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Abstract

In this work we are interested by giving new characterizations of the symmetric ¢-Gamma
function and show that there are intimately related. For that, some special g-calculus technics
are used.
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1 Introduction

In literature the characterizations of the well known Gamma function are studied by many authors
[1, 2] and [3]. As same as the Gamma function, the characterization of the g-Gamma function was
studied by Elmonser et al. in [4], they proved the following results:
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Theorem 1.1. The ¢g-Gamma function is the unique function f(x) > 0 on |0,+oo[ that satisfies
the following properties:

a) f(1) =1
b)f(x+1) = [I]qf(l’)
)f(z4+n)=(1-qlla = f(n )[n] tn(z), where tn(x) — 1 as n — oo.

The second theorem gives the relationship between three different characterizations of the g-Gamma
function:

Theorem 1.2. For a q-PG function f, the following properties are equivalent:

(C) In f is convex on ]0, +o0],

(L)L(n + z) = ([z]q — 2)In(1 — q) + L(n) + zIn(n + 1) + ra(z),

where L(z) =1In f(z + 1) and rn(z) = 0 as n — oo,

(P) f(x+n) = (1= )"~ f(n)[n]y""tn (),

where t,(z) — 1 as n — oo.

A q-PG function f satisfying these properties is equal to cI'q(x), for some constant c.

where the a ¢-PG function ( pre-g-gamma function) is a positive function f on ]0, +o0o[ satisfying
the functional equation f(z + 1) = [z]qf(x).

A generalization of the g-gamma function, called symmetric g-Gamma function, was introduced
and studied by K. Brahim and Yosr Sidomou in [5].

In the present paper, we continue the study of this function by giving some new characterizations
and prove that they are intimately related.

2 Notations and Preliminaries

We recall some usual notions and notation used in the g-theory [6, 7, 8] and [9]. Throughout this
paper, we assume q €0, 1].

For a € C, the g-shifted factorials are defined by

(a;q)o = 1, (a;q)n = ﬂ(l—aqi) =1 —-a)(l-agq)..(1—ag" "), n=1,2, ... (2.1)
(@; @) = [ (1 - ag"). (22)
1=0
We also denote 1 N
_1-g
[2]q e zeC, (2.3)
R A
2], = g1 TE C, (2.4)
R TR
[n]q! = kl;Il[k]q T n € N. (2.5)
and N
! =[]k, neN. (2.6)
k=1
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One can see that ~
o], = ¢~ Vlalge (2.7)

3 The symmetric ¢-Gamma function:

The ¢-Gamma function I'q(z), a g-analogue of Euler’s gamma function, was introduced by Thomae
[10] and later by Jackson [11] as the infinite product:
(@ Dol =)' "
Dy(z) = LWe2 "D 3.1
= g )
where ¢ is a fixed real number 0 < ¢ < 1.

Recently, K. Brahim and Yosr Sidomou [5] introduced the symmetric -Gamma function as follows:

~ _-1)(=-2)
2

Le(2) =q Lpe(z), ,2>0,g>0,q#1, (3.2)

where

(3.3)

la> (1 —g)' 7, if 0<g<l,
Fq(Z) = (q_l,q_l)oo 1—2 z(x—1) .
m(l —-q) Fqg = , if ¢>1.
They proved that it is symmetric under the interchange q <+ ¢+
Bohr-Mollerup theorem for g # 1:

and satisfies a g-analogue of the

Theorem 3.1. Let ¢ > 0, g # 1. The only function f € C?((0,00)) satisfying the conditions:
(@) F)=1.

() flx+1) =[z], f(z) -

(c) %Logf(ﬂc) > |Logq| for positive z,

is the symmetric ¢-Gamma function.

In Elmonser et al. [4], the author proved the following relation

_ o _ \lzlg—z [n] Ell]q [n]q!
Ly(x) = nglfoo(l 2 [z]g[z + 1q-..[x +nlq

, =>0. (3.4)

Using the relation (3.2) and (3.4) , we derive the following relation:

[#] 2 |
~ n n|,2-
Iy(z) = lim ¢ — )kl nlz" [l
n—+o0 [x}qz [z + 1]q2...[$ + n]qz

_(z=1)(z—-2)
2

, >0,0<¢g<1. (3.5)

4 Characterization of the ¢-Gamma Function

As it is proved in Elmonser et al. [4] and Laugwitz and Rodewald [12] we establish new characterizations
of the symmetric g-Gamma function. The first characterization is given by the following theorem:

Theorem 4.1. The symmetric ¢-Gamma function Ty(z) is the unique function f(z) > 0 on |0, +o0|
that satisfies the following properties:

) f1)=1

b)f(x+1) =[], f(x)

m2+2nz73w

)f(z+n)=q 2z  (1- q2)[z]q2fz[n]([;2]q2 Ff(n)tn(z), where tn(x) = 1 as n — oo.
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Proof. . _
First we prove that I'y(x) satisfies conditions (a), (b) and (c).

From Theorem 3.1, the symmetric ¢-Gamma function satisfies the condition (a) fq(l) =1, and the

condition (b) Ty(z + 1) = [z] Ty(x).

q

As a consequence of the two properties, we get I'y(n) = [n — 1] 4

Ly(z
(¢) Let sn () = —Gnma
q 2 1-¢2)" 4" "Tpq(z)
[x] o [x] 2 —
~ (n] 57" [n] 2! [n] 2" [n]y!
_ q q _ q g
where Fn,q(f) = [I]q2 [m+1]qz,,.[z+n]q2 - qnm+zfl[f;]q[z/:1/]q...m]q ’
=~ _(z=D(x=2) 2\[z] 2 —z T :
then Ty(z) = sn(2)q 2 (1—¢*)™a>7"Ty q(x) and limp— 400 sn(z) = 1.

For n € N and z > 0, we apply (b) n times to get

Lg(z+n) = [z+n—1],..[r+1] [z] Tq(x)
— [elg2 =
_ [x +n],..[z +1],[2], . (e=1)@=2) (1 gl EL]qQ [n],! (@)
[z +n], grete=tz] [z + 1], [z +n],
_2242nz—3a 2] o—ar @ 2=
= 4q 2 (1- q2)[ Ja2 [”]q2 ‘12Fq(n)tn(x).
- mq ~ _z2+2nm73z 2 [z] o —x [.’I)]qg’v
Where t,(z) = ¢ o Sn(x). Thus, Ty(z 4+ n) = ¢ 2 (1—4¢°)"a [n]q2 Ty(n)tn(z)
q

and t,(z) — 1 as n — 4oo.

To show uniqueness, we assume f(z) is a function that satisfies (a), (b) and (c). From properties
(a) and (b), we have

Fn) =[n—1],% (4.1)

f+n)=le+n—1] [z +n—2),.[c+1],[],f(2). (4.2)
Combining (4.1),(4.2) and (c) together, we have

lalg2 — 70
flx) = qufzih(l — )l [z [n —1],! tn(x)
[z+n—1][z+n—2],..[z+1][z],
(z—1)(xz—2) e
= ¢ =2 (1-P"e T, ()50 (2),
where s, (z) = ¢" [win]qtn(ﬂv) — 1 as n — 4o0. Therefore f(z) = fq(:c) and hence [ is uniquely

[nlg
determined. This completes the proof.

5 Relationship between Characterizations

In what follows, we will adopt the terminology of the following definition.
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Definition 5.1. A function f is said to be a ¢s-PG function ( pre-symmetric-g-gamma function),
if f is positive on ]0, +oo[ and satisfies the functional equation

flz+1) = [x], f(z).
In the previous section we showed that the property

2242nz—3z

fat+n)=q¢ 2 (1-¢)" 0] 57 f(n)ta(z)

characterizes the g-gamma function. In this section we will give three properties which are equivalent
to one another for a ¢gs-PG function and characterize the symmetric g-gamma function.

[z] 2
2

Theorem 5.1. For a q-PG function f, the following properties are equivalent:
(C) In f is convex on ]0, +oo|,
(L)L(n+ ) = — 2421232 | g 4 ([z] .2 — 2) In(1 — ¢*) + L(n) + [2],2 In[n + 1] 2 + 7o (),
where L(z) =1In f(x 4+ 1) and rn(x) — 0 as n — oo,
_2242nz-3x 20— [z]
(P) fe+n)=q 5 (1-¢)" "] 37 f(n)tn(2),
where tp(z) — 1 as n — oo.
A qs-PG function f satisfying these properties is equal to cI'q(x),for some constant c.

Proof. .
(a) (P) & (L). We have

(P) & fla+@m+1) =g T 1= @) fn+ D+ 15 b (2),
tn“(w) —1

& Infz+(n+1) = —Wlnq—l—([w}qz —z)In(1—¢°) +Inf(n+1)

+z] 2 Infn + 1] 2 + Intny1 (x), tnga(z) = 1

2 —
SEAEEEE R g+ ([ale — ) In(1 — ¢) + L(n)

+[z]2 Infn 4+ 1] 2 + o (x), ra(z) = 0
< (D).

& Lz+n)=

(b) (C) = (P). Let m <z <m+1, where m =0,1,2,... For any natural n, n+m—1<n+m <
n+x < n+m+ 1. The convexity of In f gives us ( we write Ly, = In f(n + m))

Ly, — Lpp—1 < Inf(n+2z)—Inf(n+m) Lypy1— L
n+m—(n+m-—1) — (n+2x)—(n+m) “(n+m+1)—(n+m)
< (z—m)In[n+m—1], Sln}c((:ij__;)) <(z—-m)In[n+m],
& [n—l—m—l}(; < ——= f(ﬁif) — < [n/—r—_r/n](;
[n+m—1] [n+m—2] ..[n] f(n)
. e
f(n) n+m,
where T, = Mml}g@?}qmmq = qm“g_l) ot g2 [n+m7:z]qz...[n]q2
[n+m71]q [n+m—1]q2
Therefore, we have
2232
. aaf(nta) g
lim ¢ = s
n—oeo f(n) (1-¢*)"
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by the squeezing theorem. If we let

m2+2nz73z

q 2 f(n+x)
(1 — ¢2)Fla2 =" f(n) ] 5"

q2

to(z) =

then

z2+2nz—3w

fto)=q 5 (=g ()]
where t,,(z) — 1 as n — oo. This proves that f satisfies (P).

[=] 2
q2q tn($)7

(¢) (P) = (C). From the uniqueness part of the proof of the Theorem 1.1 we have
. _ (=1 (z—2) - —x
f@) = F)limnpoo g™ 2 (1= %) g (a).

Using the fact that the limit function of a convergent sequence of convex functions is convex, it

suffices to show that In (qi (== (1- q2)[$]<1271rn,q($)) is convex.
Now
_(@=1)(==2) 2] o—xz —1 -2
(= E - AT @) = - g (el - om0
+[z] 2 In[n] 2 4 In([n],2!) — In[z],2 — ... — Infz 4 n],2.

Therefore, we have

(2=1)(z-2) _ !
(0 (20 T@)) = ok Hmes (<200 - 1) - )

Ing o 2lng ¢**
2 1
+ ( el n[n]qz) +1 IEp +

21n q q2(:v+n)

1—¢q?[x+n],z’

And so

(z—1)(z—2) _ " 2 2n
(ln (qi e (1- q2)[z]<12 an,q(m)>) = —lng-— 4(1nq)2 qQI(ln(l — q2) + In 1
—q

—q
1—q2)

1

4z
(In q)2 [qh [73]q2 + ﬁ
2

1- [m]§2

+4 + ...

4(z+n)
1—q2 ]

¢* [z + gz + 1
[z +n]2,

(Ing)®
1—¢q?

= —lng—4 ¢ (In(1 — ¢°"))

- 4x
4(lnq)2 [‘12 [z]q2 + iz
1-¢? [1‘]32
P+

[z + n]iz

4(z+n)
1—q2 ]

Then .
(ln ((1 — q)[x]q_xf‘nﬂq(x))) > 0.

This completes the proof.
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