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Abstract

Clinical study of malaria presents a modeling challenge as patients disease status and progress is
partially observed and assessed at discrete clinic visit times. Since patients initiate visits based
on symptoms, intense research has focused on identification of reliable prediction for exposure,
susceptibility to infection and development of severe malaria complications. Despite detailed
literature on malaria infection and transmission, very little has been documented in the existing
literature on malaria symptoms modeling, yet these symptoms are common. Furthermore,
imperfect diagnostic tests may yield misclassification of observed symptoms. Place and Duration
of Study: The main objective of this study is to develop a Bayesian Hidden Markov Model of
Malaria symptoms in Masinde Muliro University of Science and Technology student population.
An expression of Hidden Markov Model is developed and the parameters estimated through the
forward-backward algorithm.
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1 Introduction

The term Malaria was first used by Dr. Fransisco Torti, but it was not until 1880 that scientists
discovered that it was a parasitic disease caused by a unicellular protozoan of the genus Plasmodium
which is transmitted by the Anopheles mosquito. Malaria is an ancient disease that has been
affecting people since the beginning of recorded time. It poses serious economic, social and health
burdens in tropical and subtropical countries where it is predominantly found [1]. Malaria still
remains a huge public health issue regardless of how many years of research has been conducted on
how to combat this disease.

According to WHO [2], the latest world malaria report released in November 2017 shows that the
number of malaria cases reported in the year 2016 was 216 million up from 211 million cases reported
in 2015. The report also shows that malaria death estimates in 2016 stood at 445,000 compared
to 446,000 deaths in 2015. The high burden of malaria cases in 2016 was in Africa at 90% with
91% cases of deaths reported in children. According to WHO report on malaria cases in Kenya,
malaria is one of the leading causes of morbidity and fatality with about 3.5 million children at risk
of developing severe malaria, out of which an estimated 34,000 children under five years die every
year. The disease is also responsible for 30% of out-patient visits at health centers, economically,
it is estimated that 170 million working hours are lost each year because of malaria illness [3].

The malaria symptoms can be grouped into two; symptoms for uncomplicated malaria (suspected
malaria) and symptoms for complicated malaria (severe malaria). In a study by Martins et al [4],
there are 19 common symptoms associated with malaria disease which were confirmed and assessed
by microscopy, namely; fever, chills, sweating, headache, myalgia, arthralgia, abdomial pain, nausea,
vomiting, dizzness, cough, diarrhea, weakness, inappetence, bitter mouth, pallor, coryza, sneezing
and score throat. Some of these symptoms are observable symptoms in patients. Malaria is
considered uncomplicated when symptoms are present but there are no clinical or laboratory signs to
indicate severity or vital organ dysfunction. Infection with Plasmodium falciparum if not promptly
treated can quickly progress to complicated malaria (severe malaria) [5].

2 Literature Review

The Hidden Markov Model (HMM) is a statistical method based on Markov Chain. It is a powerful
tool for random processing and modeling which is normally used to predict and classify data.
The first step to develop the HMM was taken by Rabinner 1989 after the presentation of the
educational article of HMM by revealing the details of the complex models Rabinner. Most of
the investigation using HMM have been done in non-medical fields, for instance, Cholewa and
Glomb [6] investigated on estimation of the number of critical points in time sequence while Farsi
[7] investigated on implementation and optimization of speech recognition system based on HMM
using genetic algorithm.

Some of the investigation of the medical fields using HMM include the study by Vimala et al [8]
which used HMM to identify and classify Electrocardiography (ECG)signals. The results of Vimala
confirmed that the HMM could be used as a powerful tool for grouping ECG signals into three
signals. Also Li et al [9] used HMM to predict the progression of lung cancer among 508 patients in
one of the Chinese hospitals from 2010 to 2012. The results showed that HMM was able to predict
0.81 accuracy while Lee et al [10] used HMM to classify snoring sounds of 21 patients with sleeping
disorders.
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HMM has been applied explicitly to modeling one dimensional data and is less used with spatial
structure data [11]. Autoregressive HMM (ARHMM) was simplified by focusing on the modeling of
continuous observation dependence by Rabinner. Recent applications of these models are study by
Barber et al for predicting short winds [12], study of Wu et al for using a Bayesian non-parametric
vector ARHMM for testing robot performance [13] and Tuncel et al for using autoregressive forests
for model multivariate time series [14]. Therefore as the literature review shows, the development
of HMM is more in the field of continuous observation and less attention has been paid to relation
of the hidden states in the Discrete Hidden Markov Models (DHMM). Therefore this study aims at
using (DHMM)with underlying first order Markov Chain. DHMM can be regarded as a probabilistic
generative model such that a sequence of internal hidden states of the model which is not directly
visible produces a sequence of discrete observations.

A Hidden Semi-Markov Model (HSMM) is an extension of HMM designed to allow general ( i.e.
non-geometric or non-exponential) distribution for the state duration. A major drawback with
HMM is the inflexibility in describing the time spent in a given state which is geometrically
distributed. A discrete Hidden Semi-Markov chain is composed of non observable state process
which is a semi-Markov chain and a discrete output process which is an embedded first-order
Markov chain representing the transitions between distinct states and discrete state occupancy
distribution representing sojourn times in a non-absorbing states [15] An HSMM is constructed by
adding a temporal component (duration) into HMM. Unlike a state in a standard HMM, a state in
an HSMM generates a sequence of observational as opposed to a single observation in HMM [16].

In many studies of medical treatment, symptoms are measured repeatedly over time in observation
called longitudinal observation. Though we cannot observe directly latent variables, we learn about
it by measuring symptom. For the longitudinal models, two latent variables govern disease, one for
the probability of experiencing a particular symptom and another for the severity of the experienced
symptom. Thus the probability of a symptom and the severity of it depends on both latent variables
and observed variables [17]. Latent variables are variables that are not directly observed but are
inferred through a mathematical model from other variables that are directly observed or measured.
A latent variable model is a statistical model that contains latent i.e. unobserved variables. These
variables can either be discrete or continuous. Sometimes latent variables corresponds to aspects of
physical reality which could in principle be measured but may not be for practical reason thus in
this situation the term hidden variable is commonly used. one advantage of using latent variables
is that they can serve to reduce the dimensionality of data. Latent variable link observable data
in the real world to symbolic data in the model. Bayesian statistics is often used for inferring
latent variables, the common method used inferring latent variables in Bayesian statistics are;
Hidden Markov Model (HMM), factor analysis, principal component analysis and Expectation
Maximization (EM) algorithm [17].

Zammit et al [18] developed an intra-individual consistency model using a logistic-type latent
variable model. The latent variable in the model was used to represent the propensity of symptoms
and intensity of episodes as these could not be observed directly and needed to be estimated
through observation of symptoms episodes in hypoglycaemia. The model results showed that their
was individual difference in symptom reporting and that adults exhibit distinct intra-individual
variability in symptom reporting. Hans et al extended on the model developed by Zammit et
al by allowing for different forms of symptom experiencing thresholds between groups variability
when symptoms are classified in groups and performing variable selection to determine a predictive
model for the effect of patient characteristics and their interactions on symptom consistency. The
study was conducted in several health centers in the United Kingdom and data collected from 381
participants aged between 17-75 years. Bayesian estimation was performed for all coefficients in
the developed model without grouped symptoms and with grouped symptoms. The analysis shows
that a multiplicative form of symptom propensity and episode intensity provides the most suitable
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symptom experiencing threshold and groups of symptoms show distinct propensity and that gender
subjects had significant impact on the consistency of symptom reporting.

Xing et al [19] developed a Bayesian statistical model using latent semi-Markovian state and
state-transition statistics for analysis of the time-evolving properties of influenza-like illness with a
particular focus on symptoms. Self-reported data from individual student in a college provided daily
over a multiple of months was used. The data corresponded to the strength of various infectious-
disease-related symptoms reported separately by each individual student. The computation was
performed using Markov Chain Monte Carlo (MCMC) and statistical analysis performed on the
daily self-reported symptom scores. The results showed that the weekly pattern (probability of
transiting from healthy state to infective state) is typically heightened at either Wednesday or
Thursday and tends to be smaller around weekend because of the fact that students are more likely
to report symptom during the school week than they are on the weekend.

3 Methodology

3.1 The Study Area

The research was conducted in Masinde Muliro University of Science and Technology (MMUST)
located in Kakamega Town, Kakamega County with an altitude of 1561m above the sea level
with a student population of approximately 15000. The levels of malaria risk and transmission
intensity in MMUST exhibit significant spatial and temporal variability related to variations in
amount of rainfall, temperature, altitude, topography and human settlement pattern. In this study
area malaria situation is typical of Sub-Saharan Africa making its transmission an all- year -round
affair and seasonal variation. The MMUST Health facility records show that between 300-700
cases of malaria are reported each month which constitutes 75% of all out-patient cases. The main
malaria vectors in MMUST are Anopheles gambiae sensu stricto, An. Arabiensis and An. Funestus.
Anopheles gambiae generally increases in density after the start of the long rains, while An. funestus
density is seen to vary in direct proportion to the proximity of permanent breeding grounds rather
than rainfall [20].

The pick period of malaria incidence occurs from April to August following the main rain season.
The malaria cases can either be complicated malaria or uncomplicated malaria. For complicated
malaria, the following symptoms have been displayed by students; hallucination, prostration, loss of
consciousness, hyperparasitaemia, pallor, convulsions, low and high blood pressure, coma, convulsions,
low and high pulse beat/min, anaemia and black quarter fever and dark urine. For uncomplicated
malaria, the following non-specific symptoms have been displayed by the students; headache, pains
(joint, muscle, abdominal), loose stool, fever, rigors, nausea and vomiting. For confirmatory test of
malaria, blood slide (BS) for malaria parasite is carried out[20].

Once a student presents himself/herself to a health officer, the following information are recorded
in his/her file

(i) The patient complaints

(ii) History of the infection.

(iii) Physical examination for signs and symptoms for both specific and non-specific symptom

(iv) Impression- decision made by health officer (suspected malaria).

(v) Investigation of the disease through laboratory test (BS test).

(vi) Diagnostic - the diagnostic test will result in either mild (+), moderate (++) or severe
(+++) infection. The diagnostic can also be recorded as per 200 white blood cell (WBC)
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i.e. for 1-10 per 200 WBCs (mild), for 11-100 per 200 WBCs (moderate) and for 1-10 in
WBCs (severe)

(vi) Management of the disease (treatment)

3.2 The Model

In a study by Martins et al [4], there are 19 common symptoms associated with malaria disease
which were confirmed and assessed by microscopy, namely; fever, chills, sweating, headache, myalgia,
arthralgia, abdomial pain, nausea, vomiting, dizzness, cough, diarrhea, weakness, inappetence,
bitter mouth, pallor, coryza, sneezing and score throat. Some of these symptoms are observable
symptoms in patients. A healthy student when he/she is infected with malaria, the disease develops
to mild, moderate and final severe depending on the frequency of symptoms he/she has. This
description is shown in Figure 3.1.

The states as illustrated in Figure 3.1 are defined as Z1 for absent of symptom (healthy individual),

Fig. 1. Malaria transition diagram

Z2 for mild illness, Z3 for moderate illness and Z4 for severe illness.

Therefore in this study, we let Z = {Z1, Z2, ..., Zn} where n is the number of possible hidden states
an individual can be at any given time point. i.e Z = {Z1, Z2, Z3, Z4}

Let x1 - fever (body temperature), x2 - chills, x3 - sweating, x4 - vomiting, x5 - diarrhea, x6 -
weakness, x7 - pallor, x8 - cough and x9 - sneezing be observable symptoms used in this study. We
denote this observable symptoms by O i.e Oi = (x1, ..., xp) where i = 1, ..., 4 and p is the number of
symptoms. Any of the four hidden states will depict different combinations in O. Upon involving
this observation O in Figure 3.1, we obtain Figure 3.2 as shown below.

In Figure 3.2, each hidden state is shown as a circle and state transition represented by directed
graph edge between states. The arrow goes from the hidden states Z to observed symptoms O,
this is because the state of illness at which an individual is in causes a particular symptom(s) to be
observed. The hidden states are interconnected in such a way that any state can be reached from
any other state. Thus, the transition from one state to the next state is a Markov process of order
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Fig. 2. Observed symptoms with Hidden states

one and the next state depends on the current state and fixed probabilities.

Let aij be the transition probability of the disease transiting from state i to state j, i.e

aij = p(Zn = j|Zn−1 = i) (1)

where aij ≥ 0,
∑n

j=1 aij = 1 and 1 ≤ i, j ≤ n.

Let A be the transition probability matrix i.e a set of transition probabilities among states. In this
study, malaria disease has four hidden states which are represented by the transition probability
matrix shown below;

A =

Z1 Z2 Z3 Z4


Z1 a11 a12 a13 a14

Z2 a21 a22 a23 a24

Z3 a31 a32 a33 a34

Z4 a41 a42 a43 a44

Let bjk be the probability of observing symptom(s) in each of the hidden states i.e.

bjk = P (O = xk|Z = Zj) (2)

where

bjk ≥ 0,

p∑
k=1

bjk = 1, 1 ≤ k ≤ p, 1 ≤ j ≤ n

Let B be the probability distribution of observation matrix i.e. B=[bjk]. In this study, there are
9 different observed symptoms and four different hidden states represented by observation matrix
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shown below;

B =

x1 x2 x3 x4 x5 x6 x7 x8 x9


Z1 b1,1 b1,2 b1,3 b1,4 b1,5 b1,6 b1,7 b1,8 b1,9
Z2 b2,1 b2,2 b2,3 b2,4 b2,5 b2,6 b2,7 b2,8 b2,9
Z3 b3,1 b3,2 b3,3 b3,4 b3,5 b3,6 b3,7 b3,8 b3,9
Z4 b4,1 b4,2 b4,3 b4,4 b4,5 b4,6 b4,7 b4,8 b4,9

Let π be the initial state distribution vector; where π is an initial probability for each state of the
disease by which the Markov Chain begins to work. π is a edge entering into disease state from
state zero (start) which is not shown in figure 1, because we imagine that there is a silent state zero
which all states originate from and therefore the system cannot transit to state zero but can only
transit out of it.

Therefore the Hidden Markov Model (HMM) is specified using 3 parameters defined as

µ = (A,B, π) (3)

where A is the transition probability matrix, B is the probability distribution of observation matrix
and π is the initial state distribution.

In practice we don’t observe the state Z but the observation sequence O. The observed sequence in
O leads to a particular state in Z, thus there is a relationship between Z and O. This relationship
leads to the computation of P (Z|O) as described in the next section. For example when a student
displays the following symptoms x1 = fever (38◦C), x2 = chills, x3 = sweating, this observation
sequence leads to observation of state Z2 where Z2 is the mild state of malaria disease.

4 Computation of P(Z|O)

Let Z = Z1, ..., Zn where n=4 be the hidden states at time point t and z = {z1, ..., zT } whose
element zt is a state at time point t and T is the length of the sequence. z is a state sequence
process and zt ∈ Z equals some hidden state Zn. Since z is a state sequence, it therefore follows
the Markov property i.e the conditional probability of current state zt is only dependent on the
previous state zt−1. Upon involving this z in Equation 3.1, the transition probability of the disease
transiting from state i to state j becomes;

aij = P (zt = Zj |zt−1 = Zi) (4)

Introducing set of observation to the states shown in Figure 3.2, the model is modified as shown in
Figure 3.3 for prediction of state Z.

Each vertical slice in Figure 3 represents a time step. The top node represents the variable zt where
zt is a state of individual at a particular time point and the bottom node represents the observable
variable Ot where Ot is the observation at a particular time point.

We let O = {O1, O2, ..., OT } be the sequence of observation where T is the length of the sequence
and πi = P (z1 = Zi) where i=1,2,3,4 be the initial probability distribution.

Using Figure 3, various conditional independencies can be obtained but the main conditional
independency of interest is obtained by conditioning on a single state node, for example conditioning
on zt renders zt−1 and zt+1 independent while on the other hand conditioning on an observation node
does not separate nodes in the graph and therefore will not yield any conditional independencies.
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Fig. 3. A representation of HMM as a graphical model

To obtain the conditional independencies at a particular sample point P (z,O), we compute the joint
probability by taking a product over the conditional probabilities for a particular sample point as
shown below;

Let

P (z,O) = P (z1, z2, ..., zT , O1, O2, ..., OT ) (5)

be the joint probability. Upon simplification the joint probability becomes

P (z,O) = P (z1)[

T−1∏
t=1

p(zt|zt+1)]

T∏
t=1

P (Ot|zt) (6)

where P (zt|zt+1) is the transition probability A, P (Ot|zt)is the obsevation/emission probability and
P (z1) is the initial state distribution.

Using the HMM µ developed and defined in Equation (3.4), Equation (3.8) can be written as;

P (z,O) = P (πz1)[

T−1∏
t=1

azt,zt+1 ]
T∏

t=1

P (Ot|zt) (7)

where

azt,zt+1 ≡ [aij ]z
i
tz

j
t+1

πz1 ≡
Z∏

i=1

[πi]z
i
1 (z1 = Z1)

To compute the probability of a hidden state Z given an observation output O, we compute the
probability P (z|O) using the defination of conditional probability as follow;

P (z|O) =
P (z,O)

P (O)
(8)

The numerator P (z,O) is simplified by substituting it with Equation (3.8) while the denominator
P (O) involves computing the sum across all the possible values of the hidden states;

P (O) =
∑
z

P (z,O) (9)
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upon simplification and substituting the value of P (z,O), we get

P (O) =
∑
z1

∑
z2

...
∑
zT

πz1

T−1∏
t=1

azt,zt+1

T∏
t=1

P (Ot|zt)

therefore Equation (3.10) can be written as,

P (z|O) =
πz1

∏T−1
t=1 azt,zt+1

∏T
t=1 P (Ot|zt, )∑

z1

∑
z2

...
∑

zT
π(z1)

∏T−1
t=1 azt,zt+1

∏T
t=1 P (Ot|zt)

(10)

Equation (10) implies that each state node zt can take on Z values. Since we have T state nodes,
this implies that we perform ZT sums to observe all the hidden states. According to Rabinner [16]
calculation of ZT sums is infeasible, therefore rather than calculating P(z|O) for the entire sequence
z, we should focus on a particular state node zt and calculate its posterior probability i.e., P (zt|O)

We use a fragment of the Figure shown in 3.2 and modified it to Figure shown 3.3 so as to compute
P (zt|O)

To compute P (zt|O), we apply Bayes rule and the defination of conditional probability as follow;

Fig. 4. A fragment of the graphical model representation of an HMM.

P (z(t)|O) =
P (zt, O)

P (O)
(11)

applying the notion of independence, we get

P (zt, O) = P (zt|O)P (O) and P (O, zt) = P (O|zt)P (O) (12)

applying Bayes rule in Equation (3.13), we get

P (z(t)|O) =
P (O|z(t))P (z(t))

P (O)
(13)
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We use Figure 4 to get conditional independence of P (z(t)|O) as shown below;

P (z(t)|O) =
P (O1, O2..., Ot, Ot+1, Ot+2, ..., OT |z(t))

P (O)
(14)

=
P (O1, ..., Ot|z(t))P (Ot+1, ..., OT |zt)P (zt)

P (O)

Let α(zt) ≡ P (O1, ..., Ot, zt) be the probability of emitting a partial sequence of output O1, ..., Ot

and ending up in state zt and β(zt) ≡ P (Ot+1, ..., OT |zt) be the probability of emitting a partial
sequence of output Ot+1, ..., OT given that the system starts in state zt.
Then Equation 14 can be written as

P (z(t)|O) =
α(z(t))β(z(t))

P (O)
(15)

where α(zt) and β(zt) are vector with component α(zit) and β(zit).
Given that the sum P (zt|O) over the components of zt must equal to one, then we obtain

P (O) =
∑
i

α(zit)β(q
i
t) (16)

Let γ(zt) be the posterior probability. Then γ(zt) is defined as

γ(z(t)) ≡
α(z(t))β(z(t))

P (O)
(17)

where P(O) is computed once as normalization constant for a particular arbitrary choice of t.
Given that α(zt) depends only on quantities up to time t and using the Markov properties in the
model, we obtain recursion between α(zt) and α(zt+1) in figure 4. Upon simplification, the forward
recursion is obtained as follow;

α(zt+1) = P (O1, ..., Ot+1, zt+1) (18)

= P (O1, ..., Ot+1|zt+1)P (zt+1)

= P (O1, ..., Ot|zt+1)P (Ot+1|zt+1)P (zt+1)

= P (O1, ..., Ot, zt+1)P (Ot+1|zt+1)

=
∑
zt

P (O1, ..., Ot, zt, zt+1)P (Ot+1|zt+1)

=
∑
zt

P (O1, ..., Ot|zt)P (zt)P (zt)P (Ot+1|zt+1)

=
∑
zt

P (z1, ..., Ot|zt)P (zt+1|zt)P (t)P (Ot+1|zt+1)

=
∑
zt

P (O1, ..., Ot, zt)P (zt+1|zt)P (Ot+1|zt+1)

=
∑
zt

α(zt)azt,zt+1P (Ot+1|zt+1)

For the beta variable we obtain “a backward” recursion by expressing β(zt) in terms of β(zt+1).
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Upon simplification, the backward recursion is obtained as follows.

β(zt) = P (O1, ..., Ot+1, zt) (19)

=
∑
qt+1

P (Ot+1, ..., OT , zt+1|zt)

=
∑
zt+1

P (Ot+1, ..., OT |zt+1, zt)P (zt+1|zt)

=
∑
zt+1

P (Ot+2, ..., OT |zt+1)P (Ot+1|zt+1)P (zt+1|zt)

=
∑
zt+1

β(zt+1)azt,zt+1P (Ot+1|zt+1)

For the alpha recursion, the definition of alpha at the initial step yields

α(z1) = P (O1, z1) (20)

= P (O1|z1)P (z1)

= P (O1|z1)πz1

In the next section, we compute the likelihood of an observed sequence O given the model µ i.e
given the model and a sequence of observation, we want to evaluate how well the model predicts
the observation sequence.

5 Computation of P(O|µ)
Let Z = {Z1, Z2, ..., Zn} be a state sequence as already defined, µ = (π,A,B) be the Hidden
Markov Model as defined in Equation (3.4) and O = {O1, O2, ..., OT } be a sequence of observations
corresponding to state sequence as shown in Figure ??. Then we define πZ1 as the probability of
starting in state Z1, bZ1(O1) as the probability of initially observing O1 and aZ1,Z2 as the probability
of transiting from state Z1 to state Z2.
Therefore P(Z,O) is written as

P (z,O) = πZ1 , bZ1(O1)aZ1,Z2 , ..., aZn−1,ZnbZn(OT ) (21)

and by defination of B (i.e the probability of the observation sequence given the state sequence) we
have

P (O|Z, µ) =
T∏

t=1

P (Ot|Z(t), µ) = bZ1(O1)bZ2(O2), ..., bZT (OT ) (22)

and by defination of π and A it follows that the probability of the state sequence is given by

P (Z|µ) = πZ1aZ1,Z2aZ2,Z3 ...aZn−1Zn (23)

using conditional probability, we have

P (Z|µ) = P (Z ∩ µ)

P (µ)
(24)

and

P (O|Z, µ) = P (O ∩ Z ∩ µ)

P (Z ∩ µ)
(25)
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and

P (O,Z|µ) = P (O ∩ Z ∩ µ)

P (µ)
(26)

multiplying Equation(3.26) and Equation (3.27), we get

P (O|Z, µ)P (Z|µ) = P (O ∩ Z ∩ µ)

P (Z ∩ µ)
.
P (Z ∩ µ)

p(µ)
=

P (O ∩ Z ∩ µ)

P (µ)
(27)

substituting Equation(3.29)in Equation (3.28), we have

P (O,Z|µ) = P (O|Z, µ)P (µ) (28)

to compute P (O|µ), we sum over all possible state sequence so as to obtain the likelihood of the
observed sequence O i.e

P (O|µ) =
∑
Z

P (O,Z|µ) (29)

using Equation (3.30), Equation (3.31) becomes

P (O|µ) =
∑
Z

P (O|Z, µ)P (Z|µ) (30)

(substituting Equation 22 and 23), we obtain

P (O|µ) =
∑
Z

π1bZ1(O1)aZ1,Z2bZ2(O2)...aZn−1,ZnbZn(OT ) (31)

However, Equation (3.33) is a direct computation which is generally infeasible since it requires
2TnT multiplications. Since it is not possible to perform zn sums, a more efficient procedure called
Forward-Backward algorithm procedure is required to solve P(O|µ) by decreasing computational
procedure.

5.1 Forward-Backward Algorithm

Let α(zit) be the joint probability of partial observation sequence {O1, O2, ..., Ot} at state zt = Zi

where 1 ≤ t ≤ T is specified as

α(zit) = P (O1, O2, ..., Ot, zt = Zi|µ) (32)

Multiplying Equation (32) by aij where aij is the transition probability from state i to state j and
counts for probability of joint event that partial observation sequence exists and state Zi at time
point t is changed to Zj at time point t+1. Upon simplification via multiplication rule and Markov
property, we obtain

α(zit) = P (O1, ..., Ot, zt = Zi|µ)P (zt+1 = Zj |zt = Zi) (33)

= P (O1, ..., Ot|zt = Zi)P (zt = Zi)P (zt+1 = Zj |zt = Zi)

= P (O1, ..., Ot|zt = Zi)P (zt+1 = Zj)P (zt = Zi)

= P (O1, O2, ..., Ot, zt+1 = Zj |zt = Zi)P (zt = Zi)

= P (O1, O2, ..., Ot, zt = zi, zt+1 = Zj)(Markov property)
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Summing product over all n possible states of zt produces probability of joint event that the partial
observation sequence exists and the next state is zt+1 = Zj regardless of the state zt. By summing
product we obtain

n∑
i=1

α(zitaij) =
n∑

i=1

P (O1, O2, ..., Ot, zt = Zi, zt+1 = Zj) (34)

= P (O1, O2, ..., Ot, zt+1 = Zj)

The forward variable at time t+1 and state Zj is calculated as follows using the multiplication rule

α(zit+1) = P (O1, O2, ..., Ot, Ot+1, zt+1 = Zj |µ) (35)

= P (Ot+1|O1, O2, ..., Ot, qt+1 = Zj)P (O1, O2, ..., Ot, zt+1 = Zj)

= P (Ot+1|zt+1 = Zj)P (O1, O2, ..., Ot, zt+1 = Zj)

= bj(Ot+1)
n∑

i=1

α(zit)aij

where bj(Ot+1) is the probability of an observation Ot+1 when the markov state is in state Zj .
using the Forward recurrence Equation in (35), we obtain the observation sequence O
={O1, O2, ..., OT } of the Forward variable as

αT (z
i
t) = P (O1, O2, ..., OT , zT = Zi|µ) (36)

The probability P(O|µ) is sum of αT (z
i
t) over all n possible states of zT specified by

P (O|µ) = P (O1, O2, ...OT ) (37)

=

i=1∑
n

P (O1, O2, ..., OT , zT = Zi|µ)

=

n∑
i=1

αT (i)

Let β(zit) be the Backward variable which is a conditional probability of partial observation sequence
{Ot, Ot+1, ..., OT } given state zt = Zi where 1 ≤ t ≤ T specified as β(zit) = P (Ot+1, Ot+2, ..., OT |zt =
Zi, µ)

multiplying the transition probability aij and bj(Ot+1) the probability of the observation sequence
Ot+1 when the Markov is in state Zj together with the Backward variable β(zjt+1) at time point
t+ 1 we obtain

aijbj(Ot+1)β(z
j
t+1) = P (zt+1 = Zj |zt = Zi)× P (Ot+1|zt+1 = Zj)

× P (Ot+2, Ot+3, ...., OT |zt+1 = Zj , µ) (38)

because observation (Ot+2, Ot+3, ...., OT ) are mutually independent, we have

aijbj(Ot+1)β(z
j
t+1) = P (zt+1 = Zj |zt = Zi)

× P (Ot+1, Ot+2, ..., OT |zt+1 = Zjµ) (39)

because partial observation sequence (Ot+2, Ot+3, ...., OT is independent from state zt at time point
t, we have

aijbj(Ot+1)β(z
j
t+1) = P (Ot+1, Ot+2, ..., OT |zt+1 = zj , µ)

= P (zt+1 = Zj |zt = zi)

× P (Ot+1, Ot+2, ..., OT |zt = Zi, zt+1 = Zj , µ) (40)
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due to multiplication rule, we have

aijbj(Ot+1)β(z
j
t+1) = P (Ot+1, Ot+2, ..., OT , zt+1 = Zj |zt = Zi, µ)

Summing the product aijbj(Ot+1)β(z
j
t+1) over all n possible states of zt+1 = Zj and applying total

probability rule, we have

n∑
j=1

aijbj(Ot+1)β(z
i
t+1) =

n∑
j=1

P (Ot+1, Ot+2, ..., OT , zt+1 = zj |zt = Zi, µ) (41)

= P (Ot+1, Ot+2, ..., OT |zt = Zi, µ)

= β(zit)

therefore the Backward recurrence equation is specified as

β(zit) =

n∑
j=1

aijbj(Ot+1)β(z
j
t+1) (42)

where bj(Ot+1) is the probability of observation Ot+1 when the Markov state is in state Zj

In the next section, we develop the Hidden Semi-Markov Model (HSMM) which captures the
relationships among the transition state, duration and observation sequence over time.

6 The Hidden Semi-Markov Model (HSMM)

A Hidden Semi-Markov Model (HSMM) is an extension of HMM by allowing the underlying state
process to be a semi-Markov chain with variable duration for each state. Therefore in addition to
the notation defined for the HMM in Equation (3.4), the duration D of a given state is explicitly
defined for the HSMM. By state duration we mean the amount of time an HMM dwells in a state.
State duration is a random variable and assumes an integer value in the set D = {d1, d2, ..., dT }.
Unlike a state in HMM, a state in HSMM genarates a sequence of observation as opposed to a single
observation in the HMM. The number of observations produced while in state i is determined by the
length of time spent in state i, i.e the duration d. In Figure 6, the first state Z1 and its duration d1
are selected according to the transition probability a(Z0,d0)(Z1,d1) where (Z0, d0) is the initial state
and duration Z1 lasts for d1 ≥ 0 time units and produces two observations (O1, O2) according to
emission probability bZ1,d1(O1:2). It transmits according to the transition probability a(Z1,d1)(Z2,d2)

of state Z2. Z2 lasts for d2 = 4 units which produces four observations (O3, O4, O5, O6) according
to emission probability bZ1,d2(O3:6). The trend continues until the last state which may last beyond
time T.

Suppose the current time is t, then we can define the state transition probability from state i having
duration h to state j ̸= i having duration d by

a(i,h)(j,d) ≡ P [Z(t+1:t+d) = j|Z(t−h+1:t) = i] (43)

which is assumed independent of time t for i, j ∈ Z, h, d ∈ D. and satisfy the condition∑
j∈Z

∑
d∈D

a(i,h)(j,d) = 1 (44)

for all given i ∈ Z and h ∈ D with zero self-transition probabilities i.e a(i,h)(i,d) = 0, when a state
ends at time t, it cannot transit to the same state at the next time t+1 because the state duration
are explicitly specified by same duration other than geometric or exponential distributions.
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Fig. 5. Hidden semi-Markov Model

In Equation (43), the previous state i stated at time t-h + 1 and ended at time t with duration h.
Then it transits to state j having duration d according to the state transition probability a(i,h)(j,d).
State j will start at t+1 and end at t+d which means both state and the duration are dependent
on both the previous state and its duration while in state j there will be d observations Ot+1:t+d

being emitted.

Let

bj,d(Ot+1:t+d) ≡ P [Ot+1:t+d|Z[t+1:t+d]] (45)

be the observation probability which is assumed to be independent of t.
Let

πj,d ≡ P [Z(1:d) = j] (46)

be the initial state distribution of the first state. Then the characterization of HSMM is through its
parameters i.e., Initial state duration (π), transition probability (A), Observation probability (B)
and state duration (D). Therefore, HSMM can be specified as

λ = (π,A,B,D) (47)

In the next section, compute the likelihood of an observed sequence O given the model λ by
incorporating time using the Forward-Backward algorithm i.e given the model and a sequence of
observation, we want to evaluate how well the model predicts the observation sequence at a given
time.

6.1 Forward -Backward Algorithm for HSMM

Let

αt(j, d) ≡ P [Z[t−d+1:t] = j, O1,t|λ]
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be the forward variable and let

βt(j, d) ≡ P [Ot+1:T |Z[t−d+1:t] = j, λ]

be the backward variable.

Based on Markov property, the future observations are dependent on the current state i.e

P [Ot−d+1:t|Z[t−d+1:t] = j, λ] = P [Ot−d+t:t|Z[t−d+t:t] = j, λ] (48)

and

P [Ot−d+1:t|Z[t−d+1:t] = j, Z[t+1:t+h] = i, λ] = P [Ot+1:T |Z[t+1:t+h] = i, λ] (49)

and independent of previous observations.

P [Z[t−d+1:t] = j, Ot−d+1:t|Z[t−d−h+1:t−d] = i, λ] =

P [Z[t−d+1:t] = j, Ot−d+1:t|Z[t−d−h+1:t−d] = i, λ] (50)

and

P [Ot+h+1:T |Z[t+1:t+h] = j, Ot+1:t+h, λ] = P [Ot+h+1:T |Z[t+1:t+h] = i, λ] (51)

Using Equations (49 - 51), we obtain the Forward-Backward algorithm as follows;

αt(j, d) =
∑
i ̸=j,h

P [Z[t−d−h+1:t+d] = i, Z[t−d+1:t] = j, O1:t|λ]

=
∑
i ̸=j,h

αt−d(i, h)P [Z[t−d+1:t] = j, Ot−d+1:t|Z[t−d−h+1:t−d] = i, λ]

=
∑
i ̸=j,h

αt−d(i, h)a(i,h)(j,d)P [Ot−d+1:t = j, Ot−d+1:t = j, d] (52)

=
∑
i ̸=j,h

αt−d(i, h)a(i,h)(j,d)bj,d(Ot−d+1:t) for t > 0, d ∈ D, j ∈ Z

βt(j, d) =
∑
i̸=j,h

P [Z[t+1:t+h] = j, Ot+1:T |Z[t−d+1:t] = j, λ]

=
∑
i̸=j,h

a(j,d)(i,h)P [Ot+1:t+h = i, λ] (53)

=
∑
i̸=j,h

a(j,d)(i,h)bi,h(Ot+1,t+h)P [Ot+h+1:T |Z[t+1:t+h] = i, λ]

=
∑
i̸=j,h

a(j,d)(i,h)bi,h(Ot+1:t+h)βt+h(i, h) for t < T, d ∈ D, j ∈ Z.

7 Durational Measure

In HMM the markov property implies that the value of the hidden state at time t+1 depends
exclusively on its value of time t while in HSMM, the probability of transition from state Zi to
state Zj at time t depends on the duration spent in state i prior to time t+1. Let n be the number
of hidden states and individual state at time t as zt, then the semi-markov property can be written
as;

P (zt+1 = Zi|zt = Zj , ..., z1 = Zl) = P (zt+1 = i|zt = j, dt(j)) (54)
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where 1 ≤ i, j, l ≤ n and duration variable dt(j) is defined as the time spent in state Zj prior to
time t.

Let state duration variable dt be defined as;

dt =

{
dt ifzt = Zj

1 ifzt ̸= Zj

(55)

then the quantity dt(j) is calculated inductively from dt−1(j) as

dt(j) = zt(j).zt−1(j).dt−1(j + 1)) (56)

where

zt(j) =

{
1 ifzt = Zj

0 otherwise
(57)

If we assume that at time t the model is in state Zi, then we define the duration-dependent matrix
as;

Adt = [aij(dt)] (58)

where

aij(dt) = P (zt+1 = Zj |zt = Zi, dt(i)) 1 ≤ i, j, l ≤ n (59)

The matrix Adt is then decomposed into two i.e. recurrent transition probabilities and non-recurrent
transition probabilities.

7.1 Recurrent Transition Probabilities

Let

P (O|A, π, q1 = i) =
P (O, q1 = i|A, π)

P (q1 = i)

=
πd−1
aii

(1− aii)

π

= ad−1
ii (1− aii)

= Pii(d) (60)

where Pii(d) is the recurrent transition probability for the state to remain in the same state for d
time instances given the model is in a known state.
Based on Pii(d) in equation (3.82), the expected number of duration is given by;

E[d] =
∞∑
d=1

d.Pii(d) =
∞∑
d=1

d.ad−1
ii (1− aii)

= (1− aii)
d

daii
(

∞∑
d=1

ad
ii)

= (1− aii)
d

daii
(

aii

1− aii
)

=
1

1− aii
(61)

where
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7.2 Nonrecurrent Transition Probabilities

The nonrecurrent state transition probabilities A◦ = [a◦
ij ] is the transitions between two different

states and is represented by a n× n matrix with the diagonal elements equal to zero, defined as

A◦ = [a◦
ij ] =

{
0 ifi = j

P (qt+1 = Zj |qt = Zi) ifi ̸= j
(62)

where A◦ is a transition matrix.

8 Results and Discussion

8.1 Estimating the Transition Matrix

Fig. 6. A plot of observation symptom and Ordinal scale

The results of Figure 6 shows the coding of malaria symptoms to the ordinal scale. The results
shows that majority of the students had moderate illness of malaria disease.
To estimate observation matrix, we used hmmestimate which corresponds to sequence of states that
the model went through to generate sequence (seq). The command takes the emission (observation
sequences), seq and states, and returns estimates of the transition and emission matrix. Using initial
probability distribution values, we estimate the transition matrix and observation matrix with the
help of hmmtrain command in MATLAB as shown in Appendix I. The optimal value obtained for
the transition probability matrix A between states of malaria disease is shown below;

A =

Z1 Z2 Z3 Z4


Z1 0.0034 0.9966 0.0000 0.0000
Z2 0.1297 0.1511 0.7192 0, 0000
Z3 0.0002 0.0645 0.4235 0.5118
Z4 0.0000 0.0542 0.1192 0.8266

The results of matrix A shows that the probability of an individual remaining in infectious state
after displaying malaria related symptoms is 83% (a44 = 0.8266) for the case of severe malaria, 42%

18



Mbete et al.; AJPAS, 4(2), 1-29, 2019; Article no.AJPAS.49517

(a33 = 0.4235) for the case of moderate malaria and 15% (a22 = 0.1511) for the case of mild malaria.
The results also shows that for the individual student to remain in an healthy state after displaying
malaria related symptoms is 0.3%(a11 = 0.0034). The probability of an individual transiting from
healthy state to mild state of the disease is 99% (a12 = 0.9966), from mild state to moderate state
is 72% (a23 = 0.7192) and from moderate state to severe state is 51% (a34 = 0.5118). The results
also shows that there is 0% (a41 = 0.0000) transition from severe state of the disease to healthy
state. Generally, the results shows that the probabilities lower than 0.1 in the transition matrix A
represents a very weak transition whereas the probabilities higher than 0.4 represents a very high
transition.

Using the transition matrix A and Equation (3.61), the model approximated the expected duration
a student would be infectious after displaying the symptoms conditioned on the initial state;

(i) a22 = 1
1−0.1511

= 1 day for the case of mild state

(ii) a33 = 1
1−0.4235

= 2 days for the case of moderate state

(iii) a44 = 1
1−0.8266

= 6 days for the case of severe state

8.2 Estimating the Observation Matrix

The results in Figure 7 shows the number of observation sequence of symptoms as displayed by
different students who visited the health facility. The results shows that each student displayed
more than two symptoms with majority having between 4 to 8 symptoms.

Fig. 7. Observation sequence of symptom

B =

x1 x2 x3 x4 x5 x6 x7 x8 x9


Z1 0.1251 0.0723 0.0702 0.7033 0.0000 0.0000 0.0000 0.0000 0.0000
Z2 0.0260 0.0649 0.0909 0.1299 0.0260 0.1034 0.10390 0.0779 0.1039
Z3 0.0704 0.1549 0.1268 0.0845 0.0563 0.0563 0.0704 0.0563 0.0704
Z4 0.0286 0.0714 0.0857 0.1143 0.1143 0.0429 0.0571 0.1429 0.0571

The symptoms used in the study were; Let x1 - fever (body temperature), x2 - chills, x3 - sweating,
x4 - vomiting, x5 - diarrhea, x6 - weakness, x7 - pallor, x8 - cough and x9 - sneezing. The observation
matrix B shows the emission (observation) probabilities and their relationship with the hidden state
(status of the individual) of the model as provided by symptom dataset. Each emission probability
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represent the chance of a particular observation, for instance, the results shows that there is 70%
(x4) chance of observing sweat in healthy state than in coma (0%).

8.3 Computing the Most Likely Sequence

To compute the most likely state to be observed after displaying the malaria related symptoms,
we used the function hmmviterbi in MATLAB (Appendix I) which uses the Viterbi algorithm to
compute the most likely sequence of state that the model would go through to generate the given
sequence of observation. using the function;

likelystates = hmmviterbi(seq,A,B)

The results shows that the most likely state sequence is 2.

To test the accuracy of hmmviterbi, we compute the percentage of the time that the actual sequence
states agrees with the sequence of observation by writing the function

sum(states == likelystates)/300

The results obtained from running this function in MATLAB is 0.8467 which shows that the most
likely sequence of states agrees with the actual sequence by 85%.

8.4 Calculating Posterior Probability

The posterior state probabilities of an emission (observation) sequence are the conditional probabilities
that the model is in a particular state when it generates a particular sequence. To compute the
posterior state probabilities, we use the function as shown in Appendix II

PSTATES = hmmdecode(seq,AEST , BEST )

The output PSTATES is an n by T matrix, where n is the number of states and T is the length of
sequence (seq). PSTATES(i, j) is the conditional probability that the model is in state i when it
generates the jth symbol of sequence. The actual probability of a sequence tends to 0 as the length
of the sequence increases, therefore we use the function hmmdecode which gives the logarithm of
the probability.

[PSTATES, logpseq] = hmmdecode([13], AEST , BEST );

exp(logpseq)

The results of PSTATES is -2.5649 and its probability is 0.0769 which is the logarithm of the
probability.

8.5 Calculating the Forward probability

The forward algorithm evaluates how well the model predicts the given observation sequence. Using
the MATLAB function shown in Appendix II, the results shows that the model is able to predict
87% (0.8719) of the observation sequence

8.6 Parameter Estimates

Using the training and test data in MATLAB (Appendix III), we estimates the parameters of the
model as shown in Figure 8, Figure 9, Figure 10 and Figure 11;
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The results shows that the measurement are not far much removed from the hidden states i.e.

Fig. 8. A plot of ordinal scale measurement and Hidden State

measurements have small error or noise indicating high precision.

The results shows that the filter estimates are close to the true values and the error is small, this is

Fig. 9. A plot of Kalman Filter estimates, Boostrap Particle Filter estimates and
Error

also true for sequential Monte Carlo (Boostrap filter particle)

The results shows that the Kalman Filter produces an optimal estimate which is shown by the
lowest variance of the two filters. The more the number of samples in the Monte Carlo filter,the
lower the variance.

The results shows that the filter estimates for parameter β is 0.1020. The actual value of β is 0.1
but the estimate value is 0.1020 which shows that the filter estimates is not far much removed from
the actual value. Therefore using measurements only, we can obtain estimate of β which can then
be used in the model equation to provide a fit for the data and any other data.
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Fig. 10. A plot of Kalman Filter and Monte Carlo variances

Fig. 11. A plot of estimate of β
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APPENDIX I: COMPUTATION OF TRANSITION AND OBSERVATION MATRIX

pi=[0.25 0.25 0.25 0.25]
T=13
N=4
A = [0.25 0.25 0.25 0.25;0.25 0.25 0.25 0.25;0.25 0.25 0.25 0.25; 0.25 0.25 0.25 0.25];
B = [1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13;
1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13; 1/13 1/13 1/13 1/13 1/13
1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13; 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13 1/13
1/13 1/13 1/13];
[seq, states] = hmmgenerate(300, A,B);
likelystates = hmmviterbi(seq,A,B);
sum(states == likelystates)/300
[AEST , BEST ] = hmmestimate(seq, states)
[AEST2, BEST2] = hmmtrain(seq,AEST , BEST )
hmmtrain(seq,AEST , BEST ,

′ maxiterations′,maxiter)
hmmtrain(seq,AEST , BEST ,

′ tolerance′, tol)
PSTATES = hmmdecode(seq,AEST , BEST )
[PSTATES, logpseq] = hmmdecode(seq,AEST , BEST )
[PSTATES, logpseq] = hmmdecode([13], AEST , BEST );
exp(logpseq)
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APPENDIX II: FORWARD ALGORITHM

initialization
T=13
N=4
A=[0.0034 0.9966 0.0000 0.0000; 0.1297 0.1511 0.7192 0.0000; 0.0002 0.0645 0.4235 0.5118; 0.0000
0.0542 0.1192 0.8266]
B=[0.0366 0.0732 0.0488 0.0732 0.0976 0.1098 0.1341 0.0610 0.0854 0.0244 0.0488 0.0854 0.1220;
0.0260 0.0649 0.0909 0.1299 0.0260 0.1039 0.0390 0.1039 0.1169 0.0779 0.0779 0.0390 0.1039; 0.0704
0.1549 0.1268 0.0845 0.0563 0.0563 0.0704 0.1268 0.0282 0.0563 0.0704 0.0704 0.0282;0.0286 0.0714
0.0857 0.1143 0.0429 0.1286 0.0714 0.0429 0.1143 0.0429 0.0571 0.1429 0.0571];
pi=[0.2500 0.2500 0.2500 0.2500]
O=[1 1 1 1 1 1 1 1 1 1 1 1 1]
for i=1:N
alpha(1,i)=pi(i)*B(i,O(1));
end
induction
for t=1:T-1
for j=1:N
u=0.8;
for i=1:N
u=u+alpha(t,i)*A(i,j);
end
alpha(t+1,j)=u*B(j,O(t+1));
end
end
Evaluatingtheprobability
p=0.8;
for i=1:N
p=p+alpha(T,i);
end
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APPENDIX III: PARAMETER ESTIMATES USING MATLAB FUNCTIONS

[x] = csvread(′Ordinalscale.csv′);
Filters
beta = 0.1;
C = 1;
Q = sqrt(0.1);
R = sqrt(0.1);
rng(1);
T = 300;
X = zeros(1, T );
Y = zeros(1, T );
X0 = Age(1);
X(1) = Age(1);
fort = 2 : T
X(t) = beta ∗Age(t− 1) +Q ∗ randn;
Y (t) = C ∗X(t) +R ∗ randn;
end
Xhat = zeros(1, T );
Xpredhat = zeros(1, T );
Phat = zeros(1, T );
Ppredhat = zeros(1, T );
Xpredhat(1) = X0;
P0 = 1;
Ppredhat(1) = P0;
fort = 2 : T
correction step
K = Ppredhat(t− 1) ∗ C′/(C ∗ Ppredhat(t− 1) ∗ C′ +R2);
Xhat(t− 1) = Xpredhat(t− 1) +K ∗ (Y (t− 1)− C ∗ beta ∗Xpredhat(t− 1));
Phat(t− 1) = Ppredhat(t− 1)−K ∗ C ∗ Ppredhat(t− 1);
prediction step
Xpredhat(t) = beta ∗Age(t− 1);
Ppredhat(t) = beta ∗ Phat(t− 1) ∗ beta′ +Q2;
end
M = 1000;
XXhat = zeros(M,T );
XXhat(:, 1) = X0 ∗ ones(M, 1);
XXmean = zeros(1, T );
XXmean(1) = mean(XXhat(:, 1));
weights = ones(M, 1)/M ;
e = ones(1,M);
fort = 2 : T
[ indx ] = resample Multinomial(weights);
forj = 1 : M
XXhat(j, t− 1) = XXhat(indx(j), t− 1);
end
XXhat(:,t) = beta ∗Age(t− 1) ∗ ones(M, 1) +Q ∗ randn(M, 1);
weightsU = normpdf(Y (t− 1), C ∗XXhat(:,t−1), R);
weightsU = exp(weightsU -max(weightsU));
weights = weightsU/sum(weightsU);
XXmean(t) = weights′ ∗XXhat(:,t);
figure(1)
plot(1 : t,X(1 : t), 1 : t,XXmean(1 : t));
drawnow
end
figure(1)
subplot(4, 1, 1);
plot(1 : T, Y (1 : T ));
title(′Measurements(Y1:T )

′)
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axis([1 T -1.5 1.5])
ylabel(′Measurements′)
subplot(4, 1, 2);
plot(1 : T,X(1 : T ), 1 : T,Xhat(1 : T ));
title(′KalmanFilterEstimate′)
legend(′Truth′,′ KFestimate′)
axis([1 T -1.5 1.5])
ylabel(′Estimate, Truth′)
subplot(4, 1, 3);
plot(1 : T,X(1 : T ), 1 : T,XXmean(1:T ));
title(′BootstrapParticleF ilterEstimate′)
legend(′Truth′,′ BPFestimate′)
axis([1 T -1.5 1.5])
ylabel(′Estimate, Truth′)
subplot(4, 1, 4);
plot(1 : T,X −Xhat, 1 : T,X −XXmean);
title(′KalmanFilterandBootsrapEstimateError′)
legend(′KFerror′,′ BPFerror′)
axis([1 T -1 1])
xlabel(′T ′); ylabel(′Error′)
figure(2)
plot(1 : T, Phat, 1 : T, (X −XXmean).

2);
title(′KalmanFilterandBootsrapV ariances′)
legend(′KFV ariance′,′ BPFV ariance′)
axis([1 T 0 1.5])
xlabel(′T ′); ylabel(′V ariance′)
parametere stmation
X0 = Numberofsymptoms(1);
initialbeta = 0.102;
Y = Numberofsymptoms;
XXhat = zeros(2, T );
XXpredhat = zeros(2, T );
PPhat = zeros(2, 2, T );
PPpredhat = zeros(2, T );
XXpredhat(1 : 2, 1) = [X0; initialbeta];
P0 = XXpredhat(1 : 2, 1) ∗XXpredhat(1:2,1)′ ;
PPpredhat(1:2,1:2,1) = P0;
bbeta = zeros(1, T );
bbeta(1) = initialbeta;
fort = 1 : T
prediction step
XXpredhat(1 : 2, t) = [bbeta(t) ∗Age(t); bbeta(t)];
PPpredhat(1 : 2, 1 : 2, t) = bbeta(t) ∗ PPhat(1 : 2, 1 : 2, t) ∗ bbeta(t)′ +Q2 ∗ [1, 0; 0, 0.0000001];
correction step
K = PPpredhat(1 : 2, t) ∗ C′/(C ∗ PPpredhat(1, t) ∗ C′ +R2);
XXhat(1 : 2, t+ 1) = XXpredhat(1 : 2, t) +K ∗ (Y (t)− C ∗ bbeta(t) ∗XXpredhat(1, t));
PPhat(1 : 2, 1 : 2, t+ 1) = PPpredhat(1 : 2, 1 : 2, t)− (K ∗ ones(1, 2)) ∗ C ∗ PPpredhat(1:2,1:2,t);
bbeta(t+ 1) = XXhat(2, t+ 1);
plot(1 : t, bbeta(1 : t))
end
figure(1)
plot(1 : t, bbeta(1 : t),′ LineWidth′, 2)
title(′Estimatesofbeta′)
xlabel(′time′)
ylabel(′βvalues′)
Resample multinomial
function[indx] = resampleMultinomial(w)
M = length(w);
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Q = cumsum(w);
Q(M) = 1;
i = 1;
while(i <= M),
sample = rand(1, 1);
j = 1;
while(Q(j) < sample),
j = j + 1;
end;
indx(i) = j;
i = i+ 1;
end
simulation
beta = 0.1;
T = 300;
x = Age′;
z = zeros(T, 1)′;
y = zeros(T, 1)′;
R = 0.05;
Q = 0.001;
fork = 1 : 300
z(k) = x(k) ∗ beta+Q ∗ randn;
y(k) = z(k) +R ∗ randn;
plot(1 : k, z(1 : k), 1 : k, y(1 : k));
end
figure(1)
plot(1 : k, z(1 : k), 1 : k, y(1 : k));
title(′Aplotofmeasurementsandthehiddenstate′)
legend(′hiddenstate′,′ measurents′,′ Location′,′ best′)
xlabel(′No.ofstudents′)
ylabel(′Ordinalscales′)
Xhat = zeros(1, T );
Xpredhat = zeros(1, T );
Phat = zeros(1, T );
Ppredhat = zeros(1, T );
Xpredhat(1) = x(1);
P0 = 1;
Ppredhat(1) = Q;
C = 1;
fort = 2 : T
correction step
K = Ppredhat(t− 1) ∗ C′/(C ∗ Ppredhat(t− 1) ∗ C′ +R2);
Xhat(t− 1) = Xpredhat(t− 1) +K ∗ (y(t− 1)− C ∗Xpredhat(t− 1));
Phat(t− 1) = Ppredhat(t− 1)−K ∗ C ∗ Ppredhat(t− 1);
prediction step
Xpredhat(t) = beta ∗Xhat(t− 1);
Ppredhat(t) = beta ∗ Phat(t− 1) ∗ beta′ +Q2;
figure(2)
plot(1 : t, x(1 : t), 1 : t,Xhat(1 : t));
end
M = 1000;
xx = zeros(M,T );
xx(:, 1) = x(1) ∗ ones(M, 1) + 1 ∗ randn(M, 1);
xxmean = zeros(1, T );
xxmean(1) = mean(xx(:, 1));
weights = ones(M, 1)/M ;
Meff = 1/sum(weights.2);
e = ones(1,M);
fort = 2 : T
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Resample (multinomial)
ifMeff < 0.7 ∗M
indx = randsample(M,M, true, weights);
forj = 1 : M
xx(j, t− 1) = xx(indx(j), t− 1);
end
end
propagate the particles
rd = randn(M, 1); rd = rd−mean(rd);
xx(:, t) = beta ∗ xx(:, t− 1) +Q ∗ rd;
weights = weights. ∗ exp(−((xx(:, t− 1)).2/2− xx(:, t− 1) ∗ y(t))/R);
weights = weights/sum(weights);
Meff = 1/sum(weights.2);
xxmean(t) = weights′ ∗ xx(:, t);
figure(3)
plot((1 : t), x(1 : t), (1 : t), xxmean(1 : t));
drawnow
end
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