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ABSTRACT 
 

As it is known that General Theory of Relativity does not explain the current acceleration of the 
universe, so there are many attempts to generalize this theory in order to explain the cosmic 
acceleration without introducing some dark components such as the Dark Energy. Because of the 
crowd of models in literature, a need to check the models according to some criteria arises. In this 
study, we analyze two classes of models by means of energy condition restrictions and illustrate 
the analysis of those classes by graphical simulations. We consider the conservative and non-
conservative cases of two classes of 𝑓(𝑅, 𝑇) models to perform the analysis. The results of the 
viability of the classes are discussed and it is found that the value of the Hubble constant has no 
effect on the viability of the models. Focusing on some general classes for the models, we restrict 
them by means of the so-called energy conditions the energy-momentum tensor on physical 
grounds. Besides, we find numerical values for coefficients of those classes of models. 
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1. INTRODUCTION 
 
Among the most interesting pursuits of 
cosmology today are the dark components, 
which are dark energy (DE) and dark matter 
(DM) [1-6]. DE is a mechanism thought to exist in 
addition to the standard matter energy content to 
explain the accelerated expansion process in the 
late time era of the universe, that is, since the 
last four billion years. It is thought that the current 
ingredients of the universe in terms of mass 
energy content, quantitatively, should be 5% 
baryonic matter, 27% dark matter and 68% dark 
energy [7]. Observations such as Type-Ia 
supernova observations, cosmic background 
microwave anomalies, large-scale structure of 
the universe, baryon acoustic oscillations, weak 
lensing indicate cosmic acceleration [8-11]. The 
observational discovery of the advanced 
acceleration of the universe has led to                 
interesting explanations that continue to this    
day. 
 
Instead of making various assumptions about the 
matter energy content on the right side of 
Einstein's Field Equations (EFE), 𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈 , to 

explain the DE and DM issues, as an alternative, 
it was considered to modify Einstein’s gravitation 
theory by changing the geometric part on the left 
side of the equation. These changes are 
generally referred to as corrections to the Theory 
of General Relativity (GR). They are considered 
in two classes as early epoch (ultraviolet 
corrections inspired from the electromagnetic 
spectrum) and late epoch corrections (infrared 
corrections) in terms of phases.  As a result of 
replacing the Ricci scalar 𝑅 with an arbitrary 𝑓(𝑅) 

function in the Einstein-Hilbert action, 𝑆𝐸𝐻 =
1

2𝜅
∫ 𝑅√−𝑔𝑑4𝑥, it is possible to arrive at a new 

theory of gravity, which can be an alternative to 
the GR. It is also possible to obtain new 
gravitational theories by using the curvature 
invariants, which are the combinations of Ricci 
curvature tensor 𝑅𝑎𝑏, Riemann curvature tensor 

𝑅𝑎𝑏𝑐𝑑 , and Weyl tensor 𝐶𝑎𝑏𝑐𝑑 , as arguments of 

the function 𝑓 . The theories 𝑓(𝐺) , 𝑓(𝑅, 𝐺) , 
𝑓(𝑅, 𝑇) , and 𝑓(𝐺, 𝑇) , where the Gauss-Bonnet  

invariant that is defined as 𝐺 = 𝑅2 − 4𝑅𝑎𝑏𝑅𝑎𝑏 +
𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 , and the trace of energy-momentum 

tensor 𝑇 = 𝑔𝑎𝑏𝑇𝑎𝑏  are used, are some of the 
examples. These gravitational theories which are 
established as alternatives to GR are called 
modified gravitational theories [12-18]. In this 
paper, we study two types of 𝑓(𝑅, 𝑇)  gravity 

models and will study some other 𝑓 theories in 
future papers. 

While EFE are quadratic, modified gravity 
theories generally lead to fourth-order differential 
equations. Because of their higher degrees of 
freedom, such theories are mathematically more 
complicated than GR, but they offer much richer 
possibilities when dealing with DE, DM and other 
cosmological issues. Modification of the GR to 
four or more dimensions by using such curvature 
invariants was attempted long before the DE 
issue. The inadequacies of classical GR when it 
comes to strong gravitational fields, on the one 
hand, and the efforts to quantify gravity on the 
other hand, necessitated importing such 
invariants. 
 
In this work, we first obtain the field equations for 
𝑓(𝑅, 𝑇)  models (In fact we reduce the more 
general equations of 𝑓(𝑅, 𝐺, 𝑇)  gravity models 
which we have already obtained [19] and will be 
discussed in upcoming papers). Those field 
equations are introduced for the both 
conservation and non-conservation cases. In 
each case the Lagragian in two choices as 𝐿𝑚 =
𝑝𝑚  and 𝐿𝑚 = −𝜇𝑚  generates a specific set of 
field equations. And, within each choice we 
represent the equations as two different 
interpretations which are called 1st and 2nd 
INTERPRETATIONs. After these general 
discussions we analyze the viability of two sets of 
𝑓(𝑅, 𝑇)  gravity models in the point of view of 
cosmological constraints. We take into account 
two models linear in 𝑅 and vary by different ways 

with respect to 𝑇  such as 𝑓(𝑅, 𝑇) = 𝑅 + 𝐾1 ⋅
ln(−𝑇) and 𝑓(𝑅, 𝑇) = 𝑅 + 𝐾2 ⋅ (−𝑇)𝛾 . The object 
of this work is analysing those models by 
considering the energy conditions and then 
discussing the models to find out the viable 
values for the coefficients, powers and constants. 
 

2. GENERAL DISCUSSIONS 
 

We split the Lagrangian into two interpretations 
as 1st INTERPRETATION and 2nd 
INTERPRETATION, and consider two situations 
of the standard matter as conservation and 
nonconservation cases. In the formulae given 

below 𝑤, 𝑤𝐷𝐸 , Ω𝑚, Ω𝑚
𝑡.𝑒𝑓𝑓

, Ω𝑔, Ω𝑃, Ω𝑃
𝑡.𝑒𝑓𝑓

, 𝑗, 𝑠, 𝐻, 𝑞 

represent state parameter of ordinary matter, 
equation of state of dark energy, ordinary matter 
density parameter, total effective matter density 
parameter, curvature parameter, pressure 
parameter, effective pressure density parameter, 
jerk parameter, snap parameter, Hubble 
parameter and deceleration parameter, 
respectively while ‘0’ in the subscripts denote 
their current values. 𝐹, 𝑟, 𝑔, and 𝑡  represent the 
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dimensionless forms of the function 𝑓  and the 

parameters 𝑅, 𝐺 , and 𝑇 . The dimensionless 

parameters ℜ, Γ  and 𝜏  which are defined in the 
text are also used in the formulae. The subscripts 
denote the derivatives with respect to the 

dimensionless parameters, such as 
𝜕𝐹

𝜕𝑟
≡ 𝐹𝑟 , 

𝜕2𝐹

𝜕𝑟2 ≡ 𝐹𝑟𝑟, and for the current values of them, i.e., 

(
𝜕𝐹

𝜕𝑟
) |𝑡=0 ≡ 𝐹𝑟,0  and so on. Furthermore we 

illustrate derivatives of 𝑅, 𝐺, 𝑇  parameters with 

recpect to time by �̇�, �̇�  and �̇� , while 
dimensionless forms of them are obtained by 

ℜ = (
𝑐2

𝐻2) 𝑅 , ℜ∗ = (
𝑐2

𝐻3) �̇� , ℜ∗∗ = (
𝑐2

𝐻4) �̈� , Γ =

(
𝑐4

𝐻4) 𝐺 , Γ∗ = (
𝑐4

𝐻5) �̇� , Γ∗∗ = (
𝑐4

𝐻6) �̈� , 𝜏 = (
𝜅2𝑐2

3𝐻2 ) 𝑇 , 

𝜏∗ = (
𝜅2𝑐2

3𝐻3 ) �̇�, 𝜏∗∗ = (
𝜅2𝑐2

3𝐻4 ) �̈� where 𝑐 is the speed 

of light, 𝜅2 is the Einstein coupling constant, 𝑅 is 
the Ricci scalar curvature, 𝐺 is the Gauss-Bonnet 

term, 𝑇 is the trace of energy-momentum tensor. 
With the selection of the Lagrange matter density 
as 𝐿𝑚 = 𝑝𝑚 , let us collectively give the general 
formulas;  

 

𝜏0 = (−1 + 3𝑤)Ω𝑚,0                                                                                                                                      (1) 

 

𝜏0
∗ =

−2(1 + 𝑤)[3(3 + 𝐹𝑡,0) + 𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑔,0Γ0

∗]

6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0

𝜏0                                                                            (2) 

 

𝜏0
∗∗ =

−2(1 + 𝑤)

[6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0]
2 {{[−3(1 + 𝑞0)(3 + 𝐹𝑡,0)

+ 3(𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑔,0Γ0

∗ + 𝐹𝑡𝑡,0𝜏0
∗) + (𝐹𝑡𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑡𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑡𝑟𝑡,0ℜ0
∗ 𝜏0

∗)

+ (𝐹𝑡𝑔𝑟,0Γ0
∗ℜ0

∗ + 𝐹𝑡𝑔𝑔,0Γ0
∗2 + 𝐹𝑡𝑔𝑡,0Γ0

∗𝜏0
∗ + 𝐹𝑡𝑟,0ℜ0

∗∗ + 𝐹𝑡𝑔,0Γ0
∗∗)]𝜏0

+ [3(3 + 𝐹𝑡,0) + 𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑔,0Γ0

∗]𝜏0
∗}[6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0]

− [(3 − 𝑤)(𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑔,0Γ0

∗ + 𝐹𝑡𝑡,0𝜏0
∗)

+ 2(1 + 𝑤)(𝐹𝑡𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑡𝑔,0Γ0

∗ + 𝐹𝑡𝑡𝑡,0𝜏0
∗)𝜏0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0

∗][3(3 + 𝐹𝑡,0)

+ 𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑔,0Γ0

∗]𝜏0}                                                                                                (3) 

 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

[Ω𝑚,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 −

1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0) − (𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

− 4(1 − Ω𝑘,0)(𝐹𝑔𝑟,0ℜ0
∗ + 𝐹𝑔𝑔,0Γ0

∗ + 𝐹𝑔𝑡,0𝜏0
∗)]                                                         (4) 

 

Ω𝑃,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

{𝑤Ω𝑚,0 +
1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0) +

2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

+
1

3
[𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑔𝑔,0Γ0
∗2 + 𝐹𝑟𝑡𝑡,0𝜏0

∗2 + 2(𝐹𝑟𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑟𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑟𝑔𝑡,0Γ0
∗𝜏0

∗)

+ 𝐹𝑟𝑟,0ℜ0
∗∗ + 𝐹𝑟𝑔,0Γ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗] −

8

3
𝑞0(𝐹𝑔𝑟,0ℜ0

∗ + 𝐹𝑔𝑔,0Γ0
∗ + 𝐹𝑔𝑡,0𝜏0

∗)

+
4

3
(1 − Ω𝑘,0)[𝐹𝑔𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑔𝑔𝑔,0Γ0
∗2 + 𝐹𝑔𝑡𝑡,0𝜏0

∗2 + 2𝐹𝑔𝑟𝑔,0ℜ0
∗ Γ0

∗ + 2𝐹𝑔𝑟𝑡,0ℜ0
∗ 𝜏0

∗

+ 2𝐹𝑔𝑔𝑡,0Γ0
∗𝜏0

∗ + 𝐹𝑔𝑟,0ℜ0
∗∗ + 𝐹𝑔𝑔,0Γ0

∗∗ + 𝐹𝑔𝑡,0𝜏0
∗∗]}                                                  (5) 

 
where: 
 

ℜ0 = 6(−𝑞0 + 1 − Ω𝑘,0) 

ℜ0
∗ = 6(−𝑞0 + 𝑗0 − 2 + 2Ω𝑘,0) 

ℜ0
∗∗ = 6[𝑞0

2 + 8𝑞0 + 6 + 𝑠0 − 2Ω𝑘,0(𝑞0 + 3)] 

Γ0 = −24𝑞0(1 − Ω𝑘,0) 

Γ0
∗ = 24[2𝑞0

2 + 3𝑞0 + 𝑗0 − (𝑗0 + 3𝑞0)Ω𝑘,0] 

Γ0
∗∗ = 24[−2𝑞0

3 − 15𝑞0
2 − 12𝑞0 − 6𝑞0𝑗0 − 6𝑗0 + 𝑠0 + (3𝑞0

2 + 12𝑞0 + 6𝑗0 − 𝑠0)Ω𝑘,0] 

𝜏0 = (−1 + 3𝑤)Ω𝑚,0                                                                                                                                      (6) 
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On the other hand, for the sake of simplicity, we take the dimensionless variables 𝑟 = ℜ0, 𝑔 = Γ0, 𝑡 =
𝜏0 to analyze the models, in the softwares. 
 

𝐹0 ≡ 𝐹|𝑡=𝑡0
≡ 𝐹|𝑟=ℜ0,𝑔=Γ0,𝑡=𝜏0

≡ 𝐹(ℜ0, Γ0, 𝜏0)

𝐹𝑟..,0 ≡ 𝐹𝑟..|𝑡=𝑡0
≡ 𝐹|𝑟=ℜ0,𝑔=Γ0,𝑡=𝜏0

≡ 𝐹𝑟..(ℜ0, Γ0, 𝜏0)
                                                                                (7) 

 

For 𝐿𝑚 = 𝑝𝑚, 2nd INTERPRETATION: the equations (2) and (3) takes the following forms while we 

choose 𝐻 = 𝐻0; 
 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

= Ω𝑚,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 + (1 − 𝐹𝑟)(1 − Ω𝑘,0) −

1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0)

− (𝐹𝑟𝑟,0ℜ0
∗ + 𝐹𝑟𝑔,0Γ0

∗ + 𝐹𝑟𝑡,0𝜏0
∗) − 4(1 − Ω𝑘,0)(𝐹𝑔𝑟,0ℜ0

∗ + 𝐹𝑔𝑔,0Γ0
∗ + 𝐹𝑔𝑡,0𝜏0

∗)(8) 
 

Ω𝑃,0
𝑡.𝑒𝑓𝑓

= 𝑤Ω𝑚,0 +
1

3
(1 − 𝐹𝑟,0)(2𝑞0 − 1 + Ω𝑘,0) +

1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0)

+
2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

+
1

3
[(𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑔𝑔,0Γ0
∗2 + 𝐹𝑟𝑡𝑡,0𝜏0

∗2) + 2(𝐹𝑟𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑟𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑟𝑔𝑡,0Γ0
∗𝜏0

∗)

+ 𝐹𝑟𝑟,0ℜ0
∗∗ + 𝐹𝑟𝑔,0Γ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗] −

8

3
𝑞0(𝐹𝑔𝑟,0ℜ0

∗ + 𝐹𝑔𝑔,0Γ0
∗ + 𝐹𝑔𝑡,0𝜏0

∗)

+
4

3
(1 − Ω𝑘,0)[𝐹𝑔𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑔𝑔𝑔,0Γ0
∗2 + 𝐹𝑔𝑡𝑡,0𝜏0

∗2

+ 2(𝐹𝑔𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑔𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑔𝑔𝑡,0Γ0
∗𝜏0

∗) + 𝐹𝑔𝑟,0ℜ0
∗∗ + 𝐹𝑔𝑔,0Γ0

∗∗

+ 𝐹𝑔𝑡,0𝜏0
∗∗]                                                                                                                         (9) 

 

as well as 𝜏∗ and 𝜏∗∗ does not change.  
 

For 𝐿𝑚 = −𝜇𝑚, 1st and 2nd INTERPRETATIONs respectively,  
 

𝜏∗ =
−3(1 + 𝑤)(3 + 𝐹𝑡)

6 + (1 − 3𝑤)𝐹𝑡

𝜏                                                                                                                         (10) 

 

𝜏∗∗ =
−6(1 + 𝑤)(3 + 𝐹𝑡)

[6 + (1 − 3𝑤)𝐹𝑡]2
{−(1 + 𝑞0)[6 + (1 − 3𝑤)𝐹𝑡] − 6(1 + 𝑤)(3 + 𝐹𝑡)

+
3(1 + 3𝑤)(𝐹𝑡𝑟ℜ∗ + 𝐹𝑡𝑔Γ∗ + 𝐹𝑡𝑡𝜏∗)

(3 + 𝐹𝑡)
} 𝜏                                                               (11) 

 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

[Ω𝑚,0 −
1

6
(𝐹0−𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0) − (𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

− 4(1 − Ω𝑘,0)(𝐹𝑔𝑟,0ℜ0
∗ + 𝐹𝑔𝑔,0Γ0

∗ + 𝐹𝑔𝑡,0𝜏0
∗)]                                                      (12) 

 

Ω𝑃,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

{𝑤Ω𝑚,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 +

1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0)

+
2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

+
1

3
[𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑔𝑔,0Γ0
∗2 + 𝐹𝑟𝑡𝑡,0𝜏0

∗2 + 2(𝐹𝑟𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑟𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑟𝑔𝑡,0Γ0
∗𝜏0

∗)

+ 𝐹𝑟𝑟,0ℜ0
∗∗ + 𝐹𝑟𝑔,0Γ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗] −

8

3
𝑞0(𝐹𝑔𝑟,0ℜ0

∗ + 𝐹𝑔𝑔,0Γ0
∗ + 𝐹𝑔𝑡,0𝜏0

∗)

+
4

3
(1 − Ω𝑘,0)[𝐹𝑔𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑔𝑔𝑔,0Γ0
∗2 + 𝐹𝑔𝑡𝑡,0𝜏0

∗2

+ 2(𝐹𝑔𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑔𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑔𝑔𝑡,0Γ0
∗𝜏0

∗) + 𝐹𝑔𝑟,0ℜ0
∗∗ + 𝐹𝑔𝑔,0Γ0

∗∗

+ 𝐹𝑔𝑡,0𝜏0
∗∗]}                                                                                                                    (13) 
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Ω𝑚,0
𝑡.𝑒𝑓𝑓

= Ω𝑚,0 + (1−𝐹𝑟,0)(1 − Ω𝑘,0) −
1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0) − (𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

− 4(1 − Ω𝑘,0)(𝐹𝑔𝑟,0ℜ0
∗ + 𝐹𝑔𝑔,0Γ0

∗ + 𝐹𝑔𝑡,0𝜏0
∗)                                                         (14) 

 

Ω𝑃,0
𝑡.𝑒𝑓𝑓

= 𝑤Ω𝑚,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 +

1

3
(1 − 𝐹𝑟,0)(2𝑞0 − 1 + Ω𝑘,0) +

1

6
(𝐹0 − 𝐹𝑟,0ℜ0 − 𝐹𝑔,0Γ0)

+
2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑔,0Γ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)

+
1

3
[𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑔𝑔,0Γ0
∗2 + 𝐹𝑟𝑡𝑡,0𝜏0

∗2 + 2(𝐹𝑟𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑟𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑟𝑔𝑡,0Γ0
∗𝜏0

∗)

+ 𝐹𝑟𝑟,0ℜ0
∗∗ + 𝐹𝑟𝑔,0Γ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗] −

8

3
𝑞0(𝐹𝑔𝑟,0ℜ0

∗ + 𝐹𝑔𝑔,0Γ0
∗ + 𝐹𝑔𝑡,0𝜏0

∗)

+
4

3
(1 − Ω𝑘,0)[𝐹𝑔𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑔𝑔𝑔,0Γ0
∗2 + 𝐹𝑔𝑡𝑡,0𝜏0

∗2

+ 2(𝐹𝑔𝑟𝑔,0ℜ0
∗ Γ0

∗ + 𝐹𝑔𝑟𝑡,0ℜ0
∗ 𝜏0

∗ + 𝐹𝑔𝑔𝑡,Γ0
∗𝜏0

∗) + 𝐹𝑔𝑟,0ℜ0
∗∗ + 𝐹𝑔𝑔,0Γ0

∗∗

+ 𝐹𝑔𝑡,0𝜏0
∗∗]                                                                                                                      (15) 

 

𝑤𝐷𝐸 =
Ω𝑃,0

𝑡.𝑒𝑓𝑓
− Ω𝑃,0

Ω𝑚,0
𝑡.𝑒𝑓𝑓

− Ω𝑚,0

                                                                                                                                   (16) 

 

(1) - (15) written for  𝑓(𝑅, 𝐺, 𝑇) − 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 reduced 

to 𝑓(𝑅, 𝑇) − 𝑔𝑟𝑎𝑣𝑖𝑡𝑦. If the terms Γ0, Γ0
∗, Γ0

∗∗ which 

are related to 𝐺, and the terms 𝐹𝑔,0, 𝐹𝑟𝑔,0, … which 

include derivative terms with respect to 𝑔  are 

removed the reduced equations for 𝑓(𝑅, 𝑇)  are 
as the following: 
 

For 𝐿𝑚 = 𝑝𝑚 , 1st and 2nd INTERPRETATIONs, 
the trace of energy-momentum tensor and 
derivative relations: 
 

𝜏0 = (−1 + 3𝑤)Ω𝑚,0                                          (17) 
 

𝜏0
∗ =

−2(1 + 𝑤)[3(3 + 𝐹𝑡,0) + 𝐹𝑡𝑟,0ℜ0
∗ ]

6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0

𝜏0  (18) 

 

𝜏0
∗∗ =

−2(1 + 𝑤)

[6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0]
2

× {{[−3(1 + 𝑞0)(3 + 𝐹𝑡,0) + 3(𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑡,0𝜏0

∗) + (𝐹𝑡𝑟𝑟,0ℜ0
∗ 2 + 𝐹𝑡𝑟𝑡,0ℜ0

∗ 𝜏0
∗)

+ 𝐹𝑡𝑟,0ℜ0
∗∗]𝜏0 + [3(3 + 𝐹𝑡,0) + 𝐹𝑡𝑟,0ℜ0

∗ ]𝜏0
∗} × [6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0]

− [(3 − 𝑤)(𝐹𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑡,0𝜏0

∗) + 2(1 + 𝑤)(𝐹𝑡𝑡𝑟,0ℜ0
∗ + 𝐹𝑡𝑡𝑡,0𝜏0

∗)𝜏0

+ 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0
∗[3(3 + 𝐹𝑡,0) + 𝐹𝑡𝑟,0ℜ0

∗ ]𝜏0
∗]}                                                     (19) 

 

For 𝐿𝑚 = 𝑝𝑚, 1st INTERPRETATION total effective mass and pressure parameters: 
 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

[Ωm,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 −

1

6
(𝐹0 − 𝐹𝑟,0ℜ0) − (𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑡,0𝜏0
∗)]                   (20) 

 

ΩP,0
𝑡.𝑒𝑓𝑓

=
1

𝐹𝑟,0

[𝑤Ω𝑚,0 +
1

6
(𝐹0 − 𝐹𝑟,0ℜ0) +

2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑡,0𝜏0
∗)

+
1

3
(𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑡𝑡,0𝜏0
∗2 + 2𝐹𝑟𝑟𝑡,0ℜ0

∗ 𝜏0
∗ + 𝐹𝑟𝑟,0ℜ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗)]                  (21) 

 

For 𝐿𝑚 = 𝑝𝑚, 2nd INTERPRETATION total effective mass and pressure  parameters: 
 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

= Ω𝑚,0 +
1

3
(1 + 𝑤)Ω𝑚,0𝐹𝑡,0 + (1 − 𝐹𝑟,0)(1 − Ω𝑘,0) −

1

6
(𝐹0 − 𝐹𝑟,0ℜ0)

− (𝐹𝑟𝑟,0ℜ0
∗ + 𝐹𝑟𝑡,0𝜏0

∗)                                                                                                  (22) 
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ΩP,0
𝑡.𝑒𝑓𝑓

= 𝑤Ω𝑚,0 +
1

3
(1 − 𝐹𝑟,0)(2𝑞0 − 1 + Ω𝑘,0) +

1

6
(𝐹0 − 𝐹𝑟,0ℜ0) +

2

3
(𝐹𝑟𝑟,0ℜ0

∗ + 𝐹𝑟𝑡,0𝜏0
∗)

+
1

3
(𝐹𝑟𝑟𝑟,0ℜ0

∗ 2 + 𝐹𝑟𝑡𝑡,0𝜏0
∗2 + 2𝐹𝑟𝑟𝑡,0ℜ0

∗ 𝜏0
∗ + 𝐹𝑟𝑟,0ℜ0

∗∗ + 𝐹𝑟𝑡,0𝜏0
∗∗)                     (23) 

Before proceeding the tests of the models, it 
would be better to briefly remind the outcomes 
based on the continuity equation in 
 

(𝜅2 + 𝑓𝑇)[�̇�𝑚 + 3𝐻(1 + 𝑤)𝜇𝑚] = 

−
1

2
(1 − 𝑤)�̇�𝑚𝑓𝑇 − (1 + 𝑤)𝜇𝑚𝑓�̇�        (24) 

 
with the assumption of conservation of standard 
matter, the form of general function 𝑓(𝑅, 𝐺, 𝑇) is 
given by  
 

𝑤 = −
1

3
  ⇒   𝑓(𝑅, 𝐺, 𝑇) 

= 𝐾1 ln|𝑇| + 𝜙(𝑅, 𝐺)                               (25. 𝑎) 
 

𝑤 ≠ ±
1

3
  ⇒   𝑓(𝑅, 𝐺, 𝑇) 

= 𝐾2|𝑇|𝛾 + 𝜙(𝑅, 𝐺)                                     (25. 𝑏) 
 
Here,  
 

𝛾 ≡
1 + 3𝑤

2(1 + 𝑤)
                                                     (26) 

 

constrained to 𝑓(𝑅, 𝐺, 𝑇) = 𝜙(𝑅, 𝐺) + 𝜓(𝑇) 
provided that the  
 

2𝜅2 + (3 − 𝑤)𝑓𝑇 + 2(1 + 𝑤)𝑇 𝑓𝑇𝑇 ≠ 0        (27) 
 

 
condition is valid. The relations argued can be 
expressed as (28-30) in the language of 
dimensionless variables, 
 

6 + (3 − 𝑤)𝐹𝑡,0 + 2(1 + 𝑤)𝐹𝑡𝑡,0𝜏0 ≠ 0        (28) 

 

𝐹(𝑟, 𝑡) = Φ(𝑟) + Ψ(𝑡)                                      (29) 
 
Ψ(𝑡)

= {
𝐾1 ln|𝑡| for  𝑤 = −

1

3

𝐾2 |𝑡|𝛾 for 𝑤 ∈ ]−
1

3
,
1

3
[ ∪ ]

1

3
, 1]

          (30) 

 
Here, the exponent 𝛾  was not arbitrary, but 

connected to 𝑤 by the relation (26),  
 

𝛾 ≡
1 + 3𝑤

2(1 + 𝑤)
                                                    (31) 

 
and the changes of 𝛾 = 𝛾(𝑤)  and 𝑤 = 𝑤(𝛾) 
functions are given in Fig. 1 [19]. As can be seen 
clearly from these, 
 

𝑤 ∈ ]−
1

3
,
1

3
[ ∪ ]

1

3
, 1]  ⇔  𝛾 ∈ ]0,

3

4
[ ∪ ]

3

4
, 1]     (32) 

 
Although the dimensionless coefficient 𝐾  is 
arbitrary, but must satisfy (28) which is the 
existence condition of 𝜏0

∗  and 𝜏0
∗∗  for a given 

value 𝑤  or 𝛾 . According to this, if (28) is 
evaluated for (30), the following restrictions exist 
for 𝐾. 
 

1) For 𝑤 = −
1

3
, it is found that 𝐾 is constrained in 

the form  
 

𝐾 ≠ 6Ω𝑚,0   ⇒   𝐾3 ≠ 1.86                                (33) 

 
when the derivatives of the function Ψ(𝑡) =
𝐾 ln(−𝑡) are placed in (28), since in the present 

time 𝑡 = 𝑡0, 𝑡0 ≡ 𝜏0 = −2Ω𝑚,0 < 0. 

 

 
 

Fig. 1. For 𝑳𝒎 = 𝒑𝒎, 1st and 2nd INTERPRETATIONs, in the case of conservation of standard 
matter, (a) the change of (𝜸, 𝒘) and (b) the change of (𝒘, 𝜸). In the Fig. 1.(a) the points (𝒘, 𝜸) =
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(−
𝟏

𝟑
, 𝟎) and (

𝟏

𝟑
,

𝟑

𝟒
), and in the Fig. 1.(b) the points (𝜸, 𝒘) = (𝟎, −

𝟏

𝟑
) and (

𝟑

𝟒
,

𝟏

𝟒
) are illustrated by 

circles to show that they are excluded. For −
𝟏

𝟑
< 𝑤 <

𝟏

𝟑
 or (𝟎 < 𝛾 <

𝟑

𝟒
) the 𝑻 < 0; and for 𝒘 =

𝟏

𝟑
 or 

(𝜸 =
𝟑

𝟒
) the 𝑻 = 𝟎 and for 

𝟏

𝟑
< 𝑤 ≤ +1 or (

𝟑

𝟒
< 𝛾 ≤ +1) the 𝑻 > 0 

2) Since in the interval of −
1

3
< 𝑤 <

1

3
 (⇒ 0 < 𝛾 <

3

4
) , 𝑡0  is 𝑡0 ≡ 𝜏0 = (−1 + 3𝑤)Ω𝑚,0 < 0  for Ψ(𝑡) =

𝐾 (−𝑡)𝛾 (28), with the use of (26 and 34),  
 

𝑤 = −
2𝛾 − 1

2𝛾 − 3
                                                                                                                                                    (34) 

 
gives the constraint  
 

𝐾 ≠ 3(−𝜏0)1−𝛾 ⇒ 𝐾 ≠
3

𝛾
(0.62

4𝛾 − 3

2𝛾 − 3
)

1−𝛾

⇔ 𝐾 ≠
6(1 + 𝑤)

1 + 3𝑤
[0.31(1 − 3𝑤)]

2(1−𝑤)
1+𝑤                  (35)  

 
after the needed adjustments. 
 

3) For Ψ(𝑡) = 𝐾 (𝑡)𝛾 in the interval of 
1

3
< 𝑤 ≤ 1 (⇒

3

4
< 𝛾 ≤ 1) in a similar way, the constraint 

 

𝐾 ≠ −3(𝜏0)1−𝛾 ⇒ 𝐾 ≠ −
3

𝛾
(−0.62

4𝛾 − 3

2𝛾 − 3
)

1−𝛾

⇔ 𝐾 ≠ −
6(1 + 𝑤)

1 + 3𝑤
[0.31(3𝑤 − 1)]

2(1−𝑤)
1+𝑤      (36) 

 
is found. In particular, for the value equals to 1 
(⇒ 𝛾 = 1) , Ψ(𝑡) = 𝐾 𝑡  with 𝐾 ≠ −3  since  𝜏0 =
2Ω𝑚,0 > 0 . In the language of dimensional 

magnitudes, this indicates that for 𝑤 = 1 , a 

functional form 𝜓(𝑇) = −𝜅2𝑇  cannot exist. 
Nevertheless, a function in the form 𝜓(𝑇) =
−𝜆𝜅2𝑇  (𝜆 ≠ −1)  is possible, but it is also                        
for only and only 𝑤 = 1 . Fig. 2 shows all 
forbidden values of 𝐾 in terms of 𝛾 and 𝑤 for (30) 
[19]. 
 

3. DISCUSSIONS ABOUT THE MODELS 
AND CONCLUSIONS 

 

Model 1: 𝑭(𝒓, 𝒕) = 𝒓 + 𝑲𝟏𝒍𝒏 (−𝒕) , 𝒘 = −
𝟏

𝟑
 

(𝑳𝒎 = 𝒑𝒎 𝒂𝒏𝒅 𝒄𝒐𝒏𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒊𝒅𝒔) 
 
We list the results of the calculations regarding 
the 1st INTERPRETATION of the sizes included 
in the equations (17 - 23) below, in terms of 𝐾1, 

by taking Ω𝑘,0 as the free parameter (In a 10−12 

sensitivity calculation, some numbers were 
rounded up to ten thousandth digits). Fig. 2 
shows the energy conditions: 
 

ℜ0 = 10.86 − 6Ω𝑘,0 

 

ℜ0
∗ = 5.82 + 12Ω𝑘,0 

 
ℜ0

∗∗ = −26.28Ω𝑘,0 − 0.2634 

 

𝜏0 = −0.62 
 

𝜏0
∗ =

0.8267(3 − 1.6129𝐾3)

2 − 1.0753𝐾3

 

 

𝜏0
∗∗ =

0.3333(−32.5872 + 35.0400𝐾3 − 9.4194𝐾3
2)

(2 − 1.0753𝐾3)2  

 

𝐹0 = 10.86 − 6Ω𝑘 − 0.4780𝐾3 

 
𝐹𝑟,0 = 1 

 
𝐹𝑟𝑟,0 = 0 

 
𝐹𝑡,0 = −1.6129𝐾3 

 

𝐹𝑡𝑡,0 = −2.6015𝐾3 

 
𝐹𝑡𝑡𝑡,0 = −8.3918𝐾3 

 

Ω𝑚,0
𝑡.𝑒𝑓𝑓

= 0.3100 − 0.0314𝐾3 

 

Ω𝑃,0
𝑡.𝑒𝑓𝑓

= −0.1033 − 0.0797𝐾3 

𝑁𝐸𝐶: 0.2067 − 0.1111𝐾3 ≥ 0 
 
𝑊𝐸𝐶: 0.3100 − 0.0314𝐾3 ≥ 0 
 
𝑆𝐸𝐶: 1 × 10−11 − 0.2705𝐾3 < 0 
 
𝐷𝐸𝐶: 0.4133 + 0.0482𝐾3 ≥ 0 
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Considering the condition (33), we find the 
coupling constant 𝐾1 , which is the common 
solution of the above inequalities, which is the 
expression of the 1st set of conditions, restricted 

by the interval 3.69745393711 × 10−11 < 𝐾1 <
1.86. The following graphical representation also 

confirms this [19]. In this 𝐹(𝑟, 𝑡) model, the value 

of 𝑤𝐷𝐸,0 , which is the measure of 

superacceleration, is 𝑤𝐷𝐸,0 =
−(9.54244679439 × 10−11 𝐾1⁄ ) + 2.53423955351  

and requires a fine-tuning such as −1.2 ≤ 𝑤𝐷𝐸 ≤
−0.8  and 0 < 𝐾1 < 2.69999999998 × 10−11  for 

2.555392244570 × 10−11 < 𝐾1 <
2.86195596964 × 10−11  and 𝑤𝐷𝐸,0 < −1 . 

Considering that current observational data do 
not have such sensitivity, it is important to notice 
that this range is not meaningful. Related to this 
model, let's note as a final point that: the results 
are independent of the parameter in calculations 

made without attributing a value to Ω𝑘,0. On the 

other hand, since the model we have dealt with is 
of type 𝑓(𝑅, 𝐺, 𝑇) = 𝑅 + 𝐹(𝑇) , the 1st and 2nd 
INTERPRETATIONs are equivalent to each 
other. 

 

 
 

Fig. 2. For the function in (30): all forbidden values of 𝑲, 2.(a) according to 𝜸
 
and 2.(b) 

according to 𝒘. Red curve is drawn using (35); the blue curve is drawn using (36). In 2.(b), the 
coordinates of points A and B are (–0.33, 1.86) and (1, –3), respectively. The small empty 

circles show the 𝜸 and 𝒘 values for which the function is not defined. Let us emphasize that 

𝚿(𝒕) = 𝑲 𝐥𝐧(−𝒕) and 𝑲 ≠ 𝟏. 𝟖𝟔 are for 𝒘 = −
𝟏

𝟑
; while 𝚿(𝒕) = 𝑲 𝒕 and 𝑲 ≠ −𝟑 are for 𝒘 = 𝟏 

 

 
 

Fig. 3. For model 𝑭(𝒓, 𝒕) = 𝒓 + 𝑲𝟏 𝐥𝐧(−𝒕), the 

energy conditions in the case of  𝒘 = −
𝟏

𝟑
 

where the standard matter is conserved. 

Model 2: 𝑭(𝒓, 𝒕) = 𝒓 + 𝑲𝟐(−𝒕)𝜸 , −
𝟏

𝟑
< 𝑤 <

𝟏

𝟑
 ⇔

𝟎 < 𝛾 <
𝟑

𝟒
 (𝑳𝒎 = 𝒑𝒎 𝒂𝒏𝒅 𝒄𝒐𝒏𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒊𝒅𝒔) 

 
We first study the testing of this model under the 
1st INTERPRETATION, again considering the 

Ω𝑘,0  parameter as free. Because their 

expressions are overly complex, we prefer not to 
write the relevant equations and show the results 
only with graphics. We show the results in Figs. 3 
and 4 by taking the 𝐾2  parameter in the 𝐾2 ∈
[−10, +10]  interval and the 𝛾  parameter in the 

𝛾 ∈ ]0, 0.75[ interval, respectively, with the steps 
Δ𝐾2 = 0.2 and Δ𝛾 = 0.01, and taking into account 

the relation between 𝛾  and 𝑤  in (26), and also 
adding the restrictions to the 1st  and 2nd sets of 
conditions in (35). In Fig. 4, for some selected 
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special values of 𝐾2 in the interval of [−10, +10]: 
the changes of NEC, WEC, SEC and DEC 
according to the exponent 𝛾 and the change of 

𝑤𝐾𝐸,0 are shown [19]. The other, it is independent 

of 𝐾  in accordance with the 𝑤𝐷𝐸,0 =
(𝛾 − 1.5)(4𝛾 − 3) 2(𝛾2 − 3𝛾 + 0.25)⁄  result. It is 
understood from the aforementioned graphs that 
there are (𝐾2, 𝛾) pairs that satisfy the 1st set of 
conditions and none of them contain super 
acceleration. We create Fig. 5 to both clarify the 
pairs in question and to see if the 2nd set of 
conditions is satisfied. From here, it can be seen 

that the 1st set of conditions restricts the widest 

interval of definition, which is 0 < 𝛾 < 3 4⁄ = 0.75 

for 𝛾, to 0 < 𝛾 < 0.56 for each 𝐾2 < 0; and  the 

2nd  set of conditions restricts 0 < 𝛾 ≤ 0.25 . 
These intervals correspond to the −1 3⁄ < 𝑤 <
+0.064  and −1 3⁄ < 𝑤 < −1 5⁄ ,                           
respectively, in accordance with (34). Let us note 
that the results obtained for the model in 
question are also identical for the 2nd 
INTERPRETATION and independent of the 

value of Ω𝑘,0. 

 

 
 

 
 

Fig. 4. Variations of NEC, WEC, SEC and DEC for 𝑭(𝒓, 𝒕) = 𝒓 + 𝑲𝟐(−𝒕)𝜸 with respect to 𝜸 for 

some selected specific 𝑲𝟐 values. In the right bottom panel, there is the change of 𝒘𝑫𝑬,𝟎 
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regardless of 𝑲𝟐. As can be seen, for the interval 𝟎 < 𝛾 <
𝟑

𝟒
. It is always 𝒘𝑫𝑬,𝟎 > −1, that is, 

there is no super acceleration 
 

 
 

Fig. 5. The pairs (𝑲𝟐, 𝜸) that provide the 1st set of conditions (pink-looking region+only red 
zone) and the 2nd set of conditions (pink-looking region). The ratio of the number of models 

providing the 2nd  condition set in the interval (−𝟏𝟎 ≤ 𝑲𝟐 < 0) × (𝟎 < 𝛾 < 0.56) to that of the 1st 
condition set is: 1233/2444 = 50.5% 

 

4. CONCLUSION  
 
For the first model, considering the condition 
(33), we find the coupling constant 𝐾1, which is 
the common solution of the above inequalities, 
which is the expression of the 1st set of 
conditions, restricted by the interval 

3.69745393711 × 10−11 < 𝐾1 < 1.86 . The 
graphical representation in Fig. 3 also confirms 

this. In this 𝐹(𝑟, 𝑡)  model, the value of 𝑤𝐷𝐸,0 , 

which is the measure of superacceleration, is 

𝑤𝐷𝐸,0 = −(9.54244679439 × 10−11 𝐾1⁄ ) +
2.53423955351  and requires a fine-tuning such 

as −1.2 ≤ 𝑤𝐷𝐸 ≤ −0.8  and 0 < 𝐾1 <
2.69999999998 × 10−11  for 2.555392244570 ×
10−11 < 𝐾1 < 2.86195596964 × 10−11  and 

𝑤𝐷𝐸,0 < −1 . Considering that current 

observational data do not have such sensitivity, it 
is important not to find these value ranges 
meaningful. Related to this model, let's note as a 
final point that: the results are independent of the 
parameter in calculations made without 

attributing a value to Ω𝑘,0 . On the other hand, 

since the model we have dealt with is of type 
𝑓(𝑅, 𝐺, 𝑇) = 𝑅 + 𝐹(𝑇) , the 1st and 2nd 

INTERPRETATIONs are equivalent to each 
other. 
 
Related to the second model, variations of NEC, 
WEC, SEC and DEC with respect to 𝛾 for some 

selected specific 𝐾2  values are obtained in the 
Fig. 4. As can be seen, for the interval 0 < 𝛾 <
3 4⁄ . It is always 𝑤𝐷𝐸,0 > −1, that is, there is no 

super acceleration. The pairs (𝐾2, 𝛾) that provide 
the 1st set of conditions and the 2nd set of 
conditions are identified in the Fig. 5. Besides the 
ratio of the number of models providing the 2nd  
condition set in the interval (−10 ≤ 𝐾2 < 0) ×
(0 < 𝛾 < 0.56) to that of the 1st condition set is: 
1233/2444 = 50.5%.  
 
As a last remark, let us repeat that, in the 
General Discussions part of this work, the 
equations for 𝑓(𝑅, 𝑇)  models are obtained for 
conservative and non-conservative cases and for 
two interpretations and also for both 𝐿𝑚 = 𝑝𝑚 
and 𝐿𝑚 = −𝜇𝑚  cases. Besides 𝑤  and 𝑤𝐷𝐸  are 
obtained for them. The change of parameters of 
the functions are obtained by the change of the 
others. Moreover, the satisfaction of the energy 
conditions are also restricted to be viable by 
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simulations and by that way the range of                 
values for the parameters of the functions are 
found. 
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