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ABSTRACT 
 

Substrates used in perovskite solar cells as front contact are usually transparent conductive oxide 
(TCO) to allow light to pass through the device. The dominating TCO employed in perovskite solar 
cells are indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO). However, it is imperative 
to investigate alternative TCOs due to the scarcity of indium metal, relatively low electrical 
conductivity and high leakage current in ITO and FTO. In this study, simulation has been carried 
out using Solar Capacitance Simulator (SCAPS) to investigate the efficiency of methyl-ammonium 
tin iodide (CH3NH3SnI3) based solar cells including various TCOs such as boron-doped zinc oxide 
(BZO), molybdenum trioxide (MoO3) and zinc oxide (ZnO). TCO parameters such as thickness, 
donor concentration and operating temperature were varied to study their influence on device 
performance. The best device performance was achieved using MoO3 with power conversion 
efficiency of 25.83 % and Jsc, Voc and FF of 32.44 mA/cm2, 0.979 V and 81.38 % respectively. The 
work shows the potential of fabricating an improved CH3NH3SnI3 perovskite solar cell with MoO3 as 
front contact. 
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1. INTRODUCTION 
 
It is imperative to investigate an alternative 
energy source due to the rising of global warming 
caused by burning fossil fuels. The sun is the 
ultimate source of the most of the energy on 
earth. The quantity of solar radiation received by 
the earth in an hour is about equal to the total 
energy consumed by man on earth in one year 
[1]. Garnering the solar energy produced by the 
sun is a fundamental approach to attain 
environmentally friendly energy by direct 
conversion of sunlight into electricity using a 
device called solar cell. 
 
Recently, organic- inorganic halide perovskites 
have been reported as a new material for an 
efficient solar cells. These new materials have 
totally changed photovoltaic field into the third 
generation solar cells. The Organic-inorganic 
halide perovskite solar cells have shown 
excellent performance from initial power 
conversion efficiency (PCE) of 3.8 % [2] to about 
25.2 % [3]. This remarkable performance is 
attained due to superior properties of organic-
inorganic halide perovskite; 1. High absorption 
co-efficient 2. High charge carrier mobility 3. 
Long diffusion length, 4. Direct and tunable band 
gap and 5. Simple methods of fabrication [4,5]. 
Transparent conductive oxide (TCO) with high 
transmittance and high conductivity has been 
regularly used as an essential component in 

perovskite solar cells. TCOs are optically 
transparent and electrically conductive materials. 
TCO must possesses a band gap ≥ 3.1 eV [6]. It 
was reported that TCO with high band gap 
transmit about 80 % of visible light [7-9].The 
materials that are commonly used as a TCO in 
perovskite solar cells are indium-doped tin oxide 
(ITO) and fluorine-doped tin oxide (FTO) due to 
their high transparency and low resistivity [10-
16]. However, indium metal being rare and toxic 
led to the material becoming expensive and 
environmentally-unfriendly [17-21]. Furthermore, 
FTO was reported to have relatively low electrical 
conductivity and rigid to patterning by wet 
etching, and high leakage current [22]. 

 
To further explore an alternative TCO, this study 
investigated the role of boron-doped zinc oxide 
(BZO), Zinc Oxide (ZnO) and Molybdenum 
trioxide (MoO3) as TCO in CH3NH3SNI3 
perovskite solar cells using SCAPS. To obtain 
the optimum device performance, thickness, 
defect density, donor density and working 
temperature were varied for the three different 
TCOs. The schematic device structure is 
presented in Fig. 1.  

 
In this work, the effect of variation of thickness, 
defect density, donor density and working 
temperature of various TCOs on the performance 
of CH3NH3SnI3 perovskite solar cells were 
investigated. 

 
 
 
    
 
 
 
 
              
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Schematic presentation of tin-based perovskite solar cells 
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2. MATERIALS AND NUMERICAL METHOD 
 
2.1 Materials 
 
The materials used are TCO (BZO, ZnO and 
MoO3) act as front contact, TiO2 as Electron 
Transporting Material (ETM), methyl-ammonium 
tin iodide (CH3NH3SnI3) as light absorbing layer, 
spiro-OMeTAD as Hole Transporting Material 
(HTM), Gold (Au) as back contact and SCAPS 
simulating software. The simulation parameters 
of those layers were obtained from previous 
literature [23–35] and were tabulated in Table 1. 
The data can be used to investigate the influence 
of other factors such as series and shunt 
resistance, defect density etc on the performance 
of the tin-based perovskite solar cells in planar 
configuration. 
 

2.2 Numerical Method 
 
In this study, the numerical simulation was 
conducted using SCAPS (SCAPS 3.3.10 version) 
software under AM1.5G solar illumination with an 
incident power density of 1000 W/cm2, 
temperature 300 K, work point bias 0 V, 

frequency of 1.0 𝑋 106 𝐻𝑧  and the input 
parameters listed in Table 1. SCAPS is a one 
dimensional solar cell simulation program 
developed at the department of Electronics and 
Information Systems (ELIS) of the University of 
Gent, Belgium [36]. The J-V characteristics can 
be obtained by solving the fundamental 

semiconductor equations: the Poisson equations, 
the continuity equations for electrons and holes, 
and carrier transport [37]. The simulation step by 
step procedure is shown in Fig. 2. 

 

3. RESULTS AND DISCUSSION 
 
3.1 Effect of TCO on the Device 

Performance 
 
The photovoltaic parameters obtained for the 
perovskite solar cells with the three different 
TCOs (BZO, ZnO, and MoO3) are presented in 
Table 2 and the simulated J-V curves are plotted 
in Fig. 3. From Table 2, it can be seen that the 
device with the MoO3 exhibits the highest PCE 
while the device with the ZnO acquires the 
lowest PCE. This shows that the undoped-ZnO 
has low electrical conductivity to be used as 
TCO. Therefore, the impurity-doped ZnO is more 
appropriate for TCO which is in line with the 
findings of [38]. The device performance with the 
BZO is also acceptable. The highest 
performance was achieved using MoO3 with 
photovoltaic parameters; 0.979 V, 32.44 mA/cm2, 
81.38 % and 25.83 % for Voc, Jsc, FF, and PCE 
respectively. This indicates that high bandgap 
enables the transparent conductive oxide to 
transmit 80 % or more of visible light which has 
also been reported by [7-9]. The results obtained 
also show that MoO3 has high ability than doped 
and undoped-zinc oxide in allowing light into the 
device. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. SCAPS step by step procedure 
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Table 1. Input parameters for simulation of CH3NH3SNI3 performance 
 

Parameters BZO ZnO MoO3 TiO2 CH3NH3SNI3 Spiro-
OMeTAD 

Thickness 
(nm) 

200 
(varied) 

200 
(varied) 

200 
(varied) 

100  500 200 

Eg (eV) 3.3 3.3 3.8 3.2 1.3 3.0 
Χ (eV) 4.55 4.6 4.1 3.9 4.17 2.45 
Ԑr 9 9 9 9.0 8.2 3.0 
Nc (cm-3) 3 x1018 4 x1018 2.2 x1018 1 x 1021 1 x 1018 1 x 1019 
Nv (cm-3) 1.8x1019 2 x1019 1.8 x1019 2 x 1020 1 x 1018 1 x 1019 
µn (cm2/Vs) 100 100 30 20 1.6 0.0002 
µp (cm2/Vs) 31 25 6 10 1.6 0.0002 
Nd (cm-3) 1020 

(varied) 
1x1017 

(varied) 
1x1017 

(varied) 
1 x 1019 0 0 

Na (cm-3) 0 0 0 0 1 x 1016 1 x 1018 
Nt (cm-3) 1x1014  1x1014  1x1014  1 x 1015 1 x 1015 1 x 1015 
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Fig. 3. Effect of different TCO on the J-V characteristics 

 
Table 2. Photovoltaic parameters obtained using BZO, ZnO and MoO3 as TCO 

 

Parameters BZO MoO3 ZnO 

Voc (V) 0.980 0.979 1.164 
Jsc  (mA/cm2) 32.30 32.44 32.18 
FF (%) 74.68 81.38 45.95 
PCE (%) 23.65 25.83 17.20 

 

3.2 Effect of TCO Thickness on the 
Performance of the Devices 

 

The effect of TCO layer thickness was 
investigated using the numerical simulation. The 
thickness was varied from 300 nm to 900 nm for 
each of the selected TCO and the remaining 
input parameters remain unchanged. Fig. 4 

shows the plotted J-V curves for BZO, MoO3 and 
ZnO respectively. Similarly, the photovoltaic 
parameters obtained for BZO, MoO3 and ZnO 
were tabulated in Table 2 As shown in the Tables 
3 (a,b and c) there is insignificant change in the 
J-V characteristics. Generally, the results show 
that thickness of TCO could not affect the device 
performance.  
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Fig. 4. Effect of TCOs thickness on the J-V characteristics 
 

Table 3(a). Photovoltaic parameters for BZO at different thickness 
 

Thickness (nm) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) 

300 0.981 32.24 74.66 23.60 
500 0.981 32.14 74.64 23.53 
700 0.981 32,06 74.64 23.48 
900 0.981 32.01 74.65 23.44 

 
Table 3(b). Photovoltaic parameters for MoO3 at different thickness 

 

Thickness (nm) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) 

300 0.978 32.44 81.34 25.84 
500 0.978 32.44 81.38 25.83 
700 0.978 32.43 81.38 25.83 
900 0.978 32.43 81.38 25.82 

 
Table 3 (c). Photovoltaic parameters for ZnO at different thickness 

 

Thickness (nm) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) 

300 1.180 32.12 45.95 17.20 
500 1.198 32.03 44.60 17.12 
700 1.208 31.96 44.26 17.08 
900 1.213 31.91 44.06 17.06 
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Fig. 5. Effect of TCOs layer donor density on J-V curves 
 

Table 4(a). Photovoltaic parameters for BZO with different donor density 
 

Parameters 1014 (cm-3) 1016 (cm-3) 1018 (cm-3) 1020 (cm-3) 

Voc (V) 0.987 1.047 1.107 0.980 
Jsc (mA/cm2) 32.10 32.16 32.26 32.30 
FF (%) 62.52 59.11 58.42 74.68 
PCE (%) 19.80 19.89 20.89 23.63 

 
Table 4(b).  Photovoltaic parameters for MoO3 with different donor density 

 

Parameters 1014 (cm-3) 1016 (cm-3) 1018 (cm-3) 1020 (cm-3) 

Voc (V) 0.979 0.979 0.979 0.979 
Jsc (mA/cm2) 32.44 32.44 32.44 32.44 
FF (%) 81.36 81.38 81.38 81.38 
PCE (%) 25.82 25.83 25.83 25.83 

 
Table 4(c). Photovoltaic parameters for ZnO with different donor density 

 

Parameters 1014 (cm-3) 1016 (cm-3) 1018 (cm-3) 1020 (cm-3) 

Voc (V) 1.056 1.120 1.204 1.202 
Jsc (mA/cm2) 32.06 32.11 32.22 32.32 
FF (%) 49.86 47.59 46.10 53.39 
PCE (%) 16.88 16.96 17.88 20.71 
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3.3 Effect of TCO Layer Donor Density 
 

The donor density was varied from 1014 cm-3 to 
1020 cm-3 and the remaining input parameters 
kept constant. The J-V curves for BZO, MoO3, 
and ZnO are plotted in Fig. 5 Similarly, Tables 4 
(a, b,c)  presented the parameters attained for 
BZO, MoO3, and ZnO respectively. As shown in 

Tables 4 (a,c)  the PCE significantly increases as 
the donor density increase. This shows that 
impurity doped-zinc oxide is more suitable to be 
used as TCO because the electrical conductivity 
of undoped-zinc oxide is not sufficient enough to 
serve as TCO which has been suggested by [38].  
Table 3 (b) illustrated that the J-V characteristics 
remains unchanged.  

 

 
 

Fig. 6. Effect of TCOs temperature on the device performance 
 

Table 5 (a). Effect of temperature on the device performance using BZO as a TCO 
 

Parameters 350 K 400 K 450 K 500 K 

Voc (V) 0.907 0.834 0.758 0.680 
Jsc (mA/cm2) 32.32 32.33 32.33 32.31 
FF (%) 78.16 78.33 73.28 69.73 
PCE (%) 22.91 20.57 17.95 15.32 

 

Table 5 (b). Effect of temperature on the device performance using MoO3 as a TCO 
 

Parameters 350 K 400 K 450 K 500 K 

Voc (V) 0.907 0.834 0.758 0.680 
Jsc (mA/cm2) 32.43 32.43 32.42 32.41 
FF (%) 79.14 76.42 73.30 69.73 
PCE (%) 23.29 20.66 18.01 15.38 
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Table 5 (c). Effect of temperature on the device performance using ZnO as a TCO 
 

Parameters 350 K 400 K 450 K 500 K 

Voc (V) 1.043 0.841 0.759 0.680 
Jsc (mA/cm2) 32.25 32.30 32.34 32.37 
FF (%) 50.92 62.37 66.84 67.67 
PCE (%) 17.12 16.94 16.40 14.90 

 

3.4 Effect of Operating Temperature 
 
To study the influence of operating temperature 
on the device performance using three different 
TCO, the operating temperature was varied from 
350 K to 500 K while the remaining input values 
remain constant. Fig. 6 shows the J-V 
characteristics of the perovskite solar cells using 
BZO, MoO3, and ZnO respectively. The 
parameters obtained are tabulated in Tables 5 
(a,b,c). The Tables indicate rapid decrease in 
power conversion efficiencies as the operating 
temperature increases. This might be due to 
decrease in Voc caused by increase in operating 
temperature. It could be observed that there is no 
significant changes in Jsc. This reveals that Jsc is 
independent of operating temperature. Generally, 
the operating temperature has great impact on 
the cell performance. This is confirmed by our 
numerical study. 
 

4. CONCLUSION 
 
In this work, methyl-ammonium tin iodide 
(CH3NH3SNI3) based solar cells including various 
TCOs were successively studied using SCAPS-
1D simulating software. The simulation shows 
the influence of TCO layer thickness, donor 
concentration and operating temperature on the 
device performance.  The simulation results 
revealed that variation of TCO thickness has no 
significance on the device performance. The 
results further show that high donor 
concentration improved the device performance 
using BZO and ZnO and achieved high efficiency 
at 1020 cm-3 while the cell performance remained 
unaffected with varied donor density using MoO3. 
Also, the simulation proved that increase in 
temperature deteriorated the power conversion 
efficiency of the cell. MoO3 exhibited best PCE of 
25.83 % in contrast to BZO and ZnO with PCE of 
23.65 % and 17.20 % respectively. It can be 
concluded that MoO3 is a potential alternative 
TCO layer in perovskite solar cells. 
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