopes, and an additional color of gold). Black labels correspond to genes that have no current

predictions and therefore are most challenging to experimentally test. Green and gold genes have experimental evidence, and blue genes have predictions. Green labels

suggest that some experimental evidence might be missing such as the organisms used or conditions under which the experiment was performed. All blue nodes

should ideally have a provenance link to a gene that may demonstrate a phenotype associated with this gene in a genetic experiment or its biochemical function.

https://doi.org/10.1371/journal.pbio.3000999.g002
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In Fig 2B, we exemplify the concept of “causal annotation” using Bayes Networks, a popu-

lar AI platform [18]. The annotation of G5 is formally requiring a full probabilistic trace to G1

via G3, but it is conditionally independent of the functional label assigned to G2 and G4. The

red curve traces the provenance of G5 to G1.

We emphasize the sensitivity of provenance to the topology of the functional linkage net-

work and the inference method. However, rudimentary provenance tracing in functional link-

age networks is within reach for current AI-based methods.

Provenance to experimental sources with network diffusion

Network diffusion is a method developed in computer science (CS) and AI and ported to biol-

ogy to propagate labels. Network diffusion from a node V1 to another node V2 roughly cap-

tures the probability that a random walk starting at V1 will reach V2 after a designated

number of steps. Many authors use heat diffusion from a node to other parts of the graph,

smoothing the heat from a few high heat sources over the entire network to achieve better con-

sistency of label assignments to network neighborhoods. Network diffusion has become a

common method for function label propagation in biological networks popularized in part by

the success of Google’s PageRank algorithm to identify relevant pages. It generalizes the sim-

pleminded guilt by association from neighbors to propagating labels to nodes that absorb high

diffusion from heat from multiple nodes with experimentally confirmed function labels. We

note that each diffusion score for a predicted label in a typical case is just a linear sum of diffu-

sions from all nodes with experimental evidence. That is, the diffusion score Si = Sum Kij from

all nodes Vj with experimental evidence where Kij is the diffusion from Vj to Vi.

We observe that, in Fig 2, the diffusion heat obtained from F4 at G4 would be stronger than

the diffusion heat propagated from either F2 or F3. This is perhaps counterintuitive given that

the network proximity from F2 and F3 is shorter (1 link). But diffusion heat from F2 is diffused

to 2 nodes and therefore is reduced. The system may then predict the function of G4 to be F4

and produce the appropriate provenance links. Alternatively, if all diffusions are higher than

expected by chance, the system may produce 3 annotations with 3 separate sources.

For network diffusion algorithms [2,7] that propagate functional labels, we can devise a

very simple trick to “trace” predictions. Since the prediction is made by a diffusion from all

experimental sources, the provenance tracing system can compute a significance associated

with each coefficient Kij (similar conceptually to what is done in regression). This technique

can associate a statistical significance of the contribution from each experimental or computa-

tional annotation to the final score used to make a gene function prediction. The system then

may only keep links to the genes that pass a significance threshold. We observe that this simple

trick can be used for any machine learning methods that use a linear combination of evidence

to make predictions such as logistic regression or 1-layer neural networks. Prize collecting,

Steiner tree methods in networks can also be deployed as another long-term heuristic connect-

ing experimental evidence with predictions.

Semantic extensions

The provenance tracing idea can be naturally expanded to more complex representation of

protein function. Consider a framework where each gene is a node in a large causal network

capturing our knowledge about all genes in a given set. At the moment, this annotation is typi-

cally just a simple functional label such as “receptor kinase” or “DNA-binding protein” or a

pointer to an ontology. In the future, protein function annotation can be extended to text,

mechanisms, logical formulas, or a model. For instance, the bioinformatics community already

built some tools for parsing text descriptions of protein function and converting those into a
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structured annotation such as EC numbers. The temporal dimension in building experimental

knowledge (e.g., year of publication and/or citations) and improvements in natural language

processing allow us to assign directed or undirected arcs to genes (and papers) documenting

putative paths of “moving” annotation or evidence from 1 study to another. In some cases,

functional hypotheses can be proven as facts by both prior publications and future work, often

requiring both. If we had a formal structural representation of knowledge networks (e.g., as a

graphical model), we could apply causal inference to identify the key contributors to knowl-

edge or beliefs. The advent of genome scale perturbations [19] is increasing the opportunistic

benefit of tracking provenance using logical, graphical, or causal frameworks as well because

the observed phenotypes can be propagated and traced reproducibly and reliably.

Conducting experiments on knowledge gaps

Moreover, KN platforms complemented with provenance can be used to identify knowledge

gaps [20–22] and cost-effective ways to close them. There are several documented systematic

ways to track, predict, and identify gaps in growing knowledge captured by graphical models

and networks. Consider a protein has multiple domains and all are required to perform a func-

tion F (e.g., a DNA methyltransferase requires a DNA-binding domain, a recognition domain,

and a catalytic domain). All 3 must be documented with appropriate experimental evidence to

form a cohesive functional description of the protein as a whole. This is of special importance

as synthetic biology generates many creative variants of proteins from fusion of components

found in different proteins [21]. We can still derive much insight by framing this kind of

knowledge in the language of causal networks (or related representations). For instance, active

learning algorithms in causal networks can be used to compute the minimal or most cost-

effective set of proteins (or other hypotheses) that can be tested experimentally to produce a

significant decrease in uncertainty in the network and close the knowledge gaps more effi-

ciently [15–17].

This approach enables another desirable opportunity to advance knowledge as we advo-

cated for in COMBREX and follow-up white papers. We proposed augmenting human intui-

tion by driving experimental research toward closing knowledge gaps in protein function

space in the most cost-effective fashion [3]. This can be done by prioritizing the most informa-

tive experiments that can best reduce uncertainty in the knowledge (belief) network. Formally,

such experiments produce the highest information gain in causal networks. In some cases,

these experiments may be associated with nodes that produce the highest diffusion in net-

works. These ideas are generally based on Active Learning frameworks in AI. Active Learning

has been independently proposed for different biological or scientific applications [21].

Call for action: Provenance tracing to experimental sources as

more reliable foundation for systems and synthetic biology

We call for agencies and foundations to increase effort in the area of computational prove-

nance tracing. These ideas complement the existing reproducibility efforts in statistics (e.g., R)

and software engineering (e.g., GALAXY). We see computational provenance in KNs as an

essential requirement for developers of future Science Informatics systems and more broadly

Data Science used in Scientific Discovery.

In this paper, we focused on broadly applicable solutions to tracing provenance in network-

based function prediction systems. However, similar issues apply to predictions made by more

traditional machine learning systems (such as decision trees or logistic regression) and even

more so for predictions made by deep learning architectures. For logistic regression type pre-

dictions, the general concept we outlined above would work. Decision trees may select the
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most informative features automatically, and these informative features just need to be

recorded in the knowledge base (for each protein separately) to provide a provenance trace,

which is not done now, but should be. Deep nets remain a big challenge, and it is very difficult

to produce an interpretable prediction. However, our proposed solutions would cover a large

and widely used set of function prediction methods.

We note that the database community independently studies important provenance ques-

tions, but the semantics of provenance in relational databases or software engineering is

completely different from our proposal to trace predictions to experimental evidence. In inte-

grated or distributed databases, provenance means which specific database did an entry origi-

nally belong to when we integrated multiple data files. Clearly, it is an important practical issue

as well but very different in scope or techniques to the trace of provenance needed to establish

evidence for a predicted annotation.

This essay independently suggests an urgent need to generate a Gold Standard Database of

functional annotations for the Human Genome and other key model organisms. If we cannot

trace the provenance of a functional annotation currently assigned to a human gene, how can

we be confident of its precise functionality? Given the available annotation, it will not take a

massive effort to validate all high-priority genes that can be used as a platform for propagating

and judiciously providing provenance to predicted functional annotation.

We would like to emphasize that our proposals should not be seen as a critique of the semi-

nal work and research performed by world-class annotation centers and databases such as

National Center for Biotechnology Information (NCBI), Gene Ontology, Flybase, BioCyc,

STRING, GeneCards, and many others. We are deeply grateful to the biological database com-

munity for enabling and supporting biomedical science. In addition, we are also profoundly

grateful to the transformative work in protein function prediction that includes many ground-

breaking algorithms and systems. We want to point out the challenges facing these efforts,

however, and propose to start an active community dialogue to produce novel solutions. These

solutions may include our specific proposals described above or others.

If we are ever to perform synthetic biology [23,24] in a meaningful manner, we need to

know the functions of the genes already present in the organism we aim to modify. The pros-

pect of unanticipated consequences due to unforeseen interactions is a risk whenever we intro-

duce new genes or replace old ones. While such risks can usually be overcome, they inevitably

hinder efforts due to trial and error when pursuing synthetic biology approaches. The more

we know about the functions inherent in an organism, the more precise we can be in engineer-

ing new traits. Thus, a clearly traceable knowledge of existing gene function can provide a

sound foundation upon which synthetic biology and systems biology efforts, together with AI

methods, can be expected to drive and expand our understanding of biology.
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