
*Corresponding author: E-mail: sopokuoppong@yahoo.com;

Asian Journal of Research in Computer Science

3(2): 1-10, 2019; Article no.AJRCOS.47900
ISSN: 2581-8260

Meta-Heuristics Approach to Knapsack Problem in
Memory Management

Emmanuel Ofori Oppong1, Stephen Opoku Oppong2*, Dominic Asamoah1

and Nuku Atta Kordzo Abiew 2

1
Department of Computer Science, KNUST, Ghana.

2Faculty of Computing and Information Systems, GTUC, Ghana.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/AJRCOS/2019/v3i230087

Editor(s):
(1) Dr. Jong-Wuu Wu, Professor, Department of Applied Mathematics, National Chiayi University, Taiwan.

Reviewers:
(1) R. Nedunchelian, Anna University, India.

(2) Anthony Spiteri Staines, University of Malta, Malta.
Complete Peer review History: http://www.sdiarticle3.com/review-history/47900

Received 12 January 2019
Accepted 27 March 2019
Published 06 April 2019

ABSTRACT

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems in
this class are typically concerned with selecting from a set of given items, each with a specified
weight and value, a subset of items whose weight sum does not exceed a prescribed capacity and
whose value is maximum. The classical 0-1 Knapsack Problem arises when there is one knapsack
and one item of each type. This paper considers the application of classical 0-1 knapsack problem
with a single constraint to computer memory management. The goal is to achieve higher efficiency
with memory management in computer systems.
This study focuses on using simulated annealing and genetic algorithm for the solution of knapsack
problems in optimizing computer memory. It is shown that Simulated Annealing performs better
than the Genetic Algorithm for large number of processes.

Keywords: Knapsack; memory management; genetic algorithm; simulated annealing.

Original Research Article

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

2

1. INTRODUCTION

A great variety of practical problems can be
represented by a set of entities, each having an
associated value, from which one or more
subsets has to be selected in such a way that the
sum of the values of the selected entities is
maximized, and some predefined conditions are
respected. The most common condition is
obtained by also associating a weight to each
entity and establishing that the sum of the entity
sizes in each subset does not exceed some
prefixed bound. These problems are generally
called knapsack problems, since they recall the
situation of a traveler having to fill up his
knapsack by selecting from among various
possible objects those which will give him the
maximum comfort. One such problem is in
computer memory management.

Modern computer memory management is for
some causes a crucial element of assembling
current large applications. First, in large
applications, space can be a problem and some
technology are efficiently needed to return
unused space to the program. Secondly, inexpert
implementations can result in extremely
unproductive programs since memory
management takes a momentous portion of total
program execution time and finally, memory
errors become rampant, such that it is extremely
difficult to find programs when accessing freed
memory cells. It is much secured to build more
unfailing memory management into design even
though complicated tools exist for revealing a
variety of memory faults. It is for this basis that
efficient schemes are needed to manage
allocating and freeing of memory by programs.

Optimizing current memory management
strategies strength is performed by altering the
space allocated to each task. To achieve high
levels of multiprogramming while avoiding
thrashing such policies vary the load (i.e., the
number of active tasks). Additionally, in a system
that runs out of capacity probably because the
system is undersized, several options are
available. This option includes either upgrading
the processor (if possible), reduce available
functionality, or optimize.

A great deal of realistic problems where some
predefined conditions are respected such that
the sum of the values of the selected entities is
maximized can be represented by a set of
entities, each having an associated value, from
which one or more subsets has to be selected.

The most ordinary situation is obtained by
establishing that the sum of the entity sizes in
each subset does not exceed some prefixed
bound by associating a weight/size to each
entity.

The goal of this paper is to maximize the number
of processes in a limited memory space.

2. LITERATURE REVIEW

Knapsack problems have been studied
intensively in the past decade attracting both
theorist and practitioners. The theoretical interest
arises mainly from their simple structure which
both allows exploitation of a number of
combinational properties and permits more
complex optimization problems to be solved
through a series of knapsack type. From a
practical point of view, these problems can model
many industrial applications, the most classical
applications being capital budgets, cargo loading
and cutting stock. In this section a review of
literature on knapsack problems and applications
is presented.

The knapsack problem (KP) is a traditional
combinatorial issue used to show numerous
modern circumstances. ―Since Balas and
Zemel a dozen years ago introduced the so-
called core problem as an efficient way of solving
the Knapsack Problem, all the most successful
algorithms have been based on this idea. All
knapsack Problems belong to the family of NP-
hard problems, meaning that it is very unlikely
that polynomial algorithms for these problems
can be devised [1].

The Knapsack problem has been concentrated
on for over a century with prior work dating as far
back as 1897. ―It is not known how the name
Knapsack originated though the problem was
referred to as such in early work of
mathematician Tobias Dantzig suggesting that
the name could have existed in folklore before
mathematical problem has been fully defined [2].

Heuristic algorithms experienced in literature that
can generally be named as population heuristics
include; ―genetic algorithms, hybrid genetic
algorithms, mimetic algorithms, scatter-search
algorithms and bionomic algorithms. Among
these, Genetic Algorithms have risen as a
dominant latest search paradigm [3].

Genetic Algorithms (GA) are PC algorithms that
hunt down fine solutions to a problem from

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

3

among countless solutions. They are versatile
heuristic search algorithm in view of the
evolutionary thoughts of natural selection and
hereditary qualities. “These computational
paradigms were inspired by the mechanics of
natural evolution, including survival of the fittest,
reproduction, and mutation. This algorithm is an
intelligent exploitation of random search used in
optimisation problems” [4].

Bortfeldt and Gehring presented a hybrid genetic
algorithm (GA) for the container packing problem
with boxes of unlike sizes and one container for
stacking. Generated stowage plans include
several vertical layers each containing several
boxes. Within the procedure, stowage plans were
represented by complex data structures closely
related to the problem. To generate offspring,
specific genetic operators were used that are
based on an integrated greedy heuristic [5].

GAs often calls for the creation and assessment
of lots of dissimilar children. However, GAs are
capable of generating high-quality solutions to
many problems within reasonable computation
times [6,7,8,9]. Additionally, while performing
search in large state-space or multi-modal state-
space, or n-dimensional surface, a genetic
algorithm offers significant benefits over many
other typical search optimisation techniques like
linear programming, heuristic, depth-first, breath-
first.

Proposed in [10], simulated annealing maintain a
temperature variable to create heating process.
The temperature is earlier set high and after that
allows to gradually "cool" as the algorithm runs.
While this temperature variable is high the
algorithm will be permitted, with more recurrence,
to accept solutions that are more awful than the
present solution. This gives the algorithm the
capacity to hop out of any local optimums it
discovers itself on early on in execution. As the
temperature is decreased so is the possibility of
tolerating more awful solution, thus permitting the
algorithm gradually focusing on a zone of the
search space in which ideally, a near ideal
solution can be found.

Simoes and Costa [11] performed an empirical
study and evaluated the exploits of the
transposition A-based Genetic Algorithm (GA)
and the classical GA for solving the 0/1 knapsack
problem. Obtained results showed that, just
like in the domain of the function
optimization, transposition is always superior to
crossover.

Eager about making use of a easy heuristic
scheme (simple flip) for answering the knapsack
problems, [12] offered a study work on the
application of usual zero-1 knapsack trouble with
a single limitation to determination of television
ads at significant time such as prime time news,
news adjacencies, breaking news and peak
times.

Martello et al. [13] presented a new algorithm for
the optimal solution of the 0-1

Knapsack

problem, which is particularly effective for large-
size problems. The algorithm is based on
determination of an appropriate

small subset of

items and the solution of the corresponding "core
problem": from this they derived a heuristic
solution for

the original problem which, with high

probability, can be proved to be optimal. The
algorithm incorporated a new method of
computation of upper bounds and efficient
implementations of reduction procedures.

Huttler and Mastrolilli [14] addressed the
classical knapsack problem and a variant in
which an upper bound is imposed on the number
of items that can be selected. It was shown that
appropriate combinations of rounding techniques
yield novel and more powerful ways of rounding.
Moreover, they presented a linear-storage
polynomial time approximation scheme (PTAS)
and a fully polynomial time approximation
scheme (FPTAS) that compute an approximate
solution, of any fixed accuracy, in linear time.
These linear complexity bounds give a
substantial improvement of the best previously
known polynomial bounds.

Hanafi and Freville [15] described a new
approach to tabu search (TS) based on strategic
oscillation and surrogate constraint information
that provides a balance between intensification
and diversification strategies. New rules needed
to control the oscillation process are given for the
0 /1 multidimensional knapsack (0/1 MKP).
Based on a portfolio of test problems from the
literature, our method obtains solutions whose
quality is at least as good as the best solutions
obtained by previous methods, especially with
large scale instances. These encouraging results
confirm the efficiency of the tunneling concept
coupled with surrogate information when
resource constraints are present.

Rinnooy et al. [16] proposed a class of
generalized greedy algorithms is for the solution
of the multi-knapsack problem. Items are
selected according to decreasing ratios of their

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

4

profit and a weighted sum of their requirement
coefficients. The solution obtained depended on
the choice of the weights. A geometrical
representation of the method was given and the
relation to the dual of the linear programming
relaxation of multi-knapsack is exploited. They
investigated the complexity of computing a set of
weights that gives the maximum greedy solution
value. Finally, the heuristics were subjected to
both a worst-case and a probabilistic
performance analysis.

Balachandar and Kannan [17] presented a
heuristic to solve the 0/1 multi-constrained
knapsack problem (0/1 MKP) which is NP-hard.
In this heuristic the dominance property of the
constraints is exploited to reduce the search
space to find near optimal solutions of 0/1 MKP.
This heuristic was tested for 10 benchmark
problems of sizes up to 105 and for seven
classical problems of sizes up to 500, taken from
the literature and the results were compared with
optimum solutions. Space and computational
complexity of solving 0/1 MKP using this
approach were also presented. The encouraging
results especially for relatively large size test
problems indicate that this heuristic can
successfully be used for finding good solutions
for highly constrained NP-hard problems.

Elhedhli [18] considered a class of nonlinear
knapsack problems with applications in service
systems design and facility location problems
with congestion. They provided two linearizations
and their respective solution approaches. The
first is solved directly using a commercial solver.
The second is a piecewise linearization that is
solved by a cutting plane method.

Devyaterikova et al. [19] presented discrete
production planning problem which may be
formulated as the multidimensional knapsack
problem is considered, while resource quantities
of the problem are supposed to be given as
intervals. An approach for solving this problem
based on using its relaxation set is suggested.
Some L-class enumeration algorithms for the
problem are described. Results of computational
experiments were presented.

Chen et al. [20] presented pipeline architectures
for the dynamic programming algorithms for the
knapsack problems. They enabled them to
achieve an optimal speedup using processor
arrays, queues, and memory modules. The
processor arrays can be regarded as pipelines
where the dynamic programming algorithms are
implemented through pipelining.

3. METHODOLOGY

Because of their wide range of applicability,
knapsack problems have known a large number
of variations such as: single and multiple-
constrained knapsacks, knapsacks with
disjunctive constraints, multidimensional
knapsacks, multiple choice knapsacks, single
and multiple objective knapsacks, integer, linear,
non-linear knapsacks, deterministic and
stochastic knapsacks, knapsacks with convex /
concave objective functions, etc.

This is a 0-1 knapsack problem, pure integer
programming with single constraint which forms
a very important class of integer programming.

The 0-1 Knapsack Problem (KP) can be
mathematically formulated through the following
integer linear programming [21].

Maximize � P�x�
�

���
 (1)

Subject to = � �w�x��
�

���
 ≤ c (2)

 x� = 0 or 1, j = 1, … , n

Where, �� refers to the value, or worth of item j,

�� refers to the item j, �� refers to the relative-

weight of item j, with respect to the knapsack and
C refers to the capacity, or weight-constraint of
the knapsack. There exist j = 1,…,n items, and
there is only one knapsack.

The use of two major meta-heuristics
approaches, Genetic algorithm and Simulated
annealing which have been used to solve large
scale problems [22] will be considered in this
paper.

3.1 Simulated Annealing

Simulated annealing (SA) is a local search
algorithm capable of escaping from local optima.
Its case of implementation, convergence
properties and its capability of escaping from
local optima has made it a popular algorithm over
the past decades. Simulated annealing is so
named because of its analogy to the process of
physical annealing with solids in which a
crystalline solid is heated and then allowed to
cool very slowly until it achieves stable state. i.e.
its minimum lattice energy state and thus is free
of crystal effects. Simulated annealing mimics
this type of thermodynamic behavior in searching
for global optima for discrete optimization
problems (DOP) [23].

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

5

To formally describe simulated annealing
algorithm for KP, some definitions are needed.
Let Ω be the solution space: Define η(ω) to be
the neighborhood function for w ∈ Ω. Simulated
annealing starts with an initial solution ω ∈ Ω. A
neighborhood solution ω1 ∈ η(ω) is then
generated randomly in most cases. Simulated
annealing is based on the Metropolis acceptance
criterion, which models how a thermodynamic
system moves from its current solution ω ∈ Ω to
a candidate solution �� ∈ �(�) in which the
energy content is being minimized. The
candidate solution ω

1
is accepted as the current

solution based on the acceptance probability.
In this survey, finite-time implementations of
simulated annealing algorithm are considered,
which can no longer guarantee to find an optimal
solution, but may result in faster executions
without losing too much on the solution quality.
Simulated annealing algorithm with static cooling
schedule [24] for KP is outlined in pseudo-code.

1 Select an initial solution ω =(ϰ1,…, ϰn)∈

Ω; an initial temperature t = t0;
2 control parameter value α ; final

temperature e; a repetition schedule,
M that defines the number of iterations
executed at each temperature;

3 Incumbent solution ← f(ω);
4 Repeat;
5 Set repetition counter m = 0;
6 Repeat;
7 Select an integer i from the set {1,2, … , n} randomly:
8 If x� = 0, pick up item i, i. e. set x� = 1,

obtain new solution ω1 then
9 while solution ω1 is infeasible, do
10 drop another item from ω randomly;

denote the new solution as ω1
11 let Δ = f(ω1) − f(ω)

12 while Δ ≥ 0 or Random (0,1) < eΔ �⁄ do ω
← ω1

13 Else
14 drop item i and pick another item randomly, get new solution ω1
15 let Δ = f(ω1) − f(ω)
16 while Δ ≥ 0 or Random (0,1) <

eΔ �⁄ do ω ← ω1
17 End If
18 If incumbent solution <

 �(ω), Incumbent solution ← f(ω)
19 m = m + 1;
20 Until m = M
21 set t = a ∗ t;
22 Until t < �

A set of parameters needs to be specified that
govern the convergence of the algorithm, i.e.

initial temperature �� , temperature control
parameter �, final temperature ℯ, and Markov
chain length M, in order to study the finite-time
performance of simulated annealing algorithm.
Here to should be the maximal difference in cost
between any two neighboring solutions [24].

The parameters used for the Simulated
Annealing are:

Cooling factor: 0.98
Termination Temperature: 0.2
Initial Temperature: 100
Neighbor Sampling Size: 350

3.2 Genetic Algorithm

A genetic algorithm (GA) can be described as an
“intelligent” probabilistic search algorithm and is
based on the evolutionary process of biological
organisms in nature. During the course of
evolution, natural populations evolve according
to the principles of nature selection and “survival
of the fittest.” Individuals who are most
successful in adapting to their environment will
have a better chance of surviving and
reproducing, while individuals who are less fit will
be eliminated. This means that the genes from
highly fit individuals will spread to an increasing
number of individuals in each successive
generation. The combination of good
characteristics from highly adapted parents may
produce even more fit offspring. In this way,
species evolve to become increasingly better
adapted to the environment [25].

A GA simulates these processes by taking an
initial population of individuals and applying
genetic operators in each reproduction. In
optimization terms, each individual in the
population is encoded into a string or
chromosome that represents a possible solution
to a given problem. The fitness of an individual is
evaluated with respect to a given objective
function. Highly fit individuals or solutions are
given opportunities to reproduce by exchanging
pieces of their genetic information in a crossover
procedure with other highly fit individuals. This
produces new “offspring” solutions (i.e. children)
who share some characteristics taken from both
parents. Mutation is often applied after crossover
by altering some genes in the strings. The
offspring can either replace the whole population
(generational approach) or replace fewer fit
individuals (steady-state approach). This
evaluation-selection-reproduction cycle is
repeated until a satisfactory solution is found.

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

6

The basic steps of a simple GA are shown below
[26]

Step 1: Generate an initial population
Step 2: Evaluate fitness of individuals in the

population

The objective function value (∑ �����
���) equates

to how good a solution is, that is, its fitness.

In general, an initial population is randomly
generated in some way.

Step 3: Repeat

a. Select individuals from the population to be
parents
In the GA world for the KP, parents will be
chosen by binary tournament selection. In
binary tournament selection, two
individuals are randomly selected from the
population. From these two, the individual
with the best fitness is selected to be the
first parent

b. Recombine (mate) parents to produce
children

 In the GA world for the KP, a single child
will be obtained from two parents by
uniform crossover. In uniform crossover
each bit in the child solution is created by:
Repeat for each bit in turn choose one of
the two parents at random set the child bit
equal to the bit in the chosen parent in
one-point crossover, a pint between two
adjacent bits is randomly selected, “cut”
the parents into two segments and create
two children by rejoining the segments.

c. Mutate the children Evaluate fitness of the
children
Mutation corresponds to small changes
that are stochastically applied to the
children mutation can be applied with a
constant probability or with an adaptive
probability that changes over the course of
the algorithm (perhaps in response to the
number of iterations that have passed or in
response to population characteristics).

d. Replace some or all of the population by
the children until

Step 4: You decide to stop whereupon report the
best solution encountered

The parameters used for the Genetic Algorithm
are:

Population Size: 500
Recombination Rate:0.7

Mutation Rate: 0.005
Number of Crossover Points: 3

3.3 Chi-square

To ascertain whether the time taken and memory
sued to obtain a solution is dependent or not on
the number of processes, the chi-square test is
used. The chi-square test of independence is a
statistical test to determine if two or more
classifications of the samples are independent or
not.

The chi-square test is computed with the
following equation [27]

 (3)

Where:

Oi is the cell frequencies actually observed in
category i
Ei is the cell frequencies that would be
expected in category i, if the two tables were
statistically independent
k is the total number of cells or categories

Hypothesis testing is a statistical method that is
used in making statistical decisions using
experimental data. Hypothesis tests are used to
test the validity of a claim that is made about a
population (in this context all data under
consideration). This claim made, in essence, is
called the null hypothesis (H0) and the alternative
hypothesis (H1) is the one considered if the null
hypothesis is concluded to be untrue. For this
paper, the hypothesis is to ascertain whether the
time taken or the memory used to obtain a
solution is dependent on the number of
processes. Therefore, the null hypothesis (H0)
states that no association exists between the two
variables i.e. the variables are statistically
independent and the alternate hypothesis (H1)
states that the two variables are related. In
performing a hypothesis test in statistics, a p-
value helps determine the significance of the
results. The p-value can be estimated using the
chi-square distribution table or using a statistical
package. Before the hypothesis test is
performed, a threshold value is chosen, called
the significance level of the test and is denoted
by .

The p-value is a number always between 0 and 1
and interpreted in the following way:

 A small p-value (≤ 0.05) indicates strong

evidence against the null hypothesis, so

2

2
k

i i

i i

O E

E

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

7

you reject the null hypothesis if the

significance level (0.05) .

 A large p-value (> 0.05) indicates weak
evidence against the null hypothesis, so
you fail to reject the null hypothesis if the

significance level (0.05) .

R (a statistical package) is used to calculate the
chi-square value and p-value using this
pseudocode.

x<=matrix(data)
View(x)
Chisq.test(x)

4. ANALYSIS AND RESULTS

Category A: The computer system with a total of
10 created processes, all with their system
information in figures. The computer memory can
accommodate capacity of 50mb but the total
memory of the process is 56 with a combined
process activity (number of times process is
accessed of 123.

Table 1. Results for category A

 GA SA
No. of Processes Used 9 9
Memory Used 46 46
Number of Times Process Is Accessed 119 119

From Table 1, it could be seen that all three
algorithms provide the same output in terms of all
the parameters under consideration. This means
that both DP, GA and SA.

Category B: The table below shows a computer
system with a total of 50 created processes, all
with their system information in figures. The
computer memory can accommodate capacity of
100mb. but the total memory of the process is
281 with a combined process activity (number of
times process is accessed of 483.

Table 2. Results for category B

 GA SA
No. of Processes Used 25 23
Memory Used 100 100
Number of Times Process Is Accessed 327 328

From Table 2, GA provided a slight advantage of
in terms of the number of process used. Apart
from that all three algorithms provided fairly the
same result.

Category C: The table below shows a computer
system with a total of 100 created processes, all

with their system information in figures. The
computer memory can accommodate capacity of
300mb. but the total memory of the process is
574 with a combined process activity (number of
times process is accessed of 1011.

Table 3. Results for category C

 GA SA
No. of Processes Used 61 62
Memory Used 300 300
Number of Times Process Is Accessed 815 803

Table 3 shows that DP provides a better result
than the rest. All memory needed was utilized
showing efficient use of memory available.

Category D: The table below shows a computer
system with a total of 500 created processes, all
with their system information in figures. The
computer memory can accommodate capacity of
1000mb. but the total memory of the process is
2661 with a combined process activity (number
of times process is accessed of 5287.

Table 4. Results for category D

 GA SA
No. of processes used 258 252
Memory used 1000 1000
Number of times process is
accessed

3551 3431

Category E: The table below shows a computer
system with a total of 1000 created processes, all
with their system information in figures. The
computer memory can accommodate capacity of
5000mb. but the total memory of the process is
5626 with a combined process activity (number
of times process is accessed of 10480).

Table 5. Results for category E

 GA SA
No. of Processes Used 915 916
Memory Used 5000 5000
Number of Times Process Is
Accessed

10299 10307

GA and SA provide fairly the same results in
Tables 4 and 5.

The main criteria in evaluating the efficiency of
an algorithm is time and space. Even though in
terms of results the three algorithms provided
similar results, their efficiency will be determined
based on the time it took to produce the results

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

8

and the amount of memory resource it took on
the computer.

Table 6. Results for based on time taken

TIME (ms)
No. of process GA SA
10 436 60
50 323 52
100 385 87
500 1374 300
1000 2338 554

Fig. 1. Results for based on time taken

From Table 6 and Fig. 1, It is seen that GA took
more time in giving an optimum out than SA for
larger number of processes. As the number of
processes increases, time taken increases
exponentially for GA as compared to SA.

Also the GA also used more memory utilization
for than SA from Table 7 and Fig. 2. The GA
outperformed the Sa only when the number of
processes.

Using the chi-square test on Table 6, the null and
alternate hypothesis are defined as follows:

H0: Time taken to obtain a solution is
independent of number of processes.

H1: Time taken to obtain a solution is not
independent of number of processes.

The chi-square statistic (χ

2
)= 18.7547.

The p-value is 0.000878.

Since the p-value of 0.000878 is less than the
significance level of 0.05, the null hypothesis(H0)
which stated that the time taken to obtain a

solution is independent of number of processes
is rejected. This implies that number of
processes is dependent on the time taken to
obtain a solution

Table 7. Results for based on memory taken

Memory (byte)

No. of process GA SA
10 28880312 42511800
50 92815928 45555312
100 100774992 73927720
500 210273904 117057112
1000 233449048 210256440

Fig. 2. Results for based on memory taken

Using the chi-square test on Table 7, the null and
alternate hypothesis are also defined as follows:

H0: Memory used in obtaining a solution is
independent of number of processes.

H1: Memory used in obtaining a solution is not
independent of number of processes.

The chi-square statistic (χ2
)= 22.8798

The p-value is 0.000134.

Since the p-value of 0.000134 is less than the
significance level of 0.05, the null hypothesis is
also rejected here. This implies that memory
used to obtain a solution is dependent on the
number of processes.

5. CONCLUSION AND RECOMMENDA-

TIONS

This paper showed that memory optimization as
well as knapsack problem can be successfully

0

500

1000

1500

2000

2500

10 50 100 500 1000

Ti
m

e(
m

s)

No of Processes

TIME TAKEN

GA

SA

0

50000000

100000000

150000000

200000000

250000000

10 50 100 500 1000

M
em

o
ry

(b
yt

es
)

No. of Processes

MEMORY TAKEN

GA SA

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

9

solved using heuristic algorithms. In this paper,
meta-heuristic algorithms i.e. simulated
annealing and genetic algorithm were testes
compared for their efficiency in optimizing
memory. From Fig. 2, it can be seen that with
increase in number of processes, experiments
with simulated annealing gives better result than
the Genetic Algorithm in terms of both time-taken
to obtain a solution and memory taken. From the
analysis, it can be seen that for smaller number
of processes the GA and SA performance are
identical but as the number of processes
increases, SA performs better than GA.
Therefore, it is concluded that, the most efficient
algorithm in knapsack optimizing among the two
for large number of processes is Simulated
Annealing.

Notwithstanding it extensive use, both SA and
GA have their limitations. For SA, If the starting
temperature is very high, the search will be a
random local search for a period of time i.e.
accepting all neighbors during the initial phase of
the algorithm. Also, In the SA algorithm, the
temperature is decreased gradually. If the
temperature is decreased slowly, better solutions
are obtained but with a more significant
computation time. For GA, if reproduction fails to
produce good chromosomes then convergence
in the right direction is not possible.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Pisinger D. Core problems in knapsack
algorithms. Operations Research. 1999;
47(4):570-575.

2. Kellerer H, Pferschy U, Pisinger D.
Knapsack problems. Springer, Berlin
Heidelberg; 2004.

3. Chu PC, Beasley JE. A genetic algorithm
for multidimensional knapsack problem.
Journal of Heuristics. 1998;4(4):63-68.

4. Sinapova L. An introduction to algorithms.
Simpson College, Department of Computer
Science 701 North C Street, Indianola IA
50125; 2014.

5. Bortfeldt A, Gehring H. A hybrid genetic
algorithm for the container loading problem
[J]. European Journal of Operational
Research. 2001;131(1):143-161.

6. Beasley JE, Chu PC. A genetic algorithm
for the set covering problem. European
Journal of Operations Research. 1996;
94(2):392-404.

7. Chu PC, Beasley JE. A genetic algorithm
for generalized assignment problem.
Computer and Operations Research 1997;
24(1):17-23.

8. Chu PC, Beasley JE. A genetic algorithm
for multidimensional knapsack problem.
Journal of Heuristics. 1998;4(1):63-86.

9. Chang JT, Meade N, Beasley JE, Sharaiha
YM. Heuristics for cardinality constrained
portfolio optimization. Computer and
Operations Research. 1999;27(2000):
1271-1302.

10. Kirkpatrick S, Gelett CD, Vecchi MP.
Optimization by simulated annealing.
Science. 1983;621-630.

11. Simoes A, Costa E. Using genetic
algorithm with asexual transposition.
Proceedings of the genetic and evolutional
computation conference. 2001;323-330.

12. Amponsah SK, Oppong EO, Agyeman E.
Optimal television adverts selection, case
study: Ghana Television (GTV). Research
Journal of Information Technology. 2011;
3(1):49-54.

13. Martello S, Pisinger D, Toth P. New trends
in exact algorithms for the 0–1 knapsack
problem. European Journal of Operations
Research. 2000;123:325-332.

14. Mastrolilli M, Huttler M. Hybrid rounding
techniques for knapsack problems. Journal
of discrete applied mathematics. 2006;
154(4):640-649.

15. Hanafi S, Freville A. An efficient tabu
search approach for the 0–1 multi-
dimensional knapsack problem. European
Journal of Operations Research. 1998;
106(2-3):659-675.

16. Rinnooy K, Stougie AHGL, Vercellis C. A
class of generalized greedy algorithms for
the multi-knapsack problem. European
Journal of Operation Research; 1993.

17. Balachandar R, Kannan K. A new
polynomial time algorithm for 0–1 multiple
knapsack problem based on dominant
principles; 2008.
Available:www.sciencedirect.com

18. Elhedhli S. Exact solution of a class of
nonlinear knapsack problems. Operations
Research Letters. 2005;33(6):615-624.

19. Devyaterikova MV, Kolokolov AA, Kolosov
AP. L-class enumeration algorithms for a
discrete production planning problem with

Oppong et al.; AJRCOS, 3(2): 1-10, 2019; Article no.AJRCOS.47900

10

interval resource quantities. Computers &
Operations Research. 2009;36(2):316-324.

20. Chen G, Maw-Sheng Chern, Jin-Hwang
Jang. Pipeline architectures for dynamic
programming algorithms; 1990.
Available:www.sciencedirect.com

21. Hisatoshi S. A generalized knapsack
problem with variable coefficients,
mathematical programming. North-Holland
Publishing Company. 1975;162-176.

22. Asamoah D, Baidoo E, Oppong S,
Optimizing memory using knapsack
algorithm. International Journal of Modern
Education and Computer Science
(IJMECS). 2017;9(5):34-42.

23. Fubin Q, Rui D. Simulated annealing for
the 0/1 multidimensional knapsack

problem, numerical mathematics. A
Journal of Chinese Universities. 2007;
16(4):320-327.

24. Oppong OE. Optimal resource allocation
using knapsack problems: A case study of
television advertisements at GTV. Master’s
Thesis, KNUST; 2009.

25. Djannaty F, Doostdar S. A hybrid genetic
algorithm for the multidimensional
knapsack problem. International Journal of
Contemp. Math. Sciences. 2008;3(9):443–
456.

26. Carr J. An introduction to genetic
algorithms; 2014.

27. McHugh ML. The chi-square test of
independence. Biochemia Medica. 2013;
23(2):143-149.

© 2019 Oppong et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle3.com/review-history/47900

