
Journal of Computer and Communications, 2022, 10, 66-80
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2022.109005 Sep. 22, 2022 66 Journal of Computer and Communications

Runtime Power Allocation Based on Multi-GPU
Utilization in GAMESS

Masha Sosonkina1, Vaibhav Sundriyal1, Jorge Luis Galvez Vallejo2

1Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, USA
2Department of Chemistry, Iowa State University, Ames, USA

Abstract
To improve the power consumption of parallel applications at the runtime,
modern processors provide frequency scaling and power limiting capabilities.
In this work, a runtime strategy is proposed to maximize performance under
a given power budget by distributing the available power according to the
relative GPU utilization. Time series forecasting methods were used to de-
velop workload prediction models that provide accurate prediction of GPU
utilization during application execution. Experiments were performed on a
multi-GPU computing platform DGX-1 equipped with eight NVIDIA V100
GPUs used for quantum chemistry calculations in the GAMESS package. For
a limited power budget, the proposed strategy may deliver as much as hun-
dred times better GAMESS performance than that obtained when the power
is distributed equally among all the GPUs.

Keywords
Time Series Forecasting, ARIMA, Power Allocation, Performance Modeling,
GAMESS, GPU Utilization

1. Introduction

Power and the subsequent energy consumption pose major challenges in the de-
sign of large scale systems. The power/energy constraints are due to many rea-
sons with technical and economical costs being the primary. Therefore, power
and energy consumption is a major obstacle to application scalability, availabili-
ty, and affordability, and it is urgent to develop techniques that optimize energy
consumption while maximizing performance. Hurdles to such optimization are
in part due to 1) a great variability in modern high-performance application
workloads and 2) complexity of modern hardware architectures. These two fac-

How to cite this paper: Sosonkina, M.,
Sundriyal, V. and Galvez Vallejo, J.L. (2022)
Runtime Power Allocation Based on Mul-
ti-GPU Utilization in GAMESS. Journal of
Computer and Communications, 10, 66-80.
https://doi.org/10.4236/jcc.2022.109005

Received: August 11, 2022
Accepted: September 19, 2022
Published: September 22, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2022.109005
https://www.scirp.org/
https://doi.org/10.4236/jcc.2022.109005
http://creativecommons.org/licenses/by/4.0/

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 67 Journal of Computer and Communications

tors have to be accurately modeled to predict runtime performance under dif-
ferent power levels.

In authors’ previous work [1], machine learning (ML) modeling was used to
provide accurate performance models, which accounted for a multitude of hard-
ware characteristic as they relate to the application runtime changes. For the ac-
curate predictions, it is of utmost importance to provide accurate estimations for
the said characteristics, which may serve as input features to the ML performance
models executing dynamically. In [1], the authors considered history-window
methods with averaging across a few past time intervals. In this work, time series
forecasting methods are explored for feature value prediction. Given a real-world
quantum chemistry application GAMESS [2], its feature value patterns are first
explored as a function of time. Next, time series forecasting methods are applied
to predict their future values during the runtime. To test the resulting solution in
modern high-performance computing (HPC) scenarios, it was implemented as a
foundation of a novel runtime strategy that allocates a given power budget among
the multiple GPUs executing an application for maximum performance. The
strategy operates in a manner transparent to the application and utilizes a time-
slice based approach to set the power limits for the next timeslice. In a nutshell,
the main contributions of this work are as follows:
○ Explored the feature value patterns with respect to time in GAMESS GPU

executions. In particular, considered GPU utilization feature.
○ Selected and justified an appropriate time series forecasting method that may

be applicable to a variety of HPC GPU calculations in GAMESS.
○ Proposed a novel runtime strategy to maximize GPU execution performance

under a given power budget.
○ Deployed the chosen forecasting method in the runtime strategy and demon-

strated its superior performance to standard power allocation approaches.
The structure of the rest of the paper is as follows. Section 2 provides litera-

ture review. Section overviews GPU calculations in GAMESS used in this work.
Section 4 provides methodology to model runtime behavior of the GAMESS
GPU workload and studies applicability of different time series forecasting algo-
rithms. Section 5 provides methodology and description for the runtime strategy
to allocate available power. Section 6 shows experimental research results and
Section 7 concludes the paper.

2. Review of Published Related Work

Power consumption is one of the principal design constraints for the modern
exascale systems. To mitigate the resulting operating costs and prohibitive fail-
ure rates, researchers have been devising strategies to budget power on system
components. In this section, a brief discussion of previous work in power cap-
ping and closely related work in system-level power and energy savings is pro-
vided.

The strategies to budget the power consumption for modern computing sys-

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 68 Journal of Computer and Communications

tems come in two forms: 1) DVFS/CPU throttling for processor and memory
and 2) hardware-enforced power bounds using such interfaces as Intel(R) RAPL
[3]. The authors in [4] propose a multi-input multi-output (MIMO) power con-
trol algorithm to distribute a given power budget between the processor and
memory domains to maximize the application performance. A machine learning
technique to determine the sensitivity of application performance with respect to
CPU and DRAM power capping was proposed in [5] and used to devise a strat-
egy for power budgeting. A runtime system termed conductor was proposed in
[6] which utilizes configuration space exploration and adaptive power balancing
to maximize performance under a hardware-enforced power cap. A multilevel
power distribution framework termed CLIP was proposed in [7], which esti-
mates per node power budget using the workload characteristics and utilizes
memory accesses to determine CPU and memory affinity.

Many strategies have been developed to improve GPU energy efficiency by
utilizing DVFS, micro-architectural techniques, workload division and applica-
tion specific information. Zamani et al. [8] propose a framework for matrix mul-
tiplication employing undervolting beyond minimum operating voltage to re-
duce energy consumption of GPUs. To guard against any rise in faults by such
undervolting, a fault-tolerance algorithm was also proposed in [8]. Authors in
[9] characterize and demonstrate the NP-hardness of optimal task scheduling
problem on GPUs and propose a constant approximation algorithm assuming
that GPU cores can scale with continuous frequencies.

Guerreiro et al. [10] develop microbenchmarks to devise GPU power models
using an iterative approach and the performance counter parameters. The work
in [11] proposes strategies to modify application and CUDA parameters, such as
grid and thread dimensions, to improve GPU utilization and energy efficiency.
Kernel fusion, which combines two kernels into a single thread, is proposed in
[12] to improve GPU utilization and reduce energy consumption. Greengpu [13]
involves low level programming and memory management with custom pthread-
based kernel launches for the GPU to divide workload between CPU and GPU
for synthetic benchmarks. The authors in [14] utilize software prefetching and
DVFS to reduce GPU energy consumption.

The work in [15] proposes PowerCoord that dynamically controls the power
of the PKG and GPUs to cap power consumption while seeking to maximize
performance of the system in which multiple jobs are executing. The problem of
job co-scheduling on an integrated system with both CPUs and GPUs under a
power cap was studied in [16]. Factors, such as memory, power contention and
job period, were observed to affect performance and considered in heuristic al-
gorithms for performance enhancing co-schedules. Authors in [17] study the
gaming workloads from the point of view of PID controllers, least mean squares
(LMS) and autoregressive moving average (ARMA) to manage their power con-
sumption. In [18], workload characterization is performed using time series for
reducing CPU power consumption.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 69 Journal of Computer and Communications

The work described in this paper differs from the related work in that it con-
siders not only GPU power allocation dynamically but also the distribution of
power among multiple GPUs for maximum performance. Furthermore, a time
series approach was used to model GPU streaming-multiprocessor (SM) utiliza-
tion during the execution.

3. Overview of GAMESS Calculations on GPUs

GAMESS [2] [19] is one of the most representative freely available quantum
chemistry applications used worldwide for ab initio electronic structure calcula-
tions. A wide range of quantum chemistry computations may be accomplished
using GAMESS, ranging from basic Hartree-Fock and Density Functional Theory
computations to high-accuracy multi-reference and coupled-cluster computa-
tions.

The high performance multi-GPU capabilities in the GAMESS/LibCChem
[20] suite of programs include a GPU-accelerated Fock build [21], a full imple-
mentation of the Self-Consistent-Field (SCF) method [22] including the one-
electron integrals and the Direct-Inversion of the Iterative Subspace (DIIS) algo-
rithm. These routines have been scaled up to the entirety of the Summit super-
computer [23] and have demonstrated excellent parallel efficiency when coupled
with fragmentation methods [24] [25]. A brief discussion of the overall algo-
rithm is included here, for more details refer to [21] [25]. The GPU-accelerated
SCF program is currently available only in a non-publicly released version of
GAMESS, such that GAMESS performs the basic routines of reading the input
file, setting up the basis set information, and creating the guess matrix for the
SCF calculation. The new GPU-accelerated SCF programs accepts the basis set
information, the density matrix, and the coordinates of the system to begin the
calculation.

The overarching scheme for the SCF program includes a coordinator/worker
dynamic work balancing algorithm, the steps of which are as follows: Firstly, the
basis set information is accepted, the shells and shell pairs are constructed. Se-
condly, the shell pairs are sorted and stored in the binned batch container [22],
which ensures a load balanced distribution of the work among the processes.
Thirdly, the coordinator process evaluates the one-electron integrals on the GPU
and transfers the Hamiltonian (Hcore) matrix back to the CPU. After the one-
electron integrals have been computed, the process to evaluate and digest the
two-electron integrals begins.

The coordinator process binds the workers to a GPU, binding one rank to one
GPU exclusively. The batch-binned shell pair container is copied among the
ranks. The coordinator process statically assigns the first batches of integrals to
be evaluated to a GPU. Each batch contains a batch-size number of shell pairs,
the value of which is set in the input file with the default of 2560 shell pairs. The
batches are organized in a greedy fashion, having the most computationally ex-
pensive first.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 70 Journal of Computer and Communications

In the GPU, each thread calculates a contracted integral and its results are di-
gested into partial Fock matrices in order to avoid race conditions. After a
worker process is done with its associated batch of work, it sends a signal to the
coordinator process. The coordinator process then assigns the next available
batch to that worker. This is repeated until all shell-pair batches are processed.

At this point, the partial Fock matrices are gathered in the host and the final
Fock matrix is transferred back to the GPU for the DIIS algorithm to diagonalize
the matrix and obtain the final Hartree-Fock energy of the respective iteration.
This process continues until self-consistency is achieved, which is controlled by
a user-defined convergence threshold with the default of 10−6.

4. Methodology: Time Series Forecasting

Section 3 outlined the scheme of the SCF program executed on multiple GPUs
that are dynamically load-balanced, from which it is inferred that all the partici-
pating GPUs have a similar pattern of their utilization. In particular, Figure 1
shows the streaming multiprocessor (SM) utilization for the eight V100 GPUs
for a total of 300 seconds of an RHF calculation of a valinomycin molecule. Ob-
serve that utilization traces for all the GPUs are virtually indistinguishable in
Figure 1, which graphically indicates that the design of the SCF program leads
to load balanced calculations. Hence, an analysis for the first GPU only is shown
in the rest of this section. To better focus on this analysis the utilization trace
was extracted from Figure 1 into a separate figure, Figure 2.

A set of data points ordered in time and equally spaced are considered time
series and thus, corresponding analysis methods are applicable. In the rest of this
section, the SM utilization will be treated as time series and a particular analysis

Figure 1. SM utilization on eight V100 GPUs executing GAMESS RHF calculation during
300 seconds.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 71 Journal of Computer and Communications

Figure 2. SM Utilization on V100 GPU #1 for the GAMESS RHF calculation executing on
eight GPUs during 300 seconds (cf. Figure 1, which also includes this very utilization
trace).

method chosen. Notice that the SM utilization, shown in Figure 2, exhibits a re-
peating pattern in intervals of similar duration, so time-series forecasting tech-
niques can be employed to predict future utilization values. Figure 3 outlines
decision-flow stages as suggested in [26] to identify an appropriate method to
predict a time series accurately. In particular, for the applicability of sophisti-
cated forecasting models, it should be verified that the sequence of data consi-
dered is not a random walk, meaning that, in addition to its stationarity, the se-
quence points must be autocorrelated, thereby avoiding a random movement
without any pattern. Note that, if the given time series is not stationary, diffe-
rencing transformation can be applied to make it stationary, and that the aug-
mented Dickey-Fuller (ADF) test can be used to determine if a time series is sta-
tionary by testing for the presence of a unit root. If a unit root is present, the
time series is not stationary and a differencing transformation needs to be ap-
plied. This testing-differencing process is repeated. For the time series in Figure
2, the initial p-value output by ADF was determined to be 0.67, which is much
higher than the threshold of 0.05 below which the series is considered stationary.
Therefore, the first-order differencing transformation has been applied and the
ADF p-value of 0.0012 was obtained indicating that this transformation made
the time series stationary.

Next, per Figure 3, one has to check if any autocorrelation lies between the
lagged values of the time series. Figure 4 shows the autocorrelation plot with
y-axis depicting the autocorrelation values and x-axis depicting the time lag. It
can be observed from Figure 4 that there is a significant autocorrelation even
when the lag value is as large as 20, and hence, the time series is not a random
walk, and the lag q = 1, where the autocorrelation is the maximum, may be used
as a moving average parameter in the forecasting model.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 72 Journal of Computer and Communications

Figure 3. Decision sequence to determine which time series prediction process to select among Moving Average (MA), Auto-
regressive (AR), Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA), where p,
q, and d are process parameters.

Figure 4. Autocorrelation of the SM utilization time series.

Since the autocorrelation values are not abruptly going down after a certain

lag value, the given time series is not a moving average process. Following the
steps in Figure 3, partial autocorrelation needs to be evaluated. Figure 5 shows
the partial autocorrelation values of the time series. The values do not decrease
abruptly after a certain lag, and the lag p = 1, where the partial autocorrelation is
maximum, may be used as the order of the autoregressive process. Therefore,
following Figure 3, it can be concluded that the given time series is an Autore-
gressive Moving Average (ARMA(p, q)) process. ARMA requires that the data is
first transformed by differencing into a stationary series. Then this transforma-
tion must be reversed after the forecasting is done to obtain predictions on the
original scale. Instead, one may model a non-stationary time series directly with
a modified ARMA model, Autoregressive Integrated Moving Average ARIMA(p,
d, q) model, where the parameter d is the integration order. The parameter d
may be determined from the differencing order. The SM utilization time series
considered here was differenced once, hence d = 1.

Figure 6 shows the observed and predicted SM utilization values when an
ARIMA(1, 1, 1) process was used to predict the time series. In the same Figure 6,

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 73 Journal of Computer and Communications

Figure 5. Partial autocorrelation of the SM utilization time series.

Figure 6. Comparison of the observed and predicted SM utilization values using the
ARIMA(1, 1, 1) process and the history-window mechanism for the execution shown in
Figure 2.

it is compared with the history-window prediction mechanism, in which the fu-
ture value is predicted as a rolling mean of the past three values. Note that the
window size of three has shown the best performance in authors’ previous work
on runtime power and performance modeling strategies [1] [27]. It can be ob-
served from Figure 6 that the predicted values significantly match the observed
whereas the history-window prediction fails to capture the pattern of the ob-
served values. Specifically, an R-squared value of 0.917 was obtained for the
model predictions in Figure 6, which demonstrates that the ARIMA process can
predict the SM utilization time series with high accuracy.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 74 Journal of Computer and Communications

5. Methodology: Runtime Strategy to Allocate Available
Power

In Section 4 the ARIMA-based prediction of the SM utilization time series was
developed for GAMESS GPU execution. Here, the selected ARIMA prediction is
employed in a proposed novel runtime strategy to maximize parallel application
performance executing on multiple GPUs under a given power budget. In par-
ticular, Figure 7 displays the algorithmic steps of this strategy. Initially, at Step 1,
the given power budget PB is divided equally to all the available N GPUs by setting

their individual power budgets iP to BP
N

. In Step 2, the application executes

for the duration τ of a timeslice. Note that, similar to authors’ previous work
[1] [27], the timeslice duration was set at 250 ms, which has been found here as
acceptable for the accuracy of predictions as evidenced in Section 6 describing
research results. In Step 3, given the iP , the resulting SM utilization iU is rec-
orded for each GPU i, 1, ,i N= � . Then, the ARIMA model is employed (Step
4) in each GPU i to predict the utilization ˆ

iU for in the current timeslice r fol-
lowed by collecting the predicted utilization values from all the N GPUs (Step 5).
In Step 6, the power budget of each GPU is set in proportion to its predicted uti-
lization. Step 7 executes the application for the duration τ in the timeslice r.
Then, the strategy proceeds to consider the next timeslice r + 1.

6. Experimental Research Results

The experiments were performed on the DGX-1 compute node at Old Domi-
nion University, having two Intel(R) Xeon(R) CPU E5-2698 20 core Broad-
well-EP processors, 64 GB of DDR4 and eight NVIDIA V100 GPUs. The V100
GPU has 80 SMX units with a total of 5120 CUDA cores and 16 GB global
memory.

Figure 7. Strategy pseudo-code executed in each GPU of a multi-GPU application.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 75 Journal of Computer and Communications

Four different GAMESS/LibCChem inputs were chosen to evaluate the effica-
cy of the proposed strategy. Table 1 provides their input names along with de-
scriptions. In order to select a (reduced) power budget PB for the calculations,
their total GPU unrestricted power consumption at the maximum GPU fre-
quency was measured and is also shown in Table 1 (Column Pmax). It can be ob-
served, that the power consumption ranged from 1206 W to 1220 W. Therefore,
same limits may be applied to all four calculations. In particular, three power
budgets PB were chosen as follows: 1000 W, 900 W, and 800 W, which represent
similar percentages of the unrestricted power Pmax for the calculations, about
81%, 73%, and 65% for the three budgets PB, respectively.

To evaluate performance of the four inputs under the proposed runtime
strategy, a baseline strategy termed allhigh was considered. In the allhigh strate-
gy, the power limits for all GPUs were raised to their maximum values. The pro-
posed strategy was also compared with another power-limiting strategy, termed
naïve, which allocates the given power budget among GPUs based on their re-
spective thermal design power (TDP) limits. In particular, the TDP of the V100
GPU is 300 W [28]. There are eight identical V100 GPUs in the DGX-1 compute
node, so under the naïve strategy, the power budget is divided equally among the
eight V100 GPUs.

Quantitatively, the performance of a strategy is proportional to the inverse of
the execution time T under that strategy. Therefore, as authors suggested pre-
viously in [27], the performance degradation sδ of a strategy s relative to the
allhigh strategy is calculated as

() ()
()s

s allhigh
.

s
T T

T
δ

−
=

Figure 8 shows the performance degradation δ for the four inputs operating
under the naïve strategy for the three chosen power budgets with respect to the
allhigh strategy. As expected, in Figure 8, the highest power budget of 1000 W
results in the least amount of performance degradation for all inputs. Specifical-
ly, their average performance degradation was 48.9% for the 1000 W power
budget. For a lower power budget of 900 W, the average performance degrada-
tion increased to 65.3%. This larger performance degradation comes from the
reduction in GPU frequency due to power limiting through nvidia-smi. Further
reduction in power budget to 800 W yielded even larger performance degrada-
tion for all the inputs with an average of 85.5%.

Table 1. Description and maximum power consumption Pmax of four GAMESS inputs used in this work.

Input name Pmax, W Description

w150_pcseg0
w150_pcseg1
valinomycin

gly5_pcseg0

1206
1220
1210

1218

Water molecule; PCSeg-0 basis set with 1950 basis functions and 450 atoms.
Water molecule; PCSeg-1 basis set with 3150 basis functions and 450 atoms.
Naturally occurring dodecadepsipeptide used in potassium transport and as antibiotic; PCSeg-0
basis set with 882 basis functions and 168 atoms.
Glycine molecule; PCSeg-0 basis set with 223 basis functions and 38 atoms.

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 76 Journal of Computer and Communications

Figure 8. Performance degradation for the four inputs operating under the naïve strategy
for three power budgets (1000, 900, and 800 W) with respect to the allhigh strategy.

Figure 9. Performance degradation for the four inputs operating under the proposed
strategy for three power budgets (1000, 900, and 800 Watts) with respect to the allhigh
strategy.

Figure 9 shows the performance degradation for the four inputs operating
under the proposed strategy with respect to the allhigh strategy. Here, the aver-
age performance degradation is only 0.9% for the power budget of 1000 W,
which is 54.3 times less than that of the naïve strategy for the same power budg-
et. The highest performance improvement of 124 times was observed for the

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 77 Journal of Computer and Communications

gly5_pcseg0 input by the proposed strategy as compared to the naïve one when
the power budget was kept at 1000 W. This significant improvement in perfor-
mance comes primarily from distributing the power budget among the eight
GPUs in proportion to their utilization in the proposed strategy and from the
high prediction accuracy of the underlying ARIMA process for the SM utiliza-
tion. For the tight budgets of 900 W and 800 W (73% and 65% of the maximum
required, respectively), the proposed strategy still performed 5.6 and 3.6 times
better on average than the naïve one did so, respectively. Additionally, it is worth
noting that, for lower power consumption (~1040 W) than that shown in Table
1 no performance degradation was observed for any input when the proposed
strategy was employed.

7. Conclusions and Future Work

In this paper, a runtime strategy is designed and implemented to distribute availa-
ble power among multiple GPUs in order to maximize performance of the quan-
tum chemistry application GAMESS. The foundation of the strategy is the work-
load prediction model that considers utilization as time series and applies Auto-
regressive Integrated Moving Average (ARIMA) process dynamically to predict
the GPU utilization in the next timeslice to be executed. Then, in each GPU, the
available power is allocated in accordance with the predicted utilization as a
fraction of the total utilization predicted across all the GPUs participating in the
calculation. Experiments, performed on the DGX-1 compute node having eight
V100 GPUs, and demonstrated that the proposed strategy provided a near maxi-
mum performance even with substantially limited power budget for four GAMESS
calculations. Specifically, for the calculation of the glycine molecule, as much as
a 18% reduction in the available power resulted in only a 0.4% of performance
loss. It was also observed that, for the four inputs, the proposed strategy improved
performance several-fold, ranging from 3.6 to 54.3 times on average, from an
“equitable’’ power distribution strategy based on the ratio of GPU thermal de-
sign power (TDP) limits. Using the proposed strategy, a lower overall unrestricted
power amount was found for which none of the four inputs exhibited a perfor-
mance loss and which was ~14% less than the average unrestricted power con-
sumption observed initially.

Future work will focus on extending the proposed strategy to a distributed
system with multiple nodes and multiple GPUs to facilitate its usage on exascale
platforms.

Acknowledgements

This work was supported in part by the U.S. Department of Energy (DOE) Of-
fice of Science, Office of Basic Energy Sciences, Computational Chemical Sciences
(CCS) Research Program under work proposal number AL-18-380-057 and the
Exascale Computing Project (ECP) through the Ames Laboratory, operated by
Iowa State University under contract No. DE-AC00-07CH11358, and by the Na-

https://doi.org/10.4236/jcc.2022.109005

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 78 Journal of Computer and Communications

tional Science Foundation under grant CNS-1828593. The authors appreciate
helpful reviewer comments.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Sundriyal, V. and Sosonkina, M. (2022) Runtime Energy Savings Based on Machine

Learning Models for Multicore Applications. Journal of Computer and Communi-
cations, 10, 63-80. https://doi.org/10.4236/jcc.2022.106006

[2] Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H.,
Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and
Montgomery Jr., J.A. (1993) General Atomic and Molecular Electronic Structure
System. Journal of Computational Chemistry, 14, 1347-1363.
https://doi.org/10.1002/jcc.540141112

[3] Intel (n.d.) Intel® 64 and IA-32 Architectures Software Developer Manuals.
https://software.intel.com/en-us/articles/intel-sdm

[4] Chen, M., Wang, X.r. and Li, X. (2011) Coordinating Processor and Main Memory
for Efficient Server Power Control. Proceedings of the International Conference on
Supercomputing (ICS ’11), Tucson, 31 May-4 June 2011, 130-140.
https://doi.org/10.1145/1995896.1995917

[5] Tiwari, A., Schulz, M. and Carrington, L. (2015) Predicting Optimal Power Alloca-
tion for CPU and Dram Domains. 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, Hyderabad, 25-29 May 2015, 951-959.
https://doi.org/10.1109/IPDPSW.2015.146

[6] Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M. and de Supinski,
B.R. (2015) A Run-Time System for Power-Constrained HPC Applications. Pro-
ceedings of International Conference on High Performance Computing, Frankfurt,
12-16 July 2015, 394-408. https://doi.org/10.1007/978-3-319-20119-1_28

[7] Zou, P., Allen, T., Davis, C.H., Feng, X. and Ge, R. (2017) Clip: Cluster-Level Intel-
ligent Power Coordination for Power-Bounded Systems. 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Honolulu, 5-8 September 2017,
541-551. https://doi.org/10.1109/CLUSTER.2017.98

[8] Zamani, H., Liu, Y.L., Tripathy, D., Bhuyan, L. and Chen, Z.Z. (2019) Greenmm:
Energy Efficient GPU Matrix Multiplication through Undervolting. Proceedings of
the ACM International Conference on Supercomputing (ICS ’19), Phoenix, 26-28
June 2019, 308-318. https://doi.org/10.1145/3330345.3330373

[9] Chau, V., Chu, X.W., Liu, H. and Leung, Y.-W. (2017) Energy Efficient Job Sche-
duling with DVFS for CPU-GPU Heterogeneous Systems. Proceedings of the 8th
International Conference on Future Energy Systems (e-Energy ’17), Hong Kong,
16-19 May 2017, 1-11. https://doi.org/10.1145/3077839.3077855

[10] Guerreiro, J., Ilic, A., Roma, N. and Tomas, P. (2018) GPGPU Power Modeling for
Multi-Domain Voltage-Frequency Scaling. 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Vienna, 24-28 February 2018,
789-800. https://doi.org/10.1109/HPCA.2018.00072

[11] Yang, Y., Xiang, P., Mantor, M. and Zhou, H. (2012) Fixing Performance Bugs: An
Empirical Study of Open-Source GPGPU Programs. 2012 41st International Confe-

https://doi.org/10.4236/jcc.2022.109005
https://doi.org/10.4236/jcc.2022.106006
https://doi.org/10.1002/jcc.540141112
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/1995896.1995917
https://doi.org/10.1109/IPDPSW.2015.146
https://doi.org/10.1007/978-3-319-20119-1_28
https://doi.org/10.1109/CLUSTER.2017.98
https://doi.org/10.1145/3330345.3330373
https://doi.org/10.1145/3077839.3077855
https://doi.org/10.1109/HPCA.2018.00072

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 79 Journal of Computer and Communications

rence on Parallel Processing, Pittsburgh, 10-13 September 2012, 329-339.
https://doi.org/10.1109/ICPP.2012.30

[12] Wang, G., Lin, Y. and Yi, W. (2010) Kernel Fusion: An Effective Method for Better
Power Efficiency on Multithreaded GPU. 2010 IEEE/ACM Int’l Conference on
Green Computing and Communications & Int’l Conference on Cyber, Physical and
Social Computing, Hangzhou, 18-20 December 2010, 344-350.
https://doi.org/10.1109/GreenCom-CPSCom.2010.102

[13] Ma, K., Li, X., Chen, W., Zhang, C. and Wang, X. (2012) GreenGPU: A Holistic
Approach to Energy Efficiency in GPU-CPU Heterogeneous Architectures. 2012
41st International Conference on Parallel Processing, Pittsburgh, 10-13 September
2012, 48-57. https://doi.org/10.1109/ICPP.2012.31

[14] Lin, Y., Tang, T. and Wang, G. (2011) Power Optimization for GPU Programs
Based on Software Prefetching. 2011 IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, Changsha, 16-18 No-
vember 2011, 1339-1346. https://doi.org/10.1109/TrustCom.2011.184

[15] Azimi, R., Jing, C. and Reda, S. (2018) PowerCoord: A Coordinated Power Capping
Controller for Multi-CPU/GPU Servers. 2018 9th International Green and Sustain-
able Computing Conference (IGSC), Pittsburgh, 22-24 October 2018, 1-9.
https://doi.org/10.1109/IGCC.2018.8752132

[16] Zhu, Q., Wu, B., Shen, X., Shen, L. and Wang, Z. (2017) Co-Run Scheduling with
Power Cap on Integrated CPU-GPU Systems. 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Orlando, 29 May-2 June 2017, 967-977.
https://doi.org/10.1109/IPDPS.2017.124

[17] Dietrich, B., Goswami, D., Chakraborty, S., Guha, A. and Gries, M. (2015) Time Se-
ries Characterization of Gaming Workload for Runtime Power Management. IEEE
Transactions on Computers, 64, 260-273. https://doi.org/10.1109/TC.2013.198

[18] Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D. and Grindean, M. (2011)
Time Series Based Dynamic Frequency Scaling Solution for Optimizing the CPU
Energy Consumption. 2011 IEEE 7th International Conference on Intelligent Com-
puter Communication and Processing, Cluj-Napoca, 25-27 August 2011, 477-483.
https://doi.org/10.1109/ICCP.2011.6047919

[19] Gordon, M.S. and Schmidt, M.W. (2005) Advances in Electronic Structure Theory:
GAMESS a Decade Later. In: Dykstra, C.E., Frenking, G., Kim, K.S. Scuseria, G.E.,
Eds., Theory and Applications of Computational Chemistry: The First Forty Years,
Elsevier Science, Amsterdam, 1167-1189.
https://doi.org/10.1016/B978-044451719-7/50084-6

[20] Barca, G.M.J., Bertoni, C., Carrington, L., Datta, D., De Silva, N., Emiliano Deustua,
J., Fedorov, D.G., Gour, J.R., Gunina, A.O., Guidez, E., Harville, T., Irle, S., Ivanic,
J., Kowalski, K., Leang, S.S., Li, H., Li, W., Lutz, J.J., Magoulas, I., Mato, J., Mironov,
V., Nakata, H., Pham, B.Q., Piecuch, P., Poole, D., Pruitt, S.R., Rendell, A.P.,
Roskop, L.B., Ruedenberg, K., Sattasathuchana, T., Schmidt, M.W., Shen, J., Slip-
chenko, L., Sosonkina, M., Sundriyal, V., Tiwari, A., Galvez Vallejo, J.L., Westhei-
mer, B., Włoch, M., Xu, P., Zahariev, F. and Gordon, M.S. (2020) Recent Develop-
ments in the General Atomic and Molecular Electronic Structure System. The
Journal of Chemical Physics, 152, Article ID: 154102.
https://doi.org/10.1063/5.0005188

[21] Barca, G.M.J., Galvez-Vallejo, J.L., Poole, D.L., Rendell, A.P. and Gordon, M.S.
(2020) High-Performance, Graphics Processing Unit-Accelerated Fock Build Algo-
rithm. Journal of Chemical Theory and Computation, 16, 7232-7238.
https://doi.org/10.1021/acs.jctc.0c00768

https://doi.org/10.4236/jcc.2022.109005
https://doi.org/10.1109/ICPP.2012.30
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1109/ICPP.2012.31
https://doi.org/10.1109/TrustCom.2011.184
https://doi.org/10.1109/IGCC.2018.8752132
https://doi.org/10.1109/IPDPS.2017.124
https://doi.org/10.1109/TC.2013.198
https://doi.org/10.1109/ICCP.2011.6047919
https://doi.org/10.1016/B978-044451719-7/50084-6
https://doi.org/10.1063/5.0005188
https://doi.org/10.1021/acs.jctc.0c00768

M. Sosonkina et al.

DOI: 10.4236/jcc.2022.109005 80 Journal of Computer and Communications

[22] Barca, G.M.J., Alkan, M., Galvez-Vallejo, J.L., Poole, D.L., Rendell, A.P. and Gor-
don, M.S. (2021) Faster Self-Consistent Field (SCF) Calculations on GPU Clusters.
Journal of Chemical Theory and Computation, 17, 7486-7503.
https://doi.org/10.1021/acs.jctc.1c00720

[23] Summit (Supercomputer). https://en.wikipedia.org/wiki/Summit_(supercomputer)

[24] Barca, G.M.J., Poole, D.L., Vallejo, J.L.G., Alkan, M., Bertoni, C., Rendell, A.P. and
Gordon, M.S. (2020) Scaling the Hartree-Fock Matrix Build on Summit. SC20: In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis, Atlanta, 9-19 November 2020, 1-14.
https://doi.org/10.1109/SC41405.2020.00085

[25] Barca, G.M.J., Galvez Vallejo, J.L., Poole, D.L., Alkan, M., Stocks, R., Rendell, A.P.
and Gordon, M.S. (2021) Enabling Large-Scale Correlated Electronic Structure
Calculations: Scaling the RI-MP2 Method on Summit. Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’21), St. Louis, 14-19 November 2021, Article No. 40.
https://doi.org/10.1145/3458817.3476222

[26] Peixeiro, M. (2022) Time Series Forecasting in Python. Manning, Shelter Island.

[27] Sundriyal, V., Sosonkina, M., Poole, D. and Gordon, M.S. (2020) Runtime Power
Allocation Approach for Gamess Hybrid CPU-GPU Implementation. Concurrency
and Computation: Practice and Experience, 32, Article No. e5917.
https://doi.org/10.1002/cpe.5917

[28] NVIDIA Tesla V100 GPU Accelerator.
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datashee
t-letter-fnl-web.pdf

https://doi.org/10.4236/jcc.2022.109005
https://doi.org/10.1021/acs.jctc.1c00720
https://en.wikipedia.org/wiki/Summit_(supercomputer)
https://doi.org/10.1109/SC41405.2020.00085
https://doi.org/10.1145/3458817.3476222
https://doi.org/10.1002/cpe.5917
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf

	Runtime Power Allocation Based on Multi-GPU Utilization in GAMESS
	Abstract
	Keywords
	1. Introduction
	2. Review of Published Related Work
	3. Overview of GAMESS Calculations on GPUs
	4. Methodology: Time Series Forecasting
	5. Methodology: Runtime Strategy to Allocate Available Power
	6. Experimental Research Results
	7. Conclusions and Future Work
	Acknowledgements
	Conflicts of Interest
	References

