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Abstract 
 

This paper considers the development of an efficient Stormer-Cowell-Typed method for the direct 
solution of second order ordinary differential equations using the method of interpolation of the 
combination of Cheybeshev and Legendre polynomials approximate solution and collocation of the 
differential system to develop our scheme. The method derived was tested and confirmed to be consistent, 
stable within the region of absolute stability and zero-stable. The method was tested on some numerical 
examples and found to give a better approximation. 
 

 

Keywords: General second order; interpolation; Chebyshev; Legendre; collocation; order; zero stability; 
consistent. 

 

1 Introduction  
 
Several fields of applications, notably in science and engineering yield initial value problems of second 
order differential equations are of the form 
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Countless of such problem may not easily be solved analytically, thus numerical schemes are developed to 
solve (1). These equations are usually reduced to systems of first-order ordinary equations and numerical 
scheme of the first order differential equation are employed to solve them. Linear multistep methods are an 
influential numerical method for solving differential equation than the explicit method. Kayode and Adeyeye 
[1] reported that literature revealed that some researchers have attempted the direct solution of (1) using 
linear multistep method (Lambert [2], Brown [3], Awoyemi [4], Adesanya et al. [5], Kayode [6], Alabi et al. 
[7], Kayode and Obarhua [8]) with the various order of accuracies. It was also reported in Kayode and 
Adeyeye [1], that lower order method was developed by Kayode [9], Yahaya and Badmus [10], Majid et al. 
[11], Ehigie et al. [12], Kayode and Adeyeye [13], to solve (1). Kayode and Adeyeye [1] proposed two-step 
two-point hybrid methods for general second order ordinary differential equations which chebyshev 
polynomial of the first kind was used as basis function and the method was of order six. The method was 
used to solve the same problem treated by the method of Awoyemi [14], Yahaya and Badmus [10] and 
Ehigie et al. [12] the error compared favourably well to that of Awoyemi [14], Yahaya and Badmus [10] and 
Ehigie et al. [12].  Recently, Omole and Ogunware [15], worked on 3- 
 
Point Single Hybrid Point Block Method (3PSHBM) for direct solution of General second order initial value 
problem of ordinary differential equations. The method was found to be zero stable, consistency and 
efficient for solving initial value problems accurately.  
 
 This work made use of Chebsyshev and Legendre polynomials as basis function in generating the 
interpolation and collocation equations for the development of a continuous Linear multistep method of 
Stormer-Cowell type for the direct solution of (1) which is of the higher order.  
 

2 The Derivation of the Method 
 
In this section, we apply the interpolation and collocation technique and we chose our interpolation (i) and 
our collocation points (c) at grid points. We considered the combination of Chebyshev and Legendre 
Polynomials in the form 
 

                                                                                                

(2) 

 

where  xTj is the Chebyshev polynomial of the first kind and  xPj is the legendre polynomial. Equation 

(2) is the basis function with a single variable x , where ),( bax  , a' s are real unknown parameter to 

be determined, c and i are the number of collocation and interpolation points respectively.  
 
The second derivative of (2) is 
 

                                                                                         

(3) 

 
Combining (3) in (1) to have 
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Collocated (4) at 5)1(0,  ix in and interpolated (2) at 4,3,  ix in give rise to the following set of 

equations 
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Equation (5) is solved by Gaussian elimination method to attain the value of the unknown parameters ja , j= 

0(1)7as follows 
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,
 are replaced back into (2) and simplifying to give a continuous method of the type  
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The first derivative of (8) gives 
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Evaluating (9) and (10) at 1t which implies that 5 nxx gives discrete scheme 
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3 Analysis of the Basic properties of the Method 
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where j and j are both non-zero and )(xy is an arbitrary function, continuously differentiable on the 

interval [a, b].If we assume that )(xy  has many higher derivatives as we required, then on Taylor series 

expansion about ,x we obtain 

 

           xyhCyhCxhyCxyChxyL pp
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Therefore the derived scheme is of order 6 
 

4 The Consistency of the Method  
 
For our method to be consistent, the following conditions must be satisfied 
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5 Zero Stability 
 
Definition: A linear multistep method is said to be zero-stable, if no root of the first characteristics 
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Thus, the method is zero stable.  
 

6 The Region of Absolute Stability 
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7 Implementation of the Method 
 
Problem 1 
 

    1.010,00 '  hyy
 

 

 
Problem 2 
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7.1 Numerical solutions to problem 1-2 as shown in Table 1-2 
 
The computational errors of our method tested on problems 1-2 compared to other researchers. Problem 1 
was compared with Kayode and Adeyeye [1]. Problem 2 was compared with Awoyemi [14] and Kayode and 
Adeyeye [13]. 
 

8 Results and Discussion 
 

Table 1. Table for problem 1 
 

X Error in Kayode and Adeyeye [1] Error in New method                              
0.2 8.17176E-07 - 
0.3 3.10356E-06 - 
0.4 6.56957E-06 - 
0.5 1.14380E-05 5.709190E-9 
0.6 1.79656E-05 2.084567E-9 
0.7 2.64474E-05 3.066035E-9 
0.8 3.72222E-05 5.020548E-9 
0.9 5.06786E-05 5.320548E-9 
1.0 6.72615E-05 8.021400E-9 

  
Table 2. Table for problem 2 

 
X Error in Awoyemi [14] Error in Kayode and Adeyeye [13] Error in New method     
0.0063 0.26075253e-09 4.831380e-11 9.325873e-15                    
0.0094 0.19816704e-08 3.382836e-09 1.865175e-14                 
0.0125 0.65074122e-08 1.580320e-08 2.797762e-14                                         
 0.0156 0.15592381e-08 4.333951e-08 3.730349e-14                                        
0.0188 0.31504477e-08 9.391426e-08 4.662937e-14              

  

9 Conclusion 
  
In this work, we have derived, analysed and implemented an efficient stormer-cowell-type method for the 
solution of general second order ordinary differential equations by adopting a combination of Chebyshev 
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and Legendre polynomials as the basis function. Collocation and interpolation methodology is adopted for 
the derivation of the method. In Table 1, our method performs better than the method of Kayode and 
Adeyeye [1], likewise Table 2; showed better accuracy than Awoyemi [14] and Kayode & Adeyeye [13]. 
Thus, the method developed in this paper is efficient and compared favourably well. The stability region 
shows that the method is P-stable. 
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