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ABSTRACT 
 

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in 
this class are typically concerned with selecting from a set of given items, each with a specified 
weight and value, a subset of items whose weight sum does not exceed a prescribed capacity and 
whose value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack 
and one item of each type. This paper considers the application of classical 0-1 knapsack problem 
with a single constraint to computer memory management. The goal is to achieve higher efficiency 
with memory management in computer systems. 
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack 
problems in optimizing computer memory. It is shown that Simulated Annealing performs better 
than the Genetic Algorithm for large number of processes.   
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1. INTRODUCTION 
 
A great variety of practical problems can be 
represented by a set of entities, each having an 
associated value, from which one or more 
subsets has to be selected in such a way that the 
sum of the values of the selected entities is 
maximized, and some predefined conditions are 
respected. The most common condition is 
obtained by also associating a weight to each 
entity and establishing that the sum of the entity 
sizes in each subset does not exceed some 
prefixed bound. These problems are generally 
called knapsack problems, since they recall the 
situation of a traveler having to fill up his 
knapsack by selecting from among various 
possible objects those which will give him the 
maximum comfort. One such problem is in 
computer memory management. 
 
Modern computer memory management is for 
some causes a crucial element of assembling 
current large applications. First, in large 
applications, space can be a problem and some 
technology are efficiently needed to return 
unused space to the program. Secondly, inexpert 
implementations can result in extremely 
unproductive programs since memory 
management takes a momentous portion of total 
program execution time and finally, memory 
errors become rampant, such that it is extremely 
difficult to find programs when accessing freed 
memory cells. It is much secured to build more 
unfailing memory management into design even 
though complicated tools exist for revealing a 
variety of memory faults. It is for this basis that 
efficient schemes are needed to manage 
allocating and freeing of memory by programs. 
 
Optimizing current memory management 
strategies strength is performed by altering the 
space allocated to each task. To achieve high 
levels of multiprogramming while avoiding 
thrashing such policies vary the load (i.e., the 
number of active tasks). Additionally, in a system 
that runs out of capacity probably because the 
system is undersized, several options are 
available. This option includes either upgrading 
the processor (if possible), reduce available 
functionality, or optimize.  
 
A great deal of realistic problems where some 
predefined conditions are respected such that 
the sum of the values of the selected entities is 
maximized can be represented by a set of 
entities, each having an associated value, from 
which one or more subsets has to be selected. 

The most ordinary situation is obtained by 
establishing that the sum of the entity sizes in 
each subset does not exceed some prefixed 
bound by associating a weight/size to each 
entity.  
 
The goal of this paper is to maximize the number 
of processes in a limited memory space.   
 

2. LITERATURE REVIEW 
 
Knapsack problems have been studied 
intensively in the past decade attracting both 
theorist and practitioners. The theoretical interest 
arises mainly from their simple structure which 
both allows exploitation of a number of 
combinational properties and permits more 
complex optimization problems to be solved 
through a series of knapsack type. From a 
practical point of view, these problems can model 
many industrial applications, the most classical 
applications being capital budgets, cargo loading 
and cutting stock. In this section a review of 
literature on knapsack problems and applications 
is presented. 
 
The knapsack problem (KP) is a traditional 
combinatorial issue used to show numerous 
modern circumstances. ―Since Balas and 
Zemel a dozen years ago introduced the so-
called core problem as an efficient way of solving 
the Knapsack Problem, all the most successful 
algorithms have been based on this idea. All 
knapsack Problems belong to the family of NP-
hard problems, meaning that it is very unlikely 
that polynomial algorithms for these problems 
can be devised [1]. 
 
The Knapsack problem has been concentrated 
on for over a century with prior work dating as far 
back as 1897. ―It is not known how the name 
Knapsack originated though the problem was 
referred to as such in early work of 
mathematician Tobias Dantzig suggesting that 
the name could have existed in folklore before 
mathematical problem has been fully defined [2]. 
 
Heuristic algorithms experienced in literature that 
can generally be named as population heuristics 
include; ―genetic algorithms, hybrid genetic 
algorithms, mimetic algorithms, scatter-search 
algorithms and bionomic algorithms. Among 
these, Genetic Algorithms have risen as a 
dominant latest search paradigm [3]. 
 
Genetic Algorithms (GA) are PC algorithms that 
hunt down fine solutions to a problem from 
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among countless solutions. They are versatile 
heuristic search algorithm in view of the 
evolutionary thoughts of natural selection and 
hereditary qualities. “These computational 
paradigms were inspired by the mechanics of 
natural evolution, including survival of the fittest, 
reproduction, and mutation. This algorithm is an 
intelligent exploitation of random search used in 
optimisation problems” [4]. 
 
Bortfeldt and Gehring presented a hybrid genetic 
algorithm (GA) for the container packing problem 
with boxes of unlike sizes and one container for 
stacking. Generated stowage plans include 
several vertical layers each containing several 
boxes. Within the procedure, stowage plans were 
represented by complex data structures closely 
related to the problem. To generate offspring, 
specific genetic operators were used that are 
based on an integrated greedy heuristic [5].  
 
GAs often calls for the creation and assessment 
of lots of dissimilar children. However, GAs are 
capable of generating high-quality solutions to 
many problems within reasonable computation 
times [6,7,8,9]. Additionally, while performing 
search in large state-space or multi-modal state-
space, or n-dimensional surface, a genetic 
algorithm offers significant benefits over many 
other typical search optimisation techniques like  
linear programming, heuristic, depth-first, breath-
first. 
 
Proposed in [10], simulated annealing maintain a 
temperature variable to create heating process. 
The temperature is earlier set high and after that 
allows to gradually "cool" as the algorithm runs. 
While this temperature variable is high the 
algorithm will be permitted, with more recurrence, 
to accept solutions that are more awful than the 
present solution. This gives the algorithm the 
capacity to hop out of any local optimums it 
discovers itself on early on in execution. As the 
temperature is decreased so is the possibility of 
tolerating more awful solution, thus permitting the 
algorithm gradually focusing on a zone of the 
search space in which ideally, a near ideal 
solution can be found. 

 
Simoes and Costa [11] performed an empirical 
study and evaluated the exploits of the 
transposition A-based Genetic Algorithm (GA) 
and the classical GA for solving the 0/1 knapsack 
problem. Obtained results showed that, just      
like in the domain of the function       
optimization, transposition is always superior to 
crossover.  

Eager about making use of a easy heuristic 
scheme (simple flip) for answering the knapsack 
problems, [12] offered a study work on the 
application of usual zero-1 knapsack trouble with 
a single limitation to determination of television 
ads at significant time such as prime time news, 
news adjacencies, breaking news and peak 
times. 
 
Martello et al. [13] presented a new algorithm for 
the optimal solution of the 0-1

 
Knapsack 

problem, which is particularly effective for large-
size problems. The algorithm is based on 
determination of an appropriate

 
small subset of 

items and the solution of the corresponding "core 
problem": from this they derived a heuristic 
solution for

 
the original problem which, with high 

probability, can be proved to be optimal. The 
algorithm incorporated a new method of 
computation of upper bounds and efficient 
implementations of reduction procedures.

  

 
Huttler and Mastrolilli [14] addressed the 
classical knapsack problem and a variant in 
which an upper bound is imposed on the number 
of items that can be selected. It was shown that 
appropriate combinations of rounding techniques 
yield novel and more powerful ways of rounding. 
Moreover, they presented a linear-storage 
polynomial time approximation scheme (PTAS) 
and a fully polynomial time approximation 
scheme (FPTAS) that compute an approximate 
solution, of any fixed accuracy, in linear time. 
These linear complexity bounds give a 
substantial improvement of the best previously 
known polynomial bounds. 
 
Hanafi and Freville [15] described a new 
approach to tabu search (TS) based on strategic 
oscillation and surrogate constraint information 
that provides a balance between intensification 
and diversification strategies. New rules needed 
to control the oscillation process are given for the 
0 /1 multidimensional knapsack (0/1 MKP). 
Based on a portfolio of test problems from the 
literature, our method obtains solutions whose 
quality is at least as good as the best solutions 
obtained by previous methods, especially with 
large scale instances. These encouraging results 
confirm the efficiency of the tunneling concept 
coupled with surrogate information when 
resource constraints are present. 

 
Rinnooy et al. [16] proposed a class of 
generalized greedy algorithms is for the solution 
of the multi-knapsack problem. Items are 
selected according to decreasing ratios of their 
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profit and a weighted sum of their requirement 
coefficients. The solution obtained depended on 
the choice of the weights. A geometrical 
representation of the method was given and the 
relation to the dual of the linear programming 
relaxation of multi-knapsack is exploited. They 
investigated the complexity of computing a set of 
weights that gives the maximum greedy solution 
value. Finally, the heuristics were subjected to 
both a worst-case and a probabilistic 
performance analysis. 
 

Balachandar and Kannan [17] presented a 
heuristic to solve the 0/1 multi-constrained 
knapsack problem (0/1 MKP) which is NP-hard. 
In this heuristic the dominance property of the 
constraints is exploited to reduce the search 
space to find near optimal solutions of 0/1 MKP. 
This heuristic was tested for 10 benchmark 
problems of sizes up to 105 and for seven 
classical problems of sizes up to 500, taken from 
the literature and the results were compared with 
optimum solutions. Space and computational 
complexity of solving 0/1 MKP using this 
approach were also presented. The encouraging 
results especially for relatively large size test 
problems indicate that this heuristic can 
successfully be used for finding good solutions 
for highly constrained NP-hard problems. 
 

Elhedhli [18] considered a class of nonlinear 
knapsack problems with applications in service 
systems design and facility location problems 
with congestion. They provided two linearizations 
and their respective solution approaches. The 
first is solved directly using a commercial solver. 
The second is a piecewise linearization that is 
solved by a cutting plane method. 
 

Devyaterikova et al. [19] presented discrete 
production planning problem which may be 
formulated as the multidimensional knapsack 
problem is considered, while resource quantities 
of the problem are supposed to be given as 
intervals. An approach for solving this problem 
based on using its relaxation set is suggested. 
Some L-class enumeration algorithms for the 
problem are described. Results of computational 
experiments were presented. 
 

Chen et al. [20] presented pipeline architectures 
for the dynamic programming algorithms for the 
knapsack problems. They enabled them to 
achieve an optimal speedup using processor 
arrays, queues, and memory modules. The 
processor arrays can be regarded as pipelines 
where the dynamic programming algorithms are 
implemented through pipelining. 

3. METHODOLOGY 
 

Because of their wide range of applicability, 
knapsack problems have known a large number 
of variations such as: single and multiple-
constrained knapsacks, knapsacks with 
disjunctive constraints, multidimensional 
knapsacks, multiple choice knapsacks, single 
and multiple objective knapsacks, integer, linear, 
non-linear knapsacks, deterministic and 
stochastic knapsacks, knapsacks with convex / 
concave objective functions, etc. 
 

This is a 0-1 knapsack problem, pure integer 
programming with single constraint which forms 
a very important class of integer programming. 
 

The 0-1 Knapsack Problem (KP) can be 
mathematically formulated through the following 
integer linear programming [21]. 
 

Maximize � P�x� 
�

���
                                    (1) 

 

Subject  to = � �w�x��
�

���
 ≤  c                   (2) 

  x� = 0 or 1, j = 1, … , n 

 
Where, �� refers to the value, or worth of item j, 

��  refers to the item j, ��  refers to the relative-

weight of item j, with respect to the knapsack and 
C refers to the capacity, or weight-constraint of 
the knapsack. There exist j = 1,…,n items, and 
there is only one knapsack. 
 

The use of two major meta-heuristics 
approaches, Genetic algorithm and Simulated 
annealing which have been used to solve large 
scale problems [22] will be considered in this 
paper. 
  
3.1 Simulated Annealing 

 

Simulated annealing (SA) is a local search 
algorithm capable of escaping from local optima. 
Its case of implementation, convergence 
properties and its capability of escaping from 
local optima has made it a popular algorithm over 
the past decades. Simulated annealing is so 
named because of its analogy to the process of 
physical annealing with solids in which a 
crystalline solid is heated and then allowed to 
cool very slowly until it achieves stable state. i.e. 
its minimum lattice energy state and thus is free 
of crystal effects. Simulated annealing mimics 
this type of thermodynamic behavior in searching 
for global optima for discrete optimization 
problems (DOP) [23]. 
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To formally describe simulated annealing 
algorithm for KP, some definitions are needed. 
Let Ω be the solution space: Define η(ω) to be 
the neighborhood function for w ∈ Ω. Simulated 
annealing starts with an initial solution ω ∈ Ω. A 
neighborhood solution ω1 ∈ η(ω) is then 
generated randomly in most cases. Simulated 
annealing is based on the Metropolis acceptance 
criterion, which models how a thermodynamic 
system moves from its current solution ω ∈ Ω to 
a candidate solution �� ∈  �(�)  in which the 
energy content is being minimized. The 
candidate solution ω

1 
is accepted as the current 

solution based on the acceptance probability. 
In this survey, finite-time implementations of 
simulated annealing algorithm are considered, 
which can no longer guarantee to find an optimal 
solution, but may result in faster executions 
without losing too much on the solution quality. 
Simulated annealing algorithm with static cooling 
schedule [24] for KP is outlined in pseudo-code. 

 
1 Select an initial solution ω =(ϰ1,…, ϰn)∈ 

Ω; an initial temperature t = t0;  
2 control parameter value α ; final 

temperature e;  a repetition schedule, 
M that defines the number of iterations 
executed at each temperature; 

3 Incumbent solution ←  f(ω); 
4 Repeat; 
5 Set repetition counter m =  0; 
6 Repeat; 
7 Select an integer i from the set {1,2, … , n} randomly: 
8 If x� =  0, pick up item i,   i. e.  set  x�  =  1,

obtain new solution  ω1 then 
9 while solution ω1 is infeasible, do 
10 drop another item from ω  randomly; 

denote the new solution  as ω1 
11 let Δ = f(ω1) − f(ω) 

12 while Δ ≥  0 or Random (0,1) < eΔ �⁄  do  ω 
← ω1 

13 Else 
14 drop item i and pick another item randomly, get new solution ω1 
15 let Δ = f(ω1) −  f(ω) 
16 while Δ ≥ 0 or Random (0,1)  <

eΔ �⁄   do ω ←  ω1 
17 End If 
18 If incumbent solution <

 �(ω),   Incumbent solution ←  f(ω) 
19 m =  m +  1; 
20 Until m =  M 
21 set t =  a ∗  t; 
22 Until t <  � 

 
A set of parameters needs to be specified that 
govern the convergence of the algorithm, i.e. 

initial temperature �� , temperature control 
parameter �,  final temperature ℯ,  and Markov 
chain length M, in order to study the finite-time 
performance of simulated annealing algorithm. 
Here to should be the maximal difference in cost 
between any two neighboring solutions [24]. 
 
The parameters used for the Simulated 
Annealing are: 
 

Cooling factor: 0.98 
Termination Temperature: 0.2 
Initial Temperature: 100 
Neighbor Sampling Size: 350 

 
3.2 Genetic Algorithm 

 
A genetic algorithm (GA) can be described as an 
“intelligent” probabilistic search algorithm and is 
based on the evolutionary process of biological 
organisms in nature. During the course of 
evolution, natural populations evolve according 
to the principles of nature selection and “survival 
of the fittest.” Individuals who are most 
successful in adapting to their environment will 
have a better chance of surviving and 
reproducing, while individuals who are less fit will 
be eliminated. This means that the genes from 
highly fit individuals will spread to an increasing 
number of individuals in each successive 
generation. The combination of good 
characteristics from highly adapted parents may 
produce even more fit offspring. In this way, 
species evolve to become increasingly better 
adapted to the environment [25]. 
 
A GA simulates these processes by taking an 
initial population of individuals and applying 
genetic operators in each reproduction. In 
optimization terms, each individual in the 
population is encoded into a string or 
chromosome that represents a possible solution 
to a given problem. The fitness of an individual is 
evaluated with respect to a given objective 
function. Highly fit individuals or solutions are 
given opportunities to reproduce by exchanging 
pieces of their genetic information in a crossover 
procedure with other highly fit individuals. This 
produces new “offspring” solutions (i.e. children) 
who share some characteristics taken from both 
parents. Mutation is often applied after crossover 
by altering some genes in the strings. The 
offspring can either replace the whole population 
(generational approach) or replace fewer fit 
individuals (steady-state approach). This 
evaluation-selection-reproduction cycle is 
repeated until a satisfactory solution is found.  
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The basic steps of a simple GA are shown below 
[26] 

 
Step 1: Generate an initial population 
Step 2: Evaluate fitness of individuals in the 

population 
 

The objective function value (∑ �����
��� ) equates 

to how good a solution is, that is, its fitness.  
 

In general, an initial population is randomly 
generated in some way.  

 

Step 3: Repeat 
 

a. Select individuals from the population to be 
parents 
In the GA world for the KP, parents will be 
chosen by binary tournament selection. In 
binary tournament selection, two 
individuals are randomly selected from the 
population. From these two, the individual 
with the best fitness is selected to be the 
first parent 

b. Recombine (mate) parents to produce 
children 

 In the GA world for the KP, a single child 
will be obtained from two parents by 
uniform crossover. In uniform crossover 
each bit in the child solution is created by: 
Repeat for each bit in turn choose one of 
the two parents at random set the child bit 
equal to the bit in the chosen parent in 
one-point crossover, a pint between two 
adjacent bits is randomly selected, “cut” 
the parents into two segments and create 
two children by rejoining the segments.  

c. Mutate the children Evaluate fitness of the 
children 
Mutation corresponds to small changes 
that are stochastically applied to the 
children mutation can be applied with a 
constant probability or with an adaptive 
probability that changes over the course of 
the algorithm (perhaps in response to the 
number of iterations that have passed or in 
response to population characteristics). 

d. Replace some or all of the population by 
the children until 

 

Step 4: You decide to stop whereupon report the 
best solution encountered 

 
The parameters used for the Genetic Algorithm 
are: 
 

Population Size: 500 
Recombination Rate:0.7 

Mutation Rate: 0.005 
Number of Crossover Points: 3 

 

3.3 Chi-square 
  

To ascertain whether the time taken and memory 
sued to obtain a solution is dependent or not on 
the number of processes, the chi-square test is 
used. The chi-square test of independence is a 
statistical test to determine if two or more 
classifications of the samples are independent or 
not.  
 

The chi-square test is computed with the 
following equation [27] 
 

                                       (3)  

 

Where:  
 

Oi is the cell frequencies actually observed in  
category i  
Ei is the cell frequencies that would be 
expected in category i, if the two tables were 
statistically independent 
k is the total number of cells or categories 

 

Hypothesis testing is a statistical method that is 
used in making statistical decisions using 
experimental data. Hypothesis tests are used to 
test the validity of a claim that is made about a 
population (in this context all data under 
consideration). This claim made, in essence, is 
called the null hypothesis (H0) and the alternative 
hypothesis (H1) is the one considered if the null 
hypothesis is concluded to be untrue. For this 
paper, the hypothesis is to ascertain whether the 
time taken or the memory used to obtain a 
solution is dependent on the number of 
processes. Therefore, the null hypothesis (H0) 
states that no association exists between the two 
variables i.e. the variables are statistically 
independent and the alternate hypothesis (H1) 
states that the two variables are related. In 
performing a hypothesis test in statistics, a p-
value helps determine the significance of the 
results. The p-value can be estimated using the 
chi-square distribution table or using a statistical 
package. Before the hypothesis test is 
performed, a threshold value is chosen, called 
the significance level of the test and is denoted 
by  . 
 

The p-value is a number always between 0 and 1 
and interpreted in the following way: 
 
 A small p-value (≤ 0.05) indicates strong 

evidence against the null hypothesis, so 

 
2

2
k

i i

i i

O E

E
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you reject the null hypothesis if the 

significance level ( 0.05)  . 

 A large p-value (> 0.05) indicates weak 
evidence against the null hypothesis, so 
you fail to reject the null hypothesis if the 

significance level ( 0.05)  . 
 

R (a statistical package) is used to calculate the 
chi-square value and p-value using this 
pseudocode. 

 

x<=matrix(data) 
View(x) 
Chisq.test(x) 

 

4. ANALYSIS AND RESULTS 
 

Category A: The computer system with a total of 
10 created processes, all with their system 
information in figures. The computer memory can 
accommodate capacity of 50mb but the total 
memory of the process is 56 with a combined 
process activity (number of times process is 
accessed of 123. 
 

Table 1. Results for category A 
 

 GA SA 
No. of Processes Used 9 9 
Memory Used 46 46 
Number of Times Process Is Accessed 119 119 
 

From Table 1, it could be seen that all three 
algorithms provide the same output in terms of all 
the parameters under consideration. This means 
that both DP, GA and SA.  
 

Category B: The table below shows a computer 
system with a total of 50 created processes, all 
with their system information in figures. The 
computer memory can accommodate capacity of 
100mb. but the total memory of the process is 
281 with a combined process activity (number of 
times process is accessed of  483. 
 

Table 2. Results for category B 
 

 GA SA 
No. of Processes Used 25 23 
Memory Used 100 100 
Number of Times Process Is Accessed 327 328 
 

From Table 2, GA provided a slight advantage of 
in terms of the number of process used. Apart 
from that all three algorithms provided fairly the 
same result. 
 
Category C: The table below shows a computer 
system with a total of 100 created processes, all 

with their system information in figures. The 
computer memory can accommodate capacity of 
300mb. but the total memory of the process is 
574 with a combined process activity (number of 
times process is accessed of 1011. 
 

Table 3. Results for category C 
 

 GA SA 
No. of Processes Used 61 62 
Memory Used 300 300 
Number of Times Process Is Accessed 815 803 
 
Table 3 shows that DP provides a better result 
than the rest. All memory needed was utilized 
showing efficient use of memory available. 
 
Category D: The table below shows a computer 
system with a total of 500 created processes, all 
with their system information in figures. The 
computer memory can accommodate capacity of 
1000mb. but the total memory of the process is 
2661 with a combined process activity (number 
of times process is accessed of  5287. 

 
Table 4. Results for category D 

 
 GA SA 
No. of processes used 258 252 
Memory used 1000 1000 
Number of times process is 
accessed 

3551 3431 

 
Category E: The table below shows a computer 
system with a total of 1000 created processes, all 
with their system information in figures. The 
computer memory can accommodate capacity of 
5000mb. but the total memory of the process is 
5626 with a combined process activity (number 
of times process is accessed of 10480). 
 

Table 5. Results for category E 
 

 GA SA 
No. of Processes Used 915 916 
Memory Used 5000 5000 
Number of Times Process Is 
Accessed 

10299 10307 

 
GA and SA provide fairly the same results in 
Tables 4 and 5. 
 
The main criteria in evaluating the efficiency of 
an algorithm is time and space. Even though in 
terms of results the three algorithms provided 
similar results, their efficiency will be determined 
based on the time it took to produce the results 
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and the amount of memory resource it took on 
the computer. 

 
Table 6. Results for based on time taken 

 

TIME (ms) 
No. of process GA SA 
10 436 60 
50 323 52 
100 385 87 
500 1374 300 
1000 2338 554 

 

 

 
Fig. 1. Results for based on time taken 

 
From Table 6 and Fig. 1, It is seen that GA took 
more time in giving an optimum out than SA for 
larger number of processes. As the number of 
processes increases, time taken increases 
exponentially for GA as compared to SA.  
 

Also the GA also used more memory utilization 
for than SA from Table 7 and Fig. 2. The GA 
outperformed the Sa only when the number of 
processes. 
 
Using the chi-square test on Table 6, the null and 
alternate hypothesis are defined as follows: 
 

H0: Time taken to obtain a solution is 
independent of number of processes. 

H1: Time taken to obtain a solution is not 
independent of number of processes. 

 
The chi-square statistic (χ

2
)= 18.7547.  

The p-value is 0.000878.  
 

Since the p-value of 0.000878 is less than the 
significance level of 0.05,  the null hypothesis(H0) 
which stated that the time taken to obtain a 

solution is independent of number of processes 
is rejected. This implies that number of 
processes is dependent on the time taken to 
obtain a solution 
 
Table 7. Results for based on memory taken 

 
Memory (byte) 

No. of process GA SA 
10 28880312 42511800 
50 92815928 45555312 
100 100774992 73927720 
500 210273904 117057112 
1000 233449048 210256440 

 

 

 
Fig. 2. Results for based on memory taken 

 
Using the chi-square test on Table 7, the null and 
alternate hypothesis are also defined as follows: 
 

H0: Memory used in obtaining a solution is 
independent of number of processes. 

H1: Memory used in obtaining a solution is not 
independent of number of processes. 

 

The chi-square statistic (χ2
)= 22.8798  

The p-value is 0.000134.  
 
Since the p-value of 0.000134 is less than the 
significance level of 0.05, the null hypothesis is 
also rejected here. This implies that memory 
used to obtain a solution is dependent on the 
number of processes. 

 
5. CONCLUSION AND RECOMMENDA-

TIONS 
 
This paper showed that memory optimization as 
well as knapsack problem can be successfully 
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solved using heuristic algorithms. In this paper, 
meta-heuristic algorithms i.e. simulated 
annealing and genetic algorithm were testes 
compared for their efficiency in optimizing 
memory. From Fig. 2, it can be seen that with 
increase in number of processes, experiments 
with simulated annealing gives better result than 
the Genetic Algorithm in terms of both time-taken 
to obtain a solution and memory taken. From the 
analysis, it can be seen that for smaller number 
of processes the GA and SA performance are 
identical but as the number of processes 
increases, SA performs better than GA. 
Therefore, it is concluded that, the most efficient 
algorithm in knapsack optimizing among the two 
for large number of processes is Simulated 
Annealing. 
 
Notwithstanding it extensive use, both SA and 
GA have their limitations. For SA, If the starting 
temperature is very high, the search will be a 
random local search for a period of time i.e. 
accepting all neighbors during the initial phase of 
the algorithm. Also, In the SA algorithm, the 
temperature is decreased gradually. If the 
temperature is decreased slowly, better solutions 
are obtained but with a more significant 
computation time. For GA, if reproduction fails to 
produce good chromosomes then convergence 
in the right direction is not possible.  
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