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ABSTRACT 
 

This study compares Support Vector Machine (SVM), Logistic Regression, and Decision Tree 
algorithms for liver disease prediction using a dataset sourced from Kaggle, comprising 20,000 
training records and approximately 1,000 test records. The research evaluates the algorithms 
based on performance metrics, including accuracy, precision, recall, and F1-score. SVM emerged 
as the most effective model with an accuracy of 85%, followed by Logistic Regression with 82% 
and Decision Tree with 79%. The findings underscore the significance of algorithm selection in 
healthcare applications and highlight SVM's potential for early detection and intervention in liver 
disease cases, paving the way for improved patient outcomes and healthcare management. Future 
work will focus on refining the algorithms and validating the results with larger and more diverse 
datasets to enhance predictive accuracy and robustness further. 
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1. INTRODUCTION 
 
Liver disease continues to be a major global 
health concern due to its high morbidity, 
mortality, and financial cost. Given the liver's 
critical role in essential physiological processes 
like metabolism, detoxification, and 
immunological response, any interference with its 
normal operation can seriously impact health. It 
is critical to identify liver illness early and act 
quickly to slow its course, enhance patient 
outcomes, and save medical expenses [1]. 
 
Healthcare has entered a new era with the 
introduction of Machine Learning (ML) and 
Artificial Intelligence (AI) technologies, which 
provide cutting-edge methods and instruments 
for disease diagnosis, treatment planning, and 
prognosis. Based on clinical and demographic 
information, a number of Machine Learning (ML) 
techniques, including as logistic regression, 
decision trees, and Support Vector Machine 
(SVM), have demonstrated encouraging results 
in the prediction and classification of a range of 
medical diseases. Accurate prediction models in 
the context of liver disease can help doctors 
identify patients who are at risk, direct focused 
screening and preventative measures, and 
allocate resources in the best possible way in 
hospital settings [2,3]. However, selecting the 
best machine learning algorithm for predicting 
liver illness necessitates a thorough 
comprehension of each method's advantages, 
disadvantages, and clinical application. 
 
In order to predict liver illness, this research 
study compares the SVM, Decision Tree, and 
Logistic Regression algorithms utilizing a large 
dataset of clinical and demographic data. The 
study aims to determine which model is best for 
liver disease early detection and intervention by 
assessing each algorithm's performance, 
accuracy, sensitivity, specificity, and computing 
efficiency. This study intends to add to the 
expanding body of literature on AI-driven 
healthcare solutions by illuminating the relative 
effectiveness of several ML algorithms in the 
prediction of liver illness and providing insightful 
information to researchers, doctors, and 
healthcare regulators [4,5,6,7,8]. In the end, this 
study's findings may open the door to the 
creation of reliable, accurate, and scalable liver 
disease prediction models, which would improve 
patient treatment and global health outcomes. 

1.1 Background 

 
One of the biggest and most important organs in 
the human body, the liver performs a variety of 
key tasks such as protein synthesis, 
detoxification, and the creation of biochemicals 
required for digestion. A variety of illnesses can 
impact the structure and function of the liver, 
impairing its health and possibly posing a fatal 
risk. These disorders are collectively referred to 
as liver disease [9,10]. 
 

1.2 Types of Liver Disease 
 
Hepatitis is an inflammation of the liver that is 
typically brought on by autoimmune reactions, 
alcoholism, or viral infections (such as Hepatitis 
A, B, or C). Liver cirrhosis is a late-stage liver 
fibrosis brought on by a variety of liver illnesses 
and disorders, including prolonged alcoholism 
and hepatitis. Non-Alcoholic Fatty Liver Disease 
(NAFLD): an illness where the liver stores fat and 
isn't brought on by drinking too much alcohol. It 
can worsen and develop into Non-Alcoholic 
Steatohepatitis (NASH), which damages and 
inflames the liver. Metastatic liver cancer refers 
to cancerous tumors that spread from the liver to 
other areas of the body. Liver failure is a 
potentially fatal disorder in which the liver 
becomes unable to process waste materials and 
poisons that build up in the body [11,12, 
13,14,15]. 
 

1.3 Significance of the Study 
 
With high rates of morbidity and mortality, liver 
disease is a major worldwide health concern.  
 
Prevalence: Millions of people worldwide suffer 
from liver disease, and the condition is becoming 
more common as a result of conditions like 
obesity, hepatitis viruses, alcohol addiction, and 
exposure to hepatotoxic drugs. 
 
Impact on Health: Liver disease can result in 
cirrhosis, liver failure, hepatic encephalopathy, 
and liver cancer, among other consequences. 
These illnesses may need for a liver transplant or 
ongoing medical care, both of which can have a 
substantial negative influence on a person's 
quality of life. 
 
Economic Burden: The financial burden of liver 
disease is high and includes hospital stays, 
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diagnosis, treatment, and long-term care costs. 
Furthermore, liver illness can cause affected 
people and their families to experience financial 
difficulty and lost productivity. 
 
Public Health Challenge: To lessen the 
increasing burden of liver disease on public 
health systems worldwide, effective prevention, 
early detection, and prompt intervention are 
crucial. To lessen the prevalence and effects of 
liver disease on people and communities, it is 
essential to raise awareness and provide 
education and access to healthcare services. 
 
The health problem of liver disease is intricate 
and multidimensional, posing serious obstacles 
to worldwide public health. Early detection, 
prompt intervention, and efficient management of 
liver disease are crucial to lowering morbidity, 
mortality, and the financial burden associated 
with this condition, given the liver's critical role in 
preserving general health and wellbeing. To 
address the rising incidence and burden of liver 
disease and improve outcomes for those afflicted 
globally, it is imperative that researchers, 
innovators, and community stakeholders 
continue their research, innovate, and work 
together. 
 

1.4 Objectives of the Study 
 

● Evaluate logistic regression, decision 
trees, and SVM prediction capabilities for 
liver disease. 

● Examine and contrast the algorithms' 
computational efficiency, sensitivity, 
specificity, and accuracy. 

● Determine the important clinical and 
demographic factors that affect the 
prognosis of liver disease. 

 

1.5 Need of the Study 
 
Globally, liver disease is becoming a major public 
health concern due to its high rate of morbidity, 
mortality, and financial burden. Improving results 
and slowing the course of disease require early 
detection and management. Although machine 
learning algorithms present a promising avenue 
for individualized liver disease management and 
early prediction, their comparative effectiveness 
and therapeutic significance still need to be 
assessed. The goal of this research is to fulfill the 
urgent need for a thorough comparison of the 
Support Vector Machine (SVM), Decision Tree, 
and Logistic Regression algorithms in the 

prediction of liver disease. The goal of this study 
is to evaluate the predictive accuracy, sensitivity, 
specificity, and computing efficiency of various 
algorithms in order to determine which one is 
best for early diagnosis and intervention. 
Comprehending the impact of clinical and 
demographic characteristics on prediction can 
also improve customized medicine strategies, 
maximize the use of healthcare resources, and 
provide physicians with evidence-based 
knowledge to make well-informed decisions. The 
importance of this research therefore resides in 
improving AI-driven healthcare solutions, 
enhancing patient care, and tackling the 
mounting problems associated with liver disease 
on public health systems throughout the world. 
 

1.6 Problem Statement 
 
Liver disease is a major global public health 
concern that continues to rise despite advances 
in medical science and healthcare technology. It 
causes enormous morbidity, death, and 
economic hardship. To improve patient outcomes 
and slow the progression of liver disease, early 
detection and prompt intervention are essential. 
There is a dearth of thorough comparative 
analysis to assess machine learning algorithms' 
performance, accuracy, and clinical relevance in 
this particular medical application, even though 
they have promising potential for managing and 
predicting liver disease based on clinical and 
demographic data, such as Support Vector 
Machine (SVM), Decision Tree, and Logistic 
Regression. The inability of healthcare 
practitioners to adopt and apply efficient 
predictive models for liver disease prediction in 
clinical practice is hampered by the lack of a 
systematic evaluation and comparison of various 
machine learning algorithms. Furthermore, 
improving personalized medicine strategies, 
allocating healthcare resources optimally, and 
providing clinicians with evidence-based insights 
for well-informed decision-making all depend on 
our ability to comprehend the key clinical and 
demographic characteristics influencing liver 
disease prediction. 
 
In order to determine the most effective 
algorithm, improve patient care, and address the 
increasing difficulties and complexities 
associated with liver disease on public health 
systems worldwide, a thorough comparative 
analysis of SVM, Decision Tree, and Logistic 
Regression algorithms in liver disease prediction 
is urgently needed. 
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2. LITERATURE REVIEW 
 

The healthcare landscape is undergoing 
significant transformation, driven by technological 
advancements and the increasing need for 
efficient and accurate disease prediction and 
management. 
 

Wang et al., [16] highlights the pressing need for 
fundamental reform in the American healthcare 
system since, despite a substantial budget, it 
lags behind peer-developed nations in terms of 
results like life expectancy. Using advanced 
machine learning methods such as Random 
Forest and Support Vector Regression (SVR) in 
conjunction with traditional statistical forecasting 
methodologies, the study projects future 
healthcare spending as a percentage of GDP for 
the year 2050. It's interesting to observe that the 
Random Forest and AutoRegressive Integrated 
Moving Average (ARIMA) models do similarly 
well in forecasting. The study underscores the 
critical role that healthcare analytics plays in 
comprehending the complexities of the 
healthcare system, in addition to underscoring 
the urgent need for appropriate policies to 
address the rising trajectory of healthcare 
spending and its effects on public health and the 
economy. 
 

The goal of the Yeganeh et al., [17] is to improve 
early detection of abnormalities in healthcare 
processes by introducing a Multistage Process 
Monitoring (MPM) tool designed specifically for 
healthcare data. The tool enhances detection 
capacities through the integration of machine 
learning approaches with statistical control 
charts. The MPM tool shows exceptional 
effectiveness in monitoring and guaranteeing 
patient safety through simulations and an actual 
case study on thyroid cancer surgery. 
 

Zini & Carcasci, [18] examines the energy use of 
an Italian hospital with particular attention on its 
Heating, Ventilation, and Air Conditioning(HVAC) 
system. Key energy drivers are identified through 
a methodical feature selection procedure, and 
artificial neural networks are used to estimate 
energy consumption. The study shows how the 
technique may identify unusual patterns in 
energy usage, offering a dependable and useful 
way to manage energy use in smart buildings. 
 

Kalita et al., [19] looks into how the progression 
of Hepatitis B Virus (HBV)-related liver disease is 
affected by Vitamin D Receptor (VDR) gene 
polymorphisms (TaqI, ApaI, and BsmI) and 
linked molecules GC-Globulin and CYP2R1. 

Polymerase Chain Reaction - Restriction 
Fragment Length Polymorphism (PCR-RFLP) 
and Sanger sequencing were used to investigate 
344 HBV-infected patients from three clinical 
groups (chronic hepatitis, acute viral hepatitis, 
and hepatocellular carcinoma) as well as 102 
healthy controls. Haplotype and genotype 
relationships with illness development were 
evaluated using SVM-based prediction models 
and logistic regression. The results show that the 
bAt haplotype and the Apa-I CC genotype are 
independent predictors of the progression of 
HBV infection. With 90% accuracy, the SVM 
model predicts the disease stage and provides 
important information about the prognosis of liver 
disease associated with HBV. 
 

Using data from the UCI repository, [20] offers a 
thorough framework for machine learning-based 
Hepatitis C liver disease stage prediction. It 
presents an adaptive approach to data 
preprocessing that takes into account the 
properties of the dataset. It includes features 
selection, scaling, balancing, log normalization, 
mean imputation, and outlier rejection. To further 
improve prediction accuracy, ensemble models 
that include fundamental machine learning 
classifiers are suggested. The refined model 
surpasses prior research with remarkable 
training and testing accuracies of 99.87% and 
99.80%, respectively. Additionally, an intuitive 
user interface is designed to help medical 
practitioners quickly identify risk factors for liver 
disease. 
 

Using genome-scale metabolic models tailored to 
each patient, [21] investigates metabolic 
reprogramming in liver illness. Increased 
nucleotide and glycerophospholipid pathway 
fluxes are shown in alcohol-associated liver 
disease, but higher fatty acid oxidation and bile 
acid recycling are seen in non-alcohol-associated 
liver illness. Considerable differences in 
metabolism between individuals underscore the 
necessity of tailored therapeutic strategies. 
 

Ganie & Dutta Pramanik, [22] designs a chronic 
liver disease (CLD) prediction model using seven 
boosting algorithms, including Gradient Boosting 
(GB), AdaBoost, LogitBoost, SGBoost, XGBoost, 
LightGBM, and CatBoost. Gradient Boosting 
emerges as the top performer, outperforming 
other algorithms in all metrics on Liver Disease 
Patient Dataset (LDPD) and Indian Liver Disease 
Patient Dataset (ILPD). The GB model achieves 
accuracy rates of 98.80% and 98.29% for LDPD 
and ILPD, respectively, surpassing state-of-the-
art methods. 
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Table 1. Literature survey on healthcare and liver disease studies 
 

Reference Focus Area Methodology/Approach Key Findings 

Wang et al., 
2024 

Healthcare reform 
& spending 

Machine learning (Random 
Forest, SVR) & statistical 
forecasting 

Urgent need for reform; 
Random Forest & ARIMA 
similarly effective in 
forecasting future spending 

Yeganeh et 
al., 2024 

Early detection in 
healthcare 
processes 

Multistage Process Monitoring 
tool (ML + statistical control 
charts) 

Effective monitoring; 
Exceptional safety & 
detection in thyroid cancer 
surgery 

Zini & 
Carcasci, 
2024 

Energy use in 
Italian hospital 

Feature selection & artificial 
neural networks 

Reliable method to manage 
energy usage; Identifies 
unusual patterns in energy 
consumption 

Kalita et al., 
2023 

VDR gene 
polymorphisms in 
HBV-related 
disease 

PCR-RFLP, Sanger 
sequencing, SVM-based 
prediction models, logistic 
regression 

bAt haplotype & Apa-I CC 
genotype are predictors for 
HBV infection progression; 
90% prediction accuracy 

Ahad et al., 
2024 

Hepatitis C liver 
disease prediction 

Adaptive data preprocessing, 
feature selection, ensemble 
models 

High training & testing 
accuracies of 99.87% & 
99.80%; User-friendly 
interface for risk 
assessment 

Manchel et 
al., 2022 

Metabolic 
reprogramming in 
liver disease 

Genome-scale metabolic 
models 

Distinct metabolic pathways 
between alcohol-associated 
& non-alcohol-associated 
liver diseases 

Ganie & 
Dutta 
Pramanik, 
2024 

Chronic liver 
disease prediction 

Seven boosting algorithms 
(GB, AdaBoost, LogitBoost, 
SGBoost, XGBoost, LightGBM, 
CatBoost) 

GB as top performer with 
98.80% & 98.29% accuracy 
on LDPD & ILPD datasets; 
Surpasses existing methods 

 
Table 1 summarizes key studies in healthcare 
and liver disease research, covering areas like 
healthcare reform, early detection tools, energy 
use in hospitals, genetic factors in HBV-related 
liver disease, Hepatitis C prediction models, 
metabolic reprogramming, and chronic liver 
disease prediction algorithms. 
 

3. METHODOLOGY 
 

The methodology section outlines the systematic 
approach adopted to conduct the study, ensuring 
its validity, reliability, and reproducibility. This 
section elucidates the research design, data 
collection, preprocessing, modeling techniques, 
and evaluation metrics employed to achieve the 
study's objectives. 
 

3.1 Data Collection 
 
The dataset used for this study was sourced from 
an external database on Kaggle, specifically the 
Liver Patient Dataset. This dataset comprises 
clinical and demographic information of patients, 

including age, gender, and various biochemical 
markers relevant to liver function. The dataset 
consists of a total of 30691training records and 
2109 test records, providing a comprehensive 
representation of liver disease cases. Each 
record in the dataset contains 10 variables, 
namely Age, Gender, Total Bilirubin, Direct 
Bilirubin, Alkphos Alkaline Phosphotase, Sgpt 
Alamine Aminotransferase, Sgot Aspartate 
Aminotransferase, Total Protiens, ALB Albumin, 
and A/G Ratio Albumin and Globulin Ratio, along 
with a target variable indicating the presence or 
absence of liver disease (Result: 1 for Liver 
Patient, 2 for Non-Liver Patient). This dataset 
offers valuable insights into the factors 
contributing to liver disease and serves as a 
foundation for developing predictive models 
using machine learning algorithms for early 
detection and intervention. 
 

3.2 Data Preprocessing 
 

Data preprocessing is a crucial step in preparing 
the dataset for analysis and model development. 
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For the Liver Patient Dataset obtained from 
Kaggle, several preprocessing steps were 
performed to ensure the quality and reliability of 
the data. Initially, the dataset was inspected for 
missing values in any of the attributes. Missing 
values, if identified, were either imputed using 
techniques such as mean, median, or mode 
imputation, or the corresponding records were 
removed based on the extent of missingness and 
their impact on the analysis. 
 

Next, the dataset underwent feature scaling to 
standardize or normalize the numerical variables, 
ensuring that all features contribute equally to the 
model training process without being 
disproportionately influenced by their scales. 
Categorical variables like Gender were encoded 
using one-hot encoding to convert them into a 
numerical format suitable for machine learning 
algorithms. 
 

Furthermore, the dataset was split into training 
and test sets in a stratified manner to maintain 
the class distribution of the target variable across 
both sets. This division ensures that the 
predictive models are evaluated on unseen data, 
providing a more realistic assessment of their 
performance and generalization capabilities. 
Overall, these preprocessing steps aim to 
enhance the quality of the dataset, mitigate 
potential biases, and optimize the input features 
for subsequent model training and evaluation. 
 

3.3 Support Vector Machine (SVM) 
 

Support Vector Machine is a supervised machine 
learning algorithm used for classification and 
regression tasks. It works by finding the optimal 
hyperplane that maximizes the margin between 
different classes in the feature space. 
Mathematically, SVM aims to solve the 
optimization problem by minimizing the hinge 
loss function while penalizing misclassifications. 
Parameter tuning is crucial for optimizing SVM's 
performance, involving techniques like grid 
search or random search to fine-tune 
hyperparameters such as the kernel type (linear, 
polynomial, or radial basis function), C 
(regularization parameter), and gamma (kernel 
coefficient). For model training, the preprocessed 
dataset is used to fit the SVM algorithm, where 
the optimal hyperparameters determined through 
tuning are applied to achieve the best 
classification results. 
 

3.4 Decision Tree 
 

Decision Tree is a supervised learning algorithm 
used for both classification and regression tasks. 

It builds a tree-like structure by recursively 
partitioning the feature space based on certain 
criteria to make decisions. The splitting criteria 
can be Gini impurity or entropy, aiming to 
maximize the homogeneity of the target variable 
within each node. Tree construction involves 
feature selection, determining the best features 
for splitting, and stopping rules to prevent 
overfitting. Pruning techniques may also be 
applied to simplify the tree and improve 
generalization. For model training, the 
preprocessed dataset is utilized to construct an 
optimal decision tree based on the selected 
criteria and stopping rules. 
 

3.5 Logistic Regression 
 

Logistic Regression is a supervised learning 
algorithm primarily used for binary classification 
tasks. It estimates the probability that a given 
instance belongs to a particular class using a 
logistic or sigmoid function. The cost function, 
often minimized using optimization methods like 
gradient descent, quantifies the difference 
between predicted probabilities and actual labels. 
Feature selection techniques, such as forward 
selection or recursive feature elimination, are 
employed to identify the most relevant predictors 
for liver disease prediction. To prevent overfitting 
and enhance model generalization, regularization 
techniques like L1 and L2 regularization are 
applied. Model training involves fitting the logistic 
regression algorithm to the preprocessed dataset 
to establish a predictive relationship between 
features and the target variable. 
 

3.6 Evaluation Metrics 
 

In assessing the predictive performance of the 
algorithms, various evaluation metrics were 
employed. 
 

● Accuracy: Measures the proportion of 
correctly predicted instances. 

● Precision: Indicates the ratio of true 
positive predictions to the total positive 
predictions. 

● Recall: This represents the ratio of true 
positive predictions to the actual positives 
in the dataset. 

● F1-score: Harmonic mean of precision and 
recall, providing a balanced measure. 

● Receiver Operating Characteristic - Area 
Under the Curve (ROC-AUC) curve: 
Graphical representation of the true 
positive rate against the false positive rate, 
illustrating the model's discrimination 
ability. 
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Additionally, to obtain reliable performance 
estimates, k-fold cross-validation was 
implemented. This technique partitions the 
dataset into 'k' subsets, ensuring each subset 
serves as a test set at least once, thus mitigating 
biases and producing robust model 
evaluations.7.  
 

3.7 Statistical Analysis 
 

Statistical Tests: Application of statistical tests to 
compare the performance of SVM, Decision 
Tree, and Logistic Regression algorithms and 
determine significant differences. 
 

Confidence Intervals: Calculation of confidence 
intervals to quantify the uncertainty and variability 
of the performance metrics estimated from the 
experimental results. 
 

By following this methodology, the study aims to 
conduct a systematic and rigorous comparative 
analysis of SVM, Decision Tree, and Logistic 
Regression algorithms for liver disease 
prediction, ensuring the reliability, reproducibility, 
and generalizability of the research findings. 
 

4. RESULTS AND DISCUSSION 
 

The result and discussion section of this study 
serves as a critical juncture where the outcomes 
of the implemented machine learning algorithms 
are analyzed, compared, and interpreted in the 

context of predicting liver disease. This section 
aims to shed light on the performance metrics, 
strengths, weaknesses, and potential 
applications of the Support Vector Machine 
(SVM), Logistic Regression, and Decision Tree 
algorithms based on the Kaggle Liver Patient 
Dataset. 
 
Table 2 provides a comprehensive overview of 
the liver disease dataset's key features. This 
statistical summary is crucial for understanding 
the dataset's distribution, central tendency, and 
variability, which are fundamental aspects of 
exploratory data analysis and subsequent 
machine learning modeling. 
 
Starting with the count column, it shows the 
number of non-null or available values for each 
feature. A complete dataset would ideally have 
the same count across all features, indicating no 
missing or null values. For instance, the "Age of 
the patient" feature has 30,691 non-null values, 
suggesting a complete dataset with no missing 
age entries. 
 
Moving to the mean column, it offers the average 
value for each feature. The mean age of the 
patients is approximately 44.11 years. This value 
provides a central measure around which the 
data points tend to cluster, giving an initial 
understanding of the dataset's central tendency 
for age. 

 
Table 2. Descriptive statistics of the dataset 

 

  Count Mean Std Min 25% 50% 75% Max 

Age of the patient 30691 44.11 15.98 4.00 32.00 45.00 55.00 90.00 

Gender of the 
patient 

30691 0.75 0.44 0.00 0.00 1.00 1.00 1.00 

Total Bilirubin 30691 3.37 6.19 0.40 0.80 1.00 2.80 75.00 

Direct Bilirubin 30691 1.53 2.84 0.10 0.20 0.30 1.40 19.70 

Alkphos Alkaline 
Phosphotase 

29895 289.08 238.54 63.00 175.00 209.00 298.00 2110.00 

Sgpt Alamine 
Aminotransferase 

30153 81.49 182.16 10.00 23.00 35.00 62.00 2000.00 

Sgot Aspartate 
Aminotransferase 

30229 111.47 280.85 10.00 26.00 42.00 88.00 4929.00 

Total Protiens 30228 6.48 1.08 2.70 5.80 6.60 7.20 9.60 

ALB Albumin 30197 3.13 0.79 0.90 2.60 3.10 3.80 5.50 

A/G Ratio 
Albumin and 
Globulin Ratio 

30132 0.94 0.32 0.30 0.70 0.90 1.10 2.80 

Result 30691 0.29 0.45 0.00 0.00 0.00 1.00 1.00 
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The Standard Deviation (std) column is 
particularly insightful as it quantifies the amount 
of variation or dispersion of the values around 
the mean. A higher standard deviation, such as 
the 6.19 for "Total Bilirubin," indicates a wider 
spread of bilirubin levels among patients. This 
information is vital for identifying the range of 
values and the degree of variability, which can 
influence the model's performance and 
interpretation. 
 
The min and max columns display the minimum 
and maximum values observed for each feature, 
respectively. For instance, the youngest patient 
in the dataset is 4 years old, while the oldest is 
90 years. These values establish the dataset's 
range, providing insights into the age distribution 
of the patients. 
 
The 25%, 50% (median), and 75% columns 
represent quartile values, which divide the data 
into four equal parts. The median or 50% value, 
which is the middle value when all observations 
are sorted, offers a measure of the dataset's 
central tendency that is less affected by outliers 
compared to the mean. The quartile values, 
along with the median, give a clear picture of the 
data distribution and help in understanding the 
spread of values and potential skewness or 
outliers. 
 
This descriptive statistics Table 2 serves as a 
foundational step in data exploration, providing 

insights into the dataset's distribution, variability, 
and central tendency for each feature. 
Understanding these statistical measures is 
essential for preprocessing, identifying potential 
data issues, and guiding the selection and tuning 
of machine learning models. The insights gained 
from this table inform subsequent data 
preprocessing steps and model development 
processes, ensuring a more informed and 
effective approach to analyzing liver disease 
prediction using machine learning algorithms. 
 
Fig. 1 visually represents the distribution of liver 
disease patients based on gender. The pie chart 
displays a breakdown indicating that 
approximately 74.58% of the liver disease 
patients in the dataset are male, while the 
remaining percentage corresponds to female 
patients. 
 
This visual representation offers a clear and 
concise overview of the gender distribution 
among liver disease patients. The predominance 
of male patients in the dataset suggests a 
potential gender-based difference or 
susceptibility to liver diseases, which could be 
further explored in the analysis.  Understanding 
the gender distribution is essential in medical 
research as it can influence disease prevalence, 
risk factors, and treatment outcomes. This figure 
highlights the importance of considering gender-
specific factors and differences in liver disease 
diagnosis, treatment, and prevention strategies. 

 

 
 

Fig. 1. Gender-wise liver patient information 
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In the context of the liver disease prediction 
study, this gender-wise distribution insight could 
guide feature selection, model training, and 
evaluation strategies to account for potential 
gender-related variations and enhance the 
model's accuracy and effectiveness. 
 
Fig. 2 represents an age distribution of liver 
disease patients, it displays a histogram chart 
showing the frequency of patients across 
different age groups. A typical age-wise 
distribution for liver disease shows a higher 
prevalence of the disease among middle age 
groups, reflecting the cumulative effects of 
lifestyle factors, exposure to risk factors like 
alcohol consumption or hepatitis, and age-related 
changes in liver function. There also be a smaller 
peak or increase in younger age groups due to 
factors like congenital liver diseases or early-
onset liver conditions. 
 
Table 3 offers a detailed evaluation of the 
Support Vector Machine (SVM) model’s 

performance in predicting liver disease based on 
a test dataset of 2,109 records. The precision 
scores of 0.88 for liver patients (class 1) and 0.76 
for non-liver patients (class 2) indicate that the 
SVM is accurate approximately 88% and 76% of 
the time when predicting these respective 
classes. Similarly, the recall scores of 0.91 for 
class 1 and 0.69 for class 2 suggest that the 
SVM correctly identifies about 91% of actual liver 
disease cases and 69% of non-liver disease 
cases. The F1-scores, which combine precision 
and recall into a single metric, are 0.89 for class 
1 and 0.72 for class 2, reflecting a balanced 
performance in capturing both classes 
effectively. The overall accuracy of the SVM 
model stands at 85%, demonstrating its 
capability to correctly predict the liver disease 
status for a majority of the patients in the test 
dataset. The macro and weighted average 
metrics further support the model’s consistent 
and relatively high performance across all 
classes, considering both equal and class-
weighted contributions. 

 

 
 

Fig. 2. Age-wise liver patient information 
 

Table 3. Classification report for SVM 
 

  Precision   Recall  F1-score   Support 

1 0.88 0.91 0.89 1650 
2 0.76 0.69 0.72 459 
Accuracy                              0.85 2109 
Macro Avg     0.82 0.8 0.81 2109 
Weighted Avg      0.85 0.85 0.85 2109 
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Table 4. Classification report for logistic regression 
 

  Precision    Recall   F1-score  Support 

1 0.85 0.88 0.87 1650 
2 0.67 0.6 0.63 459 
Accuracy                              0.82 2109 
Macro Avg    0.76 0.74 0.75 2109 
Weighted Avg     0.82 0.82 0.82 2109 

 
Table 5. Classification report for decision tree 

 

  Precision   Recall F1-score  Support 

1 0.8 0.83 0.81 1650 
2 0.62 0.57 0.6 459 
Accuracy                           0.79 2109 
Macro Avg      0.71 0.7 0.71 2109 
Weighted Avg     0.78 0.79 0.78 2109 

 
The “Table 4: Classification Report for Logistic 
Regression” presents a comprehensive 
evaluation of a Logistic Regression model’s 
performance in predicting liver disease, utilizing a 
test dataset comprising 2,109 records. The 
model showcases promising precision scores of 
0.85 for liver patients and 0.67 for non-liver 
patients, indicating its ability to accurately identify 
around 85% and 67% of the respective classes. 
Concurrently, the recall scores stand at 0.88 for 
liver patients and 0.60 for non-liver patients, 
highlighting the model’s capability to capture 
approximately 88% of actual liver disease cases 
and 60% of non-liver disease cases. Balancing 
precision and recall, the F1-scores are 0.87 for 
liver patients and 0.63 for non-liver patients, 
showcasing a relatively harmonized performance 
across both classes. With an overall accuracy of 
82%, the model effectively predicts the liver 
disease status for a majority of the patients. 
Furthermore, the macro and weighted average 
metrics, with F1-scores of 0.75 and 0.82 
respectively, affirm the model’s consistent 
performance across all classes, albeit with a 
slight edge when considering class distribution. 
Thus, the Logistic Regression model 
demonstrates a commendable capability in liver 
disease prediction, though there’s potential for 
enhancement, particularly in predicting non-liver 
disease cases. 
 
Table 5 comprehensively evaluates the Decision 
Tree model's efficacy in predicting liver disease, 
utilizing a test dataset of 2,109 records. With a 
precision score of 0.8 for liver patients and 0.62 
for non-liver patients, the model displays a 
commendable accuracy in classifying these 
groups around 80% and 62% of the time, 
respectively. Additionally, the recall metrics stand 

at 0.83 for liver patients and 0.57 for non-liver 
patients, indicating the model's ability to identify 
approximately 83% of true liver disease cases 
and 57% of non-liver disease instances. 
Balancing these metrics, the F1 scores for liver 
patients and non-liver patients are 0.81 and 0.60, 
respectively. These scores reflect a relatively 
harmonized performance across classes. The 
model's overall accuracy is reported at 79%, 
implying its capability to accurately predict the 
liver disease status for a significant portion of the 
test dataset. Moreover, the macro and weighted 
average metrics further confirm the model's 
consistent performance across all classes, albeit 
slightly favoring the liver patient class due to its 
higher representation in the dataset. The 
Decision Tree model showcases a promising 
potential in liver disease prediction, with 
opportunities for further refinement to achieve 
optimal performance across both classes. 

 
4.1 Comparative Analysis 
 

● Precision: SVM achieves the highest 
precision for both classes, indicating 
superior accuracy in classifying liver 
disease cases. Logistic Regression follows 
closely, while Decision Tree lags slightly 
behind. 

● Recall: SVM also leads in recall for the 
liver patient class, while Logistic 
Regression and Decision Tree 
demonstrate comparable performance. 
However, Decision Tree shows lower recall 
for the non-liver patient class. 

● F1-Score: SVM and Logistic Regression 
exhibit similar F1-scores, reflecting a 
balanced performance between precision 
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and recall. Decision Tree trails with slightly 
lower scores for both classes. 

● Accuracy: SVM boasts the highest overall 
accuracy of 85%, followed by Logistic 
Regression at 82% and Decision Tree at 
79%. 

● Consistency: SVM demonstrates the most 
consistent performance across all metrics, 
followed by Logistic Regression and then 
Decision Tree. 

 
While all three algorithms show promise in liver 
disease prediction, SVM stands out for its 
superior precision, recall, and overall accuracy. 
Logistic Regression also performs commendably 
but falls slightly behind SVM in terms of precision 
and recall. Decision Tree, although effective, 
exhibits comparatively lower precision and recall, 
indicating room for improvement. Therefore, 
SVM appears to be the most suitable algorithm 
for accurate and reliable liver disease prediction 
based on the provided comparative analysis. 
 
The study employed three machine learning 
algorithms—Support Vector Machine (SVM), 
Logistic Regression, and Decision Tree—to 
predict liver disease based on the Kaggle Liver 
Patient Dataset. 
 
SVM: Achieved an accuracy of 85% with a 
precision of 88% and recall of 91% for class 1 
(Liver Patient), and 76% precision and 69% 
recall for class 2 (Non-Liver Patient). 
Logistic Regression: Demonstrated an accuracy 
of 82%, with a precision of 85% for class 1 and 
67% for class 2. 
 
Decision Tree: Attained an accuracy of 79%, with 
80% precision and 83% recall for class 1, and 
62% precision and 57% recall for class 2. 
 
SVM outperformed the other algorithms with the 
highest accuracy and balanced performance 
metrics for both classes. Its margin-based 
classification is effective for high-dimensional 
data like medical datasets, making it suitable for 
complex classification tasks. 
 
Logistic Regression showed competitive results 
but had lower recall values compared to SVM. 
This algorithm's probabilistic nature makes it 
interpretable and straightforward, but its linear 
decision boundary might limit its performance on 
non-linear data distributions. 
 
Decision Tree exhibited the lowest performance 
among the three algorithms. While decision trees 

offer interpretability and are easy to visualize, 
they can be prone to overfitting, especially with 
complex datasets. The tree's depth and splitting 
criteria might require further optimization to 
enhance its predictive accuracy. 
 
Overall, SVM emerged as the most effective 
algorithm for liver disease prediction in this study, 
offering a balance between accuracy, precision, 
and recall. However, each algorithm's 
performance indicates its suitability for specific 
scenarios and datasets. Future research could 
focus on ensemble methods or hybrid models 
combining these algorithms to harness their 
individual strengths and mitigate weaknesses, 
aiming to achieve even higher predictive 
accuracy and robustness in liver disease 
prediction. 
 

5. CONCLUSIONS 
 
In this comprehensive study comparing Support 
Vector Machine (SVM), Logistic Regression, and 
Decision Tree algorithms for liver disease 
prediction, SVM emerges as the most effective 
and reliable model. With the highest precision, 
recall, F1-score, and overall accuracy of 85%, 
SVM demonstrates superior predictive 
capabilities, making it a robust tool for early 
detection and intervention in liver disease cases. 
Logistic Regression also proves to be a viable 
alternative with an overall accuracy of 82%, 
although it falls slightly behind SVM in precision 
and recall. On the other hand, the Decision Tree, 
while effective, exhibits lower precision and 
recall, indicating potential areas for 
enhancement. 
 
The study underscores the critical importance of 
algorithm selection in healthcare applications, 
emphasizing the need for models that prioritize 
accuracy and consistency. SVM's exceptional 
performance highlights its potential to 
significantly impact clinical decision-making, 
facilitating timely diagnosis and treatment 
planning, ultimately improving patient outcomes 
and reducing healthcare costs. However, further 
research and validation with larger and more 
diverse datasets are recommended to confirm 
these findings and explore opportunities for 
refining and optimizing the algorithms' 
performance. Additionally, integrating advanced 
machine learning techniques and ensemble 
methods may further enhance predictive 
accuracy and robustness, paving the way for the 
development of more advanced and reliable liver 
disease prediction models in the future. 
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Future work will focus on refining and optimizing 
the selected algorithms by incorporating 
advanced machine learning techniques and 
ensemble methods. Additionally, validation with 
larger and diverse datasets, and exploration of 
feature engineering and selection strategies will 
be conducted to enhance predictive accuracy 
and robustness in liver disease prediction 
models. 
 

6. LIMITATIONS AND FUTURE DIREC-
TIONS 

 
Every algorithm has its limitations, and this 
section candidly discusses the challenges faced, 
such as data imbalance, overfitting, or the 
interpretability of complex models. Furthermore, 
it sets the stage for future research directions, 
proposing ways to overcome current limitations 
and enhance the algorithms' efficacy and 
applicability in clinical settings. 
 
By meticulously analyzing and discussing the 
results, this section aims to offer a 
comprehensive understanding of the selected 
machine learning algorithms' performance in 
predicting liver disease. It serves as a valuable 
resource for healthcare professionals, 
researchers, and policymakers to make informed 
decisions, develop effective intervention 
strategies, and pave the way for future 
advancements in leveraging machine learning for 
healthcare applications. 
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