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Abstract 
In this paper, we propose the nonconforming virtual element method 
(NCVEM) discretization for the pointwise control constraint optimal control 
problem governed by elliptic equations. Based on the NCVEM approximation 
of state equation and the variational discretization of control variables, we 
construct a virtual element discrete scheme. For the state, adjoint state and 
control variable, we obtain the corresponding prior estimate in H1 and L2 
norms. Finally, some numerical experiments are carried out to support the 
theoretical results. 
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1. Introduction 

The main purpose of this paper is to discuss the prior error analysis of the 
NCVEM discretization for the elliptic optimal control problem. Consider the 
following optimal control problems with state constrained: 

( ) ( )2 21min , : d d
2 2ad

dz Z
J q z q q x z sγ

Ω Ω∈
= − +∫ ∫               (1.1) 

subject to  

in ,
0 on ,

q f z
q
−∆ = + Ω
 = ∂Ω

                      (1.2) 

where ( ),J q z  is the objective functional, q is the state variable, dq  is the de-
sired state and γ  is a positive constant parameter. The aim of the control is to 
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make the state variable q as close as to the desired state dq . Ω is a bounded po-
lygon on R2. The admissible set of the control is given by  

( ) ( ){ }2 : a.e. in with , and .ad a b a b a bZ z L z z x z z z z z= ∈ Ω ≤ ≤ Ω ∈ ≤  

The above state constrained optimal control models perform an increasingly 
important role in many science and engineering fields. For this reason,the re-
search on optimal control problems becomes meaningful. Different types of op-
timal control problems are solved by finite elements method (FEM) [1] [2], dis-
continuous Galerkin method [3], spectral method [4] so on. In [5] error esti-
mates of approximate local optimal control for semi-linear elliptic equation with 
finite many state constraints were given. In [6] A control vector was used instead 
of a control function to establish a high order error estimate for similar Settings. 
In [7], these results were generalized to a less regular setting for the states and 
the convergence of FEM approximations for semilinear distribution and boun-
dary control problems was obtained. In [8], a discretization concept was investi-
gated, which used the relationship between adjoint state and control to discre-
tized control variables. They discretized the equation of state using linear FEM 
and proved the convergence of the equation of state on L2 norm. On the other 
hand, for the optimal control problems of elliptic equations, Stokes equations 
and parabolic equations, the corresponding posteriori error estimates of the 
conforming FEM were given in [9] [10] [11]. 

The basic driving force of the VEM comes from the processing of arbitrarily 
shaped polygons [12]. The traditional meaning of finite element or finite differ-
ence requires discretization of physical entities with significant geometric fea-
tures to solve, which to some extent loses the “macro” description of entity geo-
metric information. However, in practical engineering requirements, more and 
more calculations involve dealing with specific geometric structures, such as the 
deformation of non convex polygons and the contact of complex structures. 
Compared to the FEM, the VEM also requires discretization of the geometric 
space, approximating the actual problem by forming and solving a system of li-
near equations. The difference lies in: 1) The approximation function used in the 
finite element method is an explicit polynomial function; In the VEM, in addi-
tion to polynomial functions, approximate functions also have functions that are 
continuous polynomials at the boundary of the element and satisfy certain con-
ditions inside the element (such as polynomials after Laplace operation). These 
functions are not explicitly expressed in the element domain; 2) In the FEM, the 
degrees of freedom are all values of approximate functions. The VEM avoids 
calculating the values of approximate functions inside the element when forming 
a stiffness matrix by defining reasonable degrees of freedom; 3) The stiffness 
matrix of the finite element method only contains one term, while the stiffness 
matrix of the virtual element method includes the coordination matrix and the 
stability matrix to ensure the convergence of the calculation. 

Due to these advantages of VEM, the VEM for solving various partial diffe-
rential equations has been proposed and developed, such as linear elasticity [13], 
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Stokes or Navier-Stokes equations [14] [15], Cahn-Hilliard equations [16], and 
so on. Back to the NCVEM proposed in this paper. The NCVEM was first in-
troduced for elliptic problems in [17]. In the past years, it has been successfully 
used to solve different models [18]-[23]. But so far, NCVEM has not been used 
to solve the elliptic optimal control problem. In this paper, NCVEM is intro-
duced to approach the elliptic optimal control problem with pointwise control 
constraints. Based on NCVEM approximation (through VEM projection opera-
tor), a VEM discrete scheme is constructed. Then we obtain the corresponding 
priori estimate for three variables in H1 and L2 norms. 

Throughout this paper, for an open bounded domain ω  in Ω, standard no-
tation ,s ω⋅  and ,s ω⋅  denote seminorm and norm, respectively, in the Sobo-
lev space ( )sH ω . when 0m = , ( ) ( )0,P pL Wω ω=  ( )0,,

ω
⋅ ⋅  and 0,ω⋅  denote 

the inner product and the norm of ( )pL ω . When ω  is the whole domain Ω, 
the subscript can be omitted. Let ( )k E  denote the space of polynomials of 
degree at most 0K ∈  on E. Usually, ( )1 0E− = . 

The aim of this paper is to construct a NCVEM for constrained optimal con-
trol problems. The rest of this paper is as follows. In the next section, we intro-
duce some preliminaries knowledge about VEM. Then, the continuous 
first-order optimality system of elliptic optimal control problem are introduced. 
In Section 3, we derive the VEM discrete scheme, discrete first-order optimality 
condition. Then the priori error estimates are derived both for three variables in 
H1 and L2 norm. In Section 4, we show a numerical example to verify our theo-
retical analysis. Finally, we make some summaries in Section 5. 

2. Preliminaries Knowledge 

In this section, we mainly introduce local projection operators and the defini-
tions of virtual element space. 

Fristly, suppose h  is a family of decompositions of the domain Ω divided into 
star-shaped polygons E. For any hE∈ , max

hE Eh h∈=   and ( )Eh diam E=  
The set of edges s of h  is denoted by h , which is subdivided into the set of 
boundary edges { }: :bdry

h hs s= ∈ ⊂ ∂Ω   and the set of internal edges 
int bdry
h h h=   . Finally, sh  denote the length of the edge s. 
Before introducing the virtual element space, we first make the following as-

sumptions about the grid. 
Assumption 2.1 (See [24]) (mesh regularity) We assume that there exists a 

real number 0ρ >  such that, for every hE∈  satisfies the following two as-
sumptions. 

1) Every element E is star-shaped with respect to a circle with a radius Ehρ≥  

Ehρ ; 
2) Every edge s of E has length s Eh hρ≥ ;  
Next we give the definition of the projection operator.  
Definition 2.1 (See [24]) Define the L2 projection operator  

( ) ( )0 2
1 1: L E EΠ →   as follows:  
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( ) ( ) ( )0 2
1 10,

, 0 , .h h hE
w w q w L E q EΠ − = ∀ ∈ ∀ ∈           (2.1) 

Definition 2.2 (See [24]) Define the H1 projection operator  
( ) ( )1

1 1: H E E∇Π →   as follows:  

( )( ) ( ) ( )1
1 10,

, 0 ,h h hE
w w p w H E p E∇∇ Π − ∇ = ∀ ∈ ∀ ∈  

plus  

( )1 d 0.h hE
w w s∇

∂
−Π =∫  

A finite dimensional function space ( )1
h hW H⊂  , where  

( ) ( ) ( ){ }1 2 1
|: :h E hH w L w H E E= ∈ Ω ∈ ∀ ∈             (2.2) 

(not necessarily a subspace of ( )1
0H Ω ) 

We denote by *
l  the set of scaled polynomials  

( )* : with , ,
s

dE
l

E

x xE s s l
h

  − = ∈ =  
   

  

The global virtual element space in each case is constructed from [18] as a 
subspace of an infinite dimensional space W, defined differently for the VEM 
and NCVEM. For the VEM we simply take ( )1

0W H= Ω . For the NCVEM, we 
introduce the subspace ( )1,nc

k hH   of the nonconforming broken Sobolev space 
( )1

hH   defined in (3.1), by imposing certain weak inter-element continuity 
requirements such that  

( ) ( )
 

( ){ }1 1
1: : d 0, , .k h h s k hs

W H w H w q s q s s−= = ∈ ⋅ = ∀ ∈ ∀ ∈∫ n     

The jump operator 
 

⋅  across a mesh interface hs∈  is defined as follows 
for ( )1

hv H∈  . 
If int

hs∈ , 
  s sw w w+ + − −= +n n  there exist E+  and E−  such that  

S E E+ −⊂ ∂ ∩∂ . Denote by w±  the trace of 
E±w  on s from within E±  and 

by s
±n  the unit outward normal on s from E± . 

If bdry
hs∈ , 

  sw w= n , w representing the trace of v from within the ele-
ment E, having s as an interface and sn  is the unit outward normal on s from E. 

The modified virtual element space from is defined as  

{ }: : ,h h h hEW W W W E= ∈ ∀ ∈  

where 

( ) ( ) ( ){ }* *
1 1 0: : , 0,E E

h h h h h E
W w w w q q E E∇= ∈ −Π = ∀ ∈ ∪    

( ) ( ) ( )1
1 0: : and , .E h

h h h
ww H E w E s s E∂ = ∈ ∆ ∈ ∈ ∀ ⊂ ∂ ∂ n

    

We can see that the space hW  is not a subspace of ( )1
0H Ω , so we need to 

define a discrete norm  

2

1, 1,

1 2

,
h

hh E
E

w w w W
∈

 
= ∀ ∈ 
 
∑

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Similar to reference [18], we define the degrees of freedom as  

( )0
1 d , ,

e
e

wp s p e e E
h

∀ ∈ ∀ ⊆ ∂∫                  (2.3) 

( )1
1 d , .

E
wp x p E

E −∀ ∈∫                     (2.4) 

Using the above degrees of freedom (2.3) and (2.4), projection 0
1Π  and 1

∇Π  
are exactly computable. 

Next we introduce the continuous first-order optimality system  
Theorem 2.1 Let ( ),y u  be the the solution of (1.1) and (1.2). Then the fol-

lowing first-order optimality system holds  

, in ,
0, on ,

q f z
q
−∆ = + Ω
 = Γ

 

and  

, in ,
0, on ,

dr q q
r
−∆ = − Ω
 = Γ

 

where p is called the adjoint state variable and  

( )( )d 0, .adz r w z x w Zγ
Ω

+ − ≥ ∀ ∈∫                (2.5) 

Let 

( ) { }{ }max ,min ,
adz a bR z z z z=                 (2.6) 

denotes the pointwise projection onto the admissible set adZ . Similar to the 
discussion in Becker et al. [25], (2.6) is equivalent to 

1 .
adZZ R p

γ
 

= − 
 

 

Let ( ) ( ), ,B q v q v= ∇ ∇ . Then the bilinear form of the continuous first-order 
system reads: 

( ) ( ) ( )
( ) ( ) ( )

( )

1
0
1
0

, , , ,
, , , ,

, 0, .
d

ad

B q v f z v v H
B r v q q v v H

z r w z v Zγ

 = + ∀ ∈ Ω


= − ∀ ∈ Ω
 + − ≥ ∀ ∈

              (2.7) 

From classical Scott-Dupont theory [26] we first introduce a local estimate.  
Lemma 2.1 For any ( )sw H∈ Ω , there is a piecewise polynomial ( )1 hwπ ∈   

satisfying  

,,
, ,s m

K hs Em Kw w Ch w Eπ
−− ≤ ∀ ∈              (2.8) 

where 0 2m s≤ ≤ ≤   
For any function ( )1

0w H∈ Ω , using degrees of freedom (2.3) and (2.4) we 
can define the interpolation h hI w W∈ . We denote by iϕ  the ith degrees of 
freedom given by (2.3) and (2.4), where 1, , Ei N=   and EN  is the number of 
degrees of freedom (2.3) and (2.4). Then we have 

( ) ( ) , 1, , E
i h iI w w i Nϕ ϕ= =   
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From [23] the following lemma provides the interpolation error estimation of 
the nonconforming virtual element  

Lemma 2.2 For any ( ) ( )1
0

sw H H∈ Ω ∩ Ω  and 1 2s≤ ≤ , we have  

,1,
, .s

h E h E hs EE Ew I w h w I w Ch w E− + − ≤ ∀ ∈            (2.9) 

3. Virtual Element Approximation 
3.1. Virtual Element Discrete Scheme for State Equation 

The bilinear form of the state equation is as follows 

( ) ( ) ( ) ( )1
0, , : , .B q w f z w w w H= + = ∀ ∈ Ω  

The corresponding virtual element discrete scheme of (1.2) can be defined by  

( )( ) ( ), , ,h h h h h h hB q z w w w W= ∀ ∈  

where  

( )( ) ( )( )

( )( ) ( ) ( )( )( )
( ) ( )

1 1 1 1

0
1 0,

, : ,

, , ,

:= , .

h

h

h

E
h h h h h h

E

E E
h h h h h h

E

h h h EE

B q z w B q z w

B q z w S q z q z w w

w f z w

∈

∇ ∇ ∇ ∇

∈

∈


=


 = Π Π + −Π −Π

 + Π


∑

∑

∑








 

There are many choices for ES , and following [12] we take the simple choice  

( ) ( )( )

( ) ( )( ) ( )

1 1

1 1
1

,

dof dof
E

E
h h h h

N

y h h y h h
y

S q z q z v w

q z q z w w

∇ ∇

∇ ∇

=

−Π −Π

= −Π −Π∑
 

such that it satisfies the following property:  

( ) ( ) ( )* 0
* 1, , , , with 0.E E E E

h h h h h h h h hB w w S w w B w w w W wα α≤ ≤ ∀ ∈ Π =  

Here EN  is the number of degrees of freedom on the element E and denotes 
the ( ) ( )( )0

1dof y h hr z q z−Π  value of the yth local degree of freedom defining 
( ) ( )1h hq z q z∇−Π  in E

hW . 
We define consistency and stability as follows:  
Definition 3.1 see ([23]) 

- Consistency: For all ( )1p E∈  and for all E
h hw W∈   

( ) 0
0, d .E

h h hE
B r w w w x= ∇ ⋅Π ∇∫                  (3.1) 

- Stability: There exist positive constants *α  and *α  independent of h and 
the mesh element E such that  

( ) ( ) ( )*
* , , , , .E E E E

h h h h h h h h hB w w B w w B w w w Wα α≤ ≤ ∀ ∈      (3.2) 

Lemma 3.1 See ([23]) The Discrete bilinear form E
hB  satisfies the polynomi-

al consistency property and the stability property. Then, we obtain hB  is coer-
cive.  

The virtual element approximation of control problem (1.1)-(1.2) is to find 
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( ),h h h adq z W Z∈ ×  such that 

( ) ( )20 0 2
1 1

1min , : d d
2 2h ad h

h h h d hEz Z E
J q z q q x z xγ

Ω∈ ∈

Π = Π − +∑ ∫ ∫


      (3.3) 

subject to 

( ) ( )0
1 0,

, , , .
h

h h h h h h hEE
B q w f z w w W

∈

= + Π ∀ ∈∑


         (3.4) 

In [27], it also showed that (3.3) and (3.4) has a unique solution ( ),h hq z  and 
that ( ),h hq z  is the solution of (3.3) and (3.4) if and only if there is a co-state 

h hr W∈  such that ( ), ,h h hq r z  satisfies the following discrete first-order opti-
mality conditions: 

( ) ( )

( ) ( )

( )

0
1 0,

0
1 0,

0
1 0,

, , , ,

, , , ,

, 0, .

h

h

h

h h h h h h hEE

h h h h d h h hEE

h h h h h adEE

B q v f z v v W

B r v q q v v W

z r w z w Zγ

∈

∈

∈


= + Π ∀ ∈


 = − Π ∀ ∈

 +Π − ≥ ∀ ∈


∑

∑

∑







        (3.5) 

3.2. A Priori Error Estimate 

Lemma 3.2 see ([28])) There exists a positive constant C such that, for all 

hE∈  and all smooth enough functions w defined on E, it holds:  
0
1 ,,

1 ,,

, , , 2,

, , , 2, 1.

t p
E p Ep E

t p
E t Ep E

v v Ch v p t p t

v v Ch w p r p t t

−

∇ −

−Π ≤ ∈ ≤ ≤

−Π ≤ ∈ ≤ ≤ ≥




       (3.6) 

To derive a priori error estimate we need to introduce the following auxiliary 
problems:  

( )( ) ( )

( )( ) ( )

( )( ) ( )( )

0
1 0,

0
1 0,

0
1 0,

, , , ,

, , , ,

, , , .

h

h

h

h h h h h hEE

h h h d h h hEE

h h h h d h h hEE

B q z v f z v v W

B r q v q q v v W

B r z v q z q v v W

∈

∈

∈


= + Π ∀ ∈


 = − Π ∀ ∈

 = − Π ∀ ∈


∑

∑

∑







      (3.7) 

We make the following data assumption:  
Assumption 3.1 (Data assumption) We assume the solution ( ), ,z q r  of the 

optimal control problem and ( ), df q  satisfy:  

( ) ( )1 2, , , , .d h hf z q H q r H∈ ∈   

Then we have the following estimates. 
Note that ( )1

0hW H Ω , from integration by parts, we get  

( ) ( )2, d d , ,
h h h

E
h h h h hk E

E E E k

qB q v qv x v s q H v W
n∂

∈ ∈ ∈

∂
= − ∆ + ∀ ∈ Ω ∀ ∈

∂∑ ∑ ∑∫ ∫
  

 

The consistency error is  
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( ) [ ], d d ,
h h

h h h h h hE e
E ek e

y yy w w s w s w V
∂

∈ ∈

∂ ∂
= = ∀ ∈

∂ ∂∑ ∑∫ ∫n n 
         (3.8) 

Similar to the theoretical analysis in Xiao et al. [23], we have  

( ) 2 1,
, , .h h h h hhq v Ch q v v W≤ ∀ ∈                 (3.9) 

Theorem 3.1 Suppose that ( ),q r  is the solution of (2.7), and ( ) ( )( ),h hq z r q  
is the solution of auxiliary problem (3.7), under Assumpiton 2.1 and assumption 
3.1 we have  

( ) ( )
1, 1,h hh h

q q z r r z Ch− + − ≤  

Proof:   

( ) ( ) ,h h h h h hq q z q I q I q q z ξ θ− = − + − = +            (3.10) 

where h hq I qξ = −  and ( )h h hI q q zθ = −  
From the coercivity of ( ),hB ⋅ ⋅   

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( )

2
* 1,

0
1 0,

0
1 0,

0
1 0,

, , ( ),

, ,

, , ,

, , , ,

,

h h

h h

h

h

h h h h h h h h h hh

K
h h h h EK E

K K
h h h h h h EK E

K K K K
h h h h h h h

K

h EE

B B I q B q z

B I q f z

B I q q B q f z

B I q q B q B q B q

f z

π π

π π π π

α θ θ θ θ θ

θ θ

θ θ θ

θ θ θ θ

θ

∈ ∈

∈ ∈

∈

∈

≤ = −

= − + Π

= − + − + Π

= − + + −

− + Π

∑ ∑

∑ ∑

∑

∑

 

 





 

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

0
1 0,

0
1 0,0,

0,

, , ,

, , ,

, ,

, , , ,

, , .

h

h

h

h

K K
h h h h h h

K

h h h EE

K K
h h h h

K

h h h h hEE

h h

B I q q B q q B q

B q B q f z

B I q q B q q

B q B q f z f z

B q f z

π π π

π

π π

π π

θ θ θ

θ θ θ

θ θ

θ θ θ θ

θ θ

∈

∈

∈

Ω
∈

Ω

= − + − +

− + − + Π

= − + −

 
− − + + Π − + 
 

+ − +

∑

∑

∑

∑









 

(3.11) 

Using formula (2.8), interpolation estimates (2.9) and stability property of 
( ),ha ⋅ ⋅ , we get  

( ) ( )( )

( ) ( )( )
( )2, 2,

2 1,

, ,

.

h

h

h

K K
h h h h

K

h h hK KK K
K T

K h K hK KK K
K T

h h

B I q q B q q

C I q q q q

C h q h q

Ch q

π π

π π

θ θ

θ θ

θ θ

θ

∈

∈

∈

− + −

≤ ∇ − ∇ + ∇ − ∇

≤ ∇ + ∇

≤

∑

∑

∑



      (3.12) 

By the consistency and the stability of yπ , we obtain  
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( ) ( )

( )

0 0

0 0

0

0

0 0

0 0

21,

, , d d

d

d

.

h

h

h

h h h h hK K
K

hK
K

hK
K

h h

B q B q q x q x

I q x

I I q x

Ch q

π π π π
τ

π
τ

π

θ θ θ θ

θ

θ

θ

∈

∈

∈

 − = ∇ ⋅∇ − ∇ ⋅ ∇ 
 

 = − ∇ ⋅∇ 
 

   = − ∇ ⋅ − ∇   
   

≤

∑ ∏ ∏∫ ∫

∑ ∏∫

∑ ∏ ∏∫


 (3.13) 

Then, by the minkowski inequality and the property of the L2 projection, we 
get  

( ) ( )

( )
( )

0 0
1 1

0
1

1,

, ,
h h

h h h
K E

h h

h h

f z f z f z

f z

Ch f z

θ θ θ θ

θ θ

θ

∈ ∈

+ Π − + ≤ + Π −

≤ + Π −

≤ +

∑ ∑
 

       (3.14) 

By integration by parts, we write  

( ) ( ) [ ], , d d .
h h

h h h hK e
K eK e

q qB q f z s sθ θ θ θ
∂

∈ ∈

∂ ∂
− + = =

∂ ∂∑ ∑∫ ∫n n 

 

Furthermore, from (3.9) we have  

( ) ( ) 2 1,
, , .h h h hB q f z Ch zθ θ θ− + ≤               (3.15) 

By substituting (3.12), (3.13), (3.14) and (3.15) into (3.11), we have  

( )2
* 2 11, 1,

,h hh hCh z fα θ θ≤ +  

( )2 11,
.h h Ch z fθ ≤ +                    (3.16) 

From Lemma 2.2 (2.9) we get  

21,
.h hq I q Ch z− ≤                      (3.17) 

By combining (3.16) and (3.17), we have  

( )
1,h h

q q z Ch− ≤                      (3.18) 

By repeating the proof procedure of (3.18), we can get  

( )
1,h h

r r q Ch− ≤  

 
Similar to the discussion in Theorem 3.1 and theoretical analysis in Andrea et 

al. [18] we have the L2 error estimates between solution of (2.7) and the solution 
of auxiliary problem (3.7)  

Lemma 3.3 see ([18]) Suppose that ( ),q r  is the solution of (2.7), and 
( ) ( )( ),h hq z r q  is the solution of auxiliary problem (3.7), under Assumpiton 2.1 

and assumption 3.1 we have  

( ) ( ) 2
h hq q z r r q Ch− + − ≤  

Theorem 3.2 (A priori error estimate) Let ( ), ,q r z  and ( ), ,h h hq r z  are the 
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solutions of (2.7) and (3.5) respectively. Under the Assumptions 2.1 and 3.1 we 
derive  

2
h h hz z q q r r Ch− + − + − ≤  

and  

1, 1,
.h hh hq q r r Ch− + − ≤  

Proof: We decompose the errors hq q−  and hr r−  into  

( ) ( )h h h hq q q q z q z q− = − + −  

and  

( ) ( ) .h h h hr r r r z r z r− = − + −  

From the discrete first-order optimality system of the optimal control prob-
lem (3.5) and auxiliary problems (3.7) we get  

( )( ) ( )0
1 0,

, , .
h

h h h h h h EE
B q u q z zθ θ

∈

− = − Π∑


 

Let ( )h h hq u qθ = − , and from (3.2) we have  

( ) ( ) ( )( )
( )( )( )
( )

( )

2
* 1,

0
1 0,

0, 0,

1,

,

,

.

h

h

h h h h h h hh

h h h EE

h h hE E
E

h h h h

C q z q B q z q q u q

z z q u q

z z q z q

z z q z q

α

∈

∈

− ≤ − −

= − Π −

≤ − ⋅ −

≤ − ⋅ −

∑

∑




       (3.19) 

then  

( )
1,

.h h hh
q z q C z z− ≤ −  

By the Lemma 3.2 and Theorem 3.1, we have  

( ) ( )2
1,

, .h h h
q q z Ch q q z Ch− ≤ − ≤  

Combining these inequalities, we get  

( )2
h hq q C h z z− ≤ + −  

and  

( )1,
.h hhq q C h z z− ≤ + −  

By the Lemma 3.2 and Theorem 3.1, we have  

( ) ( )2
1,

, .h h h
r r q Ch r r z Ch− ≤ − ≤  

Let ( ) ( )h h hv r q r z= − . From (3.2) we derive  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )
( ) ( ) ( )

( ) ( ) ( )

2
* 1,

0
1 0,

0,

1,

,

,

.

h

h

h h h h h h hh

h h h EE

h h hE
E

h h h h

C r q r z B r q r z r q r z

q q z r q r z

q q z r q r z

q q z r q r z

α

∈

∈

− ≤ − −

= − Π −

≤ − ⋅ −

≤ − ⋅ −

∑

∑




  (3.20) 
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Further we have  

( ) ( ) ( ) 2
1,

.h h hh
r q r z C q q z Ch− ≤ − ≤  

By triangle inequality we derive  

( ) ( ) 2
1,

.h h h
r r z h r p z Ch− + − ≤               (3.21) 

similar to (3.20) we obtain  

( ) ( )
1,

.h h h h hh
r z r C q z q C z z− ≤ − ≤ −  

Through the triangle inequality, we can infer  

( )2
h hr r C h z z− ≤ + −  

and  

( )1,
.h hhr r C h z z− ≤ + −  

Because both the estimation of the state and the adjoint state depend on the 
estimation of the control variables, now we need estimate hz z−  Define  

( )( ) ( )( )( )0
1

ˆ : d .
h

h hE
E

J z w z z r z w z xγ
∈

′ − = +Π −∑ ∫


 

Then, we can prove that  

( )( ) ( )( ) 2ˆ ˆ ,h hJ w w z J z w z v uγ′ ′− − − ≥ −            (3.22) 

( )( ) ( )( )
( ) ( )( )( )

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

0 0
1 1

2 0 0
1 1

2 0 0
1 1

ˆ ˆ

d

d d

d d .

h

h h

h

h h

h hE
E T

h hE E
E E

h hE
E

J w w z J z w z

w r w z r z w z x

w z x r w r z w z x

w z x r w r z w z x

γ γ

γ

γ

∈

∈ ∈

Ω
∈

′ ′− − −

= +Π − −Π −

= − + Π −Π −

= − + Π −Π −

∑ ∫

∑ ∑∫ ∫

∑∫ ∫
 



 

Using (3.7) and the property of the projection of L2 we can deduce  

( ) ( )( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

0 0
1 1

0
1 0,

0
1 0,

0 0
1 1

d

,

, ,

,

,

, 0.

h

h

h

h

h hE
E

h h h h h

h h h h h h h h

h d h h EE

h d h h EE

h h h h
E

r w r z w z x

B q w q z r w r z

B r w q w q z B r z q w q z

q w q q w q z

q z q q w q z

q w q z q w q z

∈

∈

∈

∈

Π −Π −

= − −

= − − −

= − Π −

− − Π −

= Π − Π − ≥

∑ ∫

∑

∑

∑









 

Then from (3.22) we have  

( )( )( ) ( )( )( )

( ) ( )( )( )

2

0 0
1 1

0 0
1 1

d d

d
h h

h

h

h h h h h hE E
E E

h h h h hE
E T

z z

z r z z z x z r z z z x

u r z z r z z z x

γ

γ γ

γ γ

∈ ∈

∈

−

≤ +Π − − +Π −

= +Π − −Π −

∑ ∑∫ ∫

∑ ∫
 
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( ) ( )( ) ( )( )

( )( )

0 0
1 10, 0,

0
1 0,

, , ,

0 0 , .
h h

h

h h h h h h hE EE E

h h EE T

z r z z z r z z z r z r z z

r z r z z

γ γ
∈ ∈

∈

= + − + +Π − + Π − −

≤ + + Π − −

∑ ∑

∑
 

 

This shows  

( )
1
220

1 0,
.

h
h h EE

z z C r z r
∈

 
− ≤ Π − 

 
∑


 

Note that  

( ) ( )

( )

0 0 0 0
1 1 1 10, 0, 0,

0
10, 0,

.

h hE E E

h E E

r z r r z r r r

r z r r r

Π − ≤ Π −Π + Π −

≤ − + Π −
 

Then by Lemma 3.1 and (3.21) we have  
2

hz z Ch− ≤  

Inserting the hz z−  into the hq q−  and hr r− , we obtain the result.  
 

Remark 1 (comparison with conforming VEM). The global virtual element 
space defined differently for the VEM and NCVEM, For the VEM simply take 

( )1
0W H= Ω . For NCVEM, we introduce the nonconforming broken Sobolev 

space ( )1
hH   by imposing certain weak inter-element continuity require-

ments. In contrast to conforming VEM, since hW  is not a subset of ( )1
0H Ω  in 

general, the substitution of discrete function hW  in the weak formulation leads 
to a nonconformity error such as (3.15). 

4. Numerical Experiments 

In this section, we present three different sequences of meshes to validate the 
performance of our error analysis presented in this paper. Through decompos-
ing the domain into multiple squares, we obtain the first sequence of meshes 
(labeled square). The second meshes (labeled Lloyd) is given through Voronoi 
mesh generator [29]. The third sequence (labeled distorted) is to divide the 
Lloyd meshes into multiple distorted Lloyd meshes. These three sequences of 
meshes are respectively shown in Figures 1(a)-(c). 
 

 
Figure 1. Three meshes. 
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We will confirm the priori error on the three grids by showing the relative er-
rors in L2 and H1 norm between , ,q r z  and the solution , ,h h hq r z  given by the 
NCVEM. We use 0 0 0, ,Q R Z  to denote the relative errors in the L2 norm be-
tween , ,q r z  and , ,h h hq r z . Similarly, we respectively use 1 1,Q R  to denote the 
relative errors in the H1 norm between ,q r  and ,h hq r . 

Example: The optimal control problem (1.1)-(1.2) is restricted to the unit 
square [ ] [ ]0,1 0,1Ω = × . Let 1az = − , 0bz = , 1γ = . We chose the following 
exact solution  

( ) ( ) ( )
( ) ( )( )( )
( ) ( )( )

2 2

, 2sin sin ,

, 100 ,

, max 1,min ,0 .

q x y x y

r x y x x x y

z x y r

=

= − −

= − −

π π

 

f and dy  can be determined from the exact solutions , ,y p u . 
In Table 1, there different meshes data of size parameter (mesh diameter), 

number of elements and vertices are shown. 
In Figures 2-4, we present the convergence rate curves of the state, adjoint  

 
Table 1. Mesh data for three grid meshes. h represents the mesh size parameter, and   and   represent the number of 
elements and vertices of the mesh. 

 Square Lloyd Distorted 

n h     h     h     

1 0.0707 400 441 0.0744 300 602 0.0929 300 602 

2 0.0404 1225 1296 0.0481 700 1402 0.0609 700 1402 

3 0.0257 3025 3136 0.0328 1500 3001 0.0415 1500 3001 

4 0.0218 4225 4356 0.0200 4000 8001 0.0255 4000 8001 

 

 
Figure 2. Relative errors of state variables in L2 and H1 norm. 
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Figure 3. Relative errors of adjoint state variables in L2 and H1 norm. 

 

 
Figure 4. Relative errors of control variables in L2 and H1 norm. 
 
state and control variables in L2 and H1 norm in Tables 2-7, the numerical re-
sults about the relative errors and convergence are shown on three different 
meshes. In Figures 5-7, we present the figure of the solution of three variables in 
three meshes.  
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Table 2. Relative errors and convergence rates of state, adjoint state, control variables in 
L2 norm on Square mesh of Example 4.1. 

h 0  Rate 0  Rate 0  Rate 

0.0707 7.600e−3  4.800e−3  1.310e−2  

0.0404 2.500e−3 1.949 1.600e−3 1.979 4.30e−3 1.989 

0.0257 1.000e−3 1.976 6.325e−4 1.992 1.700e−3 1.996 

0.0218 7.436e−4 2.020 4.529e−4 1.999 1.300e−3 1.998 

 
Table 3. Relative errors and convergence rates of state, adjoint state variables in H1 norm 
on Square mesh of Example 4.1. 

h 1  Rate 1  Rate 

0.0707 2.848e−1  1.013e−0  

0.0404 1.628e−1 0.996 5.768e−1 1.0014 

0.0257 1.1036e−1 0.997 3.670e−1 1.003 

0.0218 8.77e−2 0.999 3.106e−1 1.003 

 
Table 4. Relative errors and convergence rates of state, adjoint state, control variables in 
L2 norm on Lloyd mesh of Example 4.1. 

h 0  Rate 0  Rate 0  Rate 

0.0744 8.400e−3  5.500e−3  1.230e−2  

0.0481 3.700e−3 1.857 2.100e−3 2.352 5.100e−3 2.061 

0.0328 1.700e−3 2.015 1.100e−3 1.705 2.400e−3 2.036 

0.0200 6.024e−4 2.058 3.927e−4 2.037 8.565e−4 2.047 

 
Table 5. Relative errors and convergence rates of state, adjoint state variables in H1 norm 
on Lloyd mesh of Example 4.1. 

h 1  Rate 1  Rate 

0.0744 3.289e−1  1.169e−0  

0.0481 2.174e−1 0.977 7.623e−1 0.980 

0.0328 1.463e−1 1.003 5.194e−1 1.003 

0.0200 8.940e−2 0.999 3.169e−1 1.001 

 
Table 6. Relative errors and convergence rates of state, adjoint state, control variables in 
L2 norm on Distorted mesh of Example 4.1. 

h 0  Rate 0  Rate 0  Rate 

0.0929 1.050e−2  7.900e−3  1.930e−2  

0.0609 4.600e−3 1.936 3.100e−3 2.171 8.100e−3 2.051 

0.0415 2.200e−3 1.949 1.600e−3 1.761 3.800e−3 1.993 

0.0255 8.119e−4 2.048 5.913e−4 2.047 1.400e−3 2.021 
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Table 7. Relative errors and convergence rates of state, adjoint state variables in H1 norm 
on Distorted mesh of Example 4.1. 

h 1  Rate 1  Rate 

0.0929 3.894e−1  1.37e−0  

0.0609 2.531e−1 1.017 8.922e−1 1.017 

0.0415 1.727e−1 0.981 6.093e−1 0.995 

0.0255 1.055e−1 1.013 3.712e−1 1.019 

 

 
Figure 5. The solution of state variables in Lloyd meshes. 

 

 
Figure 6. The solution of adjoint state variables in Lloyd meshes. 
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Figure 7. The solution of control variables in Lloyd meshes. 

5. Conclusions 

In this paper, NCVEM is applied to approximate elliptic optimal control prob-
lems with pointwise control constraints. The priori error estimates are derived, 
numerical examples verifies the theoretical results. 

In our future work, we will increase the complexity of the elliptic problem, 
generalize the problem to linear indefinite elliptic problems. And because of the 
flexibility of the VEM, we will derive a posteriori error estimate for the problem, 
and derive an adaptive grid algorithm to guide mesh refinement.  
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