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ABSTRACT 
 
Blander and Katz give a formula in classical nucleation theory, J = A exp K, for homogeneous 
nucleation (liquid-->gas). Jennings proved that dlnA/dK = 1/6K for all pure liquids by combining two 
theories, taking the limit as polymer concentration-->0. This gives lnA = (1/12)ln(K2) + C, where C is 
the integration constant. The conjecture is that C is a constant for fluids of low molecular weight.  
We used data for 7 sample solvents, and solved for C. The surface tension drops out in C, which 
makes C more accurate, as the surface tension is difficult to get at 0.89Tc, the limit of superheat. Tc 
= critical point in Kelvin. All quantities are evaluated at the limit of superheat, which is approximately 
0.89Tc for solvents. C = 74.77 ± 0.33 for the 7 solvents (not all alkanes). This eliminates the 
prefactor A, streamlining J: ln J = (1/12)ln(K

2
) + 74.77 + K is the exact new equation.  A computer 

can more easily be used to calculate J, the nucleation rate. 
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NOMENCLATURES 
 
a : Surface area of solvent molecule; 
A : Prefactor; 
B : Coefficient; 
C : Constant of integration; 
d : Density of liquid; 
J : Nucleation rate; 
k : Boltzmann constant; 
K : Exponent; 
M : Molecular weight of liquid; 
MWi : Molecular weight: solvent 1, polymer 2; 
Pe : Equilibrium vapor pressure; 

PL : Ambient pressure; 

PV : Vapor pressure; 

T : Temperature Kelvin; 

Tc :
 
Critical temperature in Kelvin; 

w : Weight fraction polymer; 

δ : Poynting correction factor; 

ΔT : Rise in superheat in Centigrade; 

σ : Surface tension; 
 
1. INTRODUCTION 
 
In the late 1800s, Josiah Willard Gibbs had the 
idea that there's a trade-off between lowering 
energy and maximizing entropy where clusters of 
a new phase appear driven by the increase in 
temperature to overcome the barrier to forming a 
new phase. In 1942, Flory and Huggins made a 
theory for the mixing of polymer and solvent 
based on a lattice model. This paper shows how 
they join in a new way. 
 
Over the years since Gibbs, homogeneous 
nucleation has been studied and developed into 
an exact theory that gives a well-defined 
nucleation rate with a prefactor multiplied by an 
exponential term. The prefactor slowly varies 
with rising temperature and in this paper, the 
author presents an exact derivation supported by 
data that allows for elimination of the prefactor. 

 
2. THEORY 
 
Later on, these two trains of thought developed 
into 1) modern classical  nucleation theory (CNT) 
as put forth by Blander and Katz [1] and 2) the 
model for surface tension of polymer solutions 
(STPS) refined by Siow and Patterson [2]. In 
2012, Jennings combined the CNT/STPS 
equations and that later led to equation (19) in 
Jennings [3], here as (1), a general formula for 
bubble nucleation in polymer solutions. The data 
for (1) are presented in graphical form in 
Jennings and Middleman [4]. 

ΔT = 3kT2wMW1/σaMW2
                             (1) 

 
Blander and Katz’s (15) is the abbreviated 
formula (2) here for the nucleation rate, J, 
discussed in Appendix 1. 
 

J = AexpK bubbles/cc-sec                           (2) 

 
Jennings [5], proved in (11) there, essentially that  

 
dlnA/dK=1/6K                                              (3) 

 
for all pure liquids by combining the CNT/SPTS 
theories and then taking the limit as polymer 
concentration-->0.  See Appendix 2 for an outline 
of the 2012 proof for Eq. (3), which is the 
precursor to Eq. (1).  The solution to Eq. (3) is 

 
lnA=(1/12)ln(K

2
)+C                                      (4) 

 
where C is the integration constant.  Notice K is 
squared because K is a negative number.  C is a 
pure number, the same for 7 fluids, as equation 
(3) is general. 

 
3. METHODOLOGY 
 
In the early 1980s, Jennings and Middleman 
collected data on liquid---->gas nucleation as 
affected by presence of polymer. In 2012, 
Jennings made a foray into a theoretical 
treatment that predicts the early 1980s data quite 
well. In Jennings’ [5] paper is contained the 
starting equation for this work, more clearly laid 
out in Appendix 2. This is Eq. (3), a truly exact 
formula, which has a well-defined integration 
constant, putting the whole theory on solid 
ground. 

 
The pre-exponential factor, PEF, has been 
studied and was derived years ago. There is a 
paper by Shiau [6], where the temperature 
dependence of the PEF was investigated. Eq. (3) 
is the precursor to Eq. (1). Bovey and Winslow [7] 
give an exact equation for boiling point elevation 
due to addition of polymer, where the heat of 
vaporization appears in denominator instead of 
the surface tension, but otherwise that equation 
is similar to Eq. (18) in [5]. 
 

4. RESULTS AND DISCUSSION 
 
The reason for undertaking this work was when 
we noticed that the integration constant varied 
little among different solvents. This is interesting 
because: 1) equation (3) is mathematically 
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correct and exact for pure liquids and 2) the 
integration constant C should be a universal 
constant as long as BLANDER / KATZ’s equation 
(2) holds. This is true as long as the Poynting 
correction is valid, that is, the vapor pressure of 
the solvent is appreciably greater than the 
ambient pressure. Remember, equation (2) is 
evaluated only at the limit of superheat for all 
quantities because Blander/Katz’sformula is to 
give the limit of superheat for liquids The novelty 
of this study is that a strange formula, equation 
(4), gives a novel new constant in physical 
chemistry, based on (15) in BLANDER / KATZ’s 
highly cited paper. 
 
C was then evaluated with data at the limit of 
superheat for seven common solvents, inserting 
the data in (4) and solving for C. The surface 
tension cancels out in (4) and this is fortunate, as 
the surface tension is hard to estimate at 0.89 of 
the critical temperature, where the limit of 
superheat is. 
 
Notice there is little scatter, C = 74.77 ± 0.33. 
Some of the solvents are alkanes and others are 
not. It appears that C is a constant for low MW 
solvents. 
 
Amazingly, this investigation actually 
ELIMINATES the prefactor A and streamlines 
Blander/Katz’s formula for CNT. ln J becomes 
simply: 
 
See Appendix 1 for Blander and Katz's exact 
expression for J and details on the workup of the 
data. See Appendix 2 for derivation of Eq. (3), 
the starting equation. 
 

Data 

Solvent   C Superheat 
limit 
(Kelvin) 

Molecular 
weight 
(g/mol) 

cyclohexane 74.82 492.75 84.16 

hexane 74.60 457.15 86.18 

carbon 
tetrachloride 

74.79 495.06 153.82 

pentane 74.84 420.95 72.15 

cyclopentane 75.11 456.95 70.14 

heptane 74.10 487.15 100.21 

benzene 75.14 498.45 78.12 

 
ln J = (1/12)ln(K

2
) + 74.77 + K                     (5) 

Since here, the nucleation rate J is solely a 
function of K, a computer can more easily 
calculate the nucleation rate. 
 

5. CONCLUSIONS 
 
These results bear out that C is a strange new 
universal constant, which should be true for 
solvents of low molecular weight.  Again, it needs 
to be borne in mind that the surface tension is 
hard to determine up at the limit of superheat, so 
this study is not concerned with calculation of the 
nucleation rate, but it is shown here that the 
prefactor in classical nucleation theory for liquid--
->gas has been eliminated. 
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APPENDIX 1 
 
1) J = A exp K 
 

J ≈ 3.73 x 1035 (d2 σ / M3 B)1/2 exp [ - 1.182 x105 σ3 / (T (PV - PL)
2)] 

 
A is the prefactor and K is the exponent, according to this detailed equation (15) in Blander/Katz. 
 
2) There is a Poynting correction, δ, where 
 
δ  ≈  ( PV - PL) / ( Pe - PL) 

 
B is close to 2/3.  δ and B are discussed in Blander/Katz. 
 
3) In the detailed expression for J (bubbles/cc-sec) above, the other units are as follows: Pe 
(equilibrium vapor pressure), PV (vapor pressure) and PL (ambient pressure) are all in atmospheres; 

T is the limit of superheat for the solvent (Kelvin); σ is the surface tension (dynes/cm); in the prefactor, 
M is the molecular weight of solvent (g/mole); and d is its density (g/cc). All quantities are at the limit 
of superheat for each solvent. 
 
4) Sources for the data were CRC Handbook, JASPER, ANTOINE EQUATION (Iran Website), 
 
BLANDER/KATZ and various Internet websites for densities. However, the density of cyclopentane 
was estimated and also the limit of superheat of carbon tetrachloride was estimated.  Admittedly, this 
is a bit imprecise, but the mathematics dictates that C is a pure number. 
 

APPENDIX 2 
 
Proof of dlnA/dK = 1/(6K) for all pure liquids J = A exp K from Blander and Katz classical nucleation 
theory liquid→gas. 
 
The starting equations are from  
 
1) Blander and Katz (Z) and 2) Siow and Patterson (A), (B) and (C). 
 
See JH Jennings, International Journal of Thermodynamics article, Ref. (5). page 127-128. 
 

J ≈ 3.73 x 10
35 

(d
2 

σ / M
3 

B)
1/2

 exp [ - 1.182 x10
5 

σ
3 

/ (T (PV – PL)
2
)]                                              (Z) 

 
(σ - σ1) a / kT = ln (φ1S / φ1) + ((r -1) / r ) (φ2S - φ2)                                                                                (A) 
 
ln[(φ2S / φ2)

1/ r 
/ ( φ1S / φ1)] = (σ1 - σ2) a / kT                                                                                            (B) 

 
Now, near φ2 = 0, Eq. (B) becomes 
 
φ2S = φ2 exp [ r (σ1 - σ2) a / kT]                                                                                                              (C) 
 
Putting in the numbers, ∂φ2S/∂φ2 ≈ 10-38 for MW2 = 2000, r = 13.4 and even less for higher MW. 
 
First, it is necessary to prove Eq. (11) in Ref. (5). 
 
lim w2-->0  (∂lnA/∂w2)/(∂K/∂w2) = 1/(6K)    
 

A =  3.73 x 10
35 

(d
2 

σ / M
3 

B)
1/2      
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Omitting a few steps, because they are obvious and constants, we have

 
 
 ∂lnA/∂w2 =  (1/d) (∂d/∂w2) + (1/2σ) (∂σ/∂w2) - (1/2B) (∂B/∂w2) 
 
In calculating ∂K/∂w2, we note that ∂T/∂w2 = 0, as T and w2 are orthogonal. 
 
PL is ambient pressure and therefore is constant; δ is the Poynting correction factor. 
 

K = - 1.182 x10
5 

σ
3 

/ (T (PV – PL)
2

) = - 1.182 x10
5 

σ
3 

/ (T (Pe – PL)
2 

δ
2
) 

 

∂K/∂w2  =  - 1.182 x10
5 

(3)σ
2

(∂σ/∂w2)
 
/ (T (Pe – PL)

2 
δ

2
 ) + 

                   

                  1.182 x10
5 

(2) σ
3 

(∂Pe/∂w2) / (T (Pe – PL)
3 

δ2 ) + 
 

                 1.182 x10
5 

(2) σ
3

(∂δ/∂w2)
 
/ (T (Pe – PL)

2 
δ3 )  

 
We prove these four differentials are zero, which simplifies it, page 128 of Ref. (5). 
 
∂δ/∂φ2 = 0, ∂d/∂φ2 = 0, ∂Pe/∂φ2 = 0, and ∂B/∂φ2 = 0 for w2 near 0.  
 
1.  d = d1 + (d2 – d1) φ2S 
 
    ∂d/∂φ2  = (d2 – d1) (∂φ2S/∂φ2), which vanishes for w2 near 0. 
 
2.  Pe = Pe(0) φ1S = Pe(0) (1 - φ2S) 
 
One can see by inspection that here ∂Pe/∂φ2 also vanishes. 
 
3.  B ≈ 1 - 1/3 (1- PL/PV) Here the approximation Pe = Pv is used because this is a very small 
correction and they are close.  Hence, 
 
∂B/∂φ2  =  (-1/3) (-1) ∂/∂φ2  PL/Pe 
      
           =  (1/3)  PL ∂/∂φ2  1/Pe  and this vanishes too. 
 
4.  δ = 1 - dG /d + 0.5 (dG / d)

2 
 and dG = Pe MW1/RTl, 

 
ideal gas and Tl and φ2 are orthogonal.  With a little algebra and using the previous  results it is readily 
seen that ∂δ/∂φ2 also vanishes. 
 
Next, examining Eqs. (16) and (18) on page 129 we realize that: 
 
∂φ2 = (d1/d2) ∂w2  

 
The solvent and polymer are incompressible, so d1 and d2 are taken as constant. 
 
Finally, using the fact that the four differential quantities are zero gives: 
 
lim w2→0 ∂lnA/∂w2 =  (1/2σ) (∂σ/∂w2) and simultaneously, 
 

lim w2→0 ∂K/∂w2  = - 1.182 x10
5 

(3)σ
2
(∂σ/∂w2)

 
/ (T (Pe – PL)

2 
δ

2
 ) 

 



 
 
 
 

Jennings; CSIJ, 28(3): 1-6, 2019; Article no.CSIJ.52902 
 
 

 
6 
 

 
Therefore, their ratio becomes: 
 
lim w2→0 (∂lnA/∂w2)/(∂K/∂w2) = 1/(6K) 
 
This is all only as polymer concentration approaches zero, or pure liquid. 
 
So, we have the starting equation with an integration constant that was calculated for seven different 
low molecular weight solvents. 
 
dlnA/dK = 1/(6K) 
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