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Abstract

Recent neuroimaging studies have shown that the visual cortex plays an important role in

representing the affective significance of visual input. The origin of these affect-specific

visual representations is debated: they are intrinsic to the visual system versus they arise

through reentry from frontal emotion processing structures such as the amygdala. We

examined this problem by combining convolutional neural network (CNN) models of the

human ventral visual cortex pre-trained on ImageNet with two datasets of affective images.

Our results show that in all layers of the CNN models, there were artificial neurons that

responded consistently and selectively to neutral, pleasant, or unpleasant images and

lesioning these neurons by setting their output to zero or enhancing these neurons by

increasing their gain led to decreased or increased emotion recognition performance

respectively. These results support the idea that the visual system may have the intrinsic

ability to represent the affective significance of visual input and suggest that CNNs offer a

fruitful platform for testing neuroscientific theories.

Author summary

What is the role played by sensory cortices in assessing the emotional significance of sen-

sory input? This question is attracting increasing research interest. Recent work has found

affect-specific neural representations in visual cortex. The origins of these representations

are debated. According to the reentry hypothesis, these representations result from reen-

trant feedback arising from anterior emotion processing structures such as the amygdala.

An alternative hypothesis holds that sensory cortex may have the intrinsic capacity to rep-

resent the emotional qualities of sensory input. We examined this problem by utilizing the

convolutional neural networks (CNNs) trained to recognized visual objects as computa-

tional models of the primate ventral visual system. Emotionally charged images were

divided into three broad categories (pleasant, neutral and unpleasant) and presented to

the CNNs. Responses of artificial neurons to these images were found to exhibit robust
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emotion selectivity. Importantly, enhancing the neurons that were selective for a given

emotion led to the increased ability in recognizing that emotion, whereas lesioning these

neurons led to the decrease in that ability. This research lends support to the notion that

emotional perception might be an intrinsic property of the visual cortex. It also under-

scores the CNNs’ value in examining neuroscientific theories.

Introduction

Human emotions are complex and multifaceted and under the influence of many factors,

including individual differences, cultural backgrounds, and the context in which the emotion

is experienced [1–5]. Still, a large number of people, across different cultures, different levels of

education, and different socioeconomic backgrounds, experience similar feelings when view-

ing images of varying affective content [6–9]. What fundamental principles in the functions of

the human visual system underlie such universality requires elucidation.

Previous studies of emotion perception have primarily relied on empirical cognitive experi-

ments [10–12]. Some of them have focused on capturing human behavioral valence or arousal

judgment on affective images [13–16], while others have recorded brain activities to look for

neural correlates of affective stimuli processing [17–21]. Despite decades of effort, how the

brain transforms visual stimuli into subjective emotion judgments (e.g., happy, neutral, or

unhappy) remains not well understood. The advent of machine learning especially artificial

neural networks (ANNs) opens the possibility of addressing this problem using a modeling

approach.

Artificial neural networks can project visual images to a feature space in which the activa-

tion patterns of hidden layers are the features used for object classification and recognition.

One type of artificial neural network, convolutional neural networks (CNNs), owing to their

hierarchical organization resembling that of the visual system, are increasingly used as models

of visual processing in the primate brain [22–26]. CNNs trained to recognize visual objects can

achieve performance levels rivaling or even exceeding that of humans. Interestingly, CNNs

trained on images from such databases as ImageNet [27] are found to demonstrate neural

selectivity for a variety of stimuli that are not included in the training data. For instance, [28]

showed that neurons in a CNN trained on ImageNet became selective for numbers without

having been trained on any "number" datasets. Similarly, [29] demonstrated that a CNN, when

trained on non-face objects, can develop a recognition performance for faces that significantly

exceeds chance levels. These instances demonstrate that CNNs may possess recognition capa-

bilities beyond the primary task they are trained on.

The role of the visual cortex in visual emotion processing is debated [30,31]. [32] argued

that emotion representation is an intrinsic property of the visual cortex. They used a CNN pre-

trained on ImageNet to show that the model can accurately predict the emotion categories of

affective images. [20], on the other hand, showed that the affective representations found in

the visual cortex during affective scene processing might arise as the result of reentry from

anterior emotion-modulating structures such as the amygdala. The goal of this study is to fur-

ther examine this question using CNN models.

CNN models are well suited for addressing questions related to the human visual system.

Among the many well-established CNN models, VGG-16 [33] has an intermediate level of

complexity and is shown to have superior object recognition performance [34]. Using VGG-

16, recent cognitive neuroscience studies have explored how encoding and decoding of sen-

sory information are hierarchically processed in the brain [23,35,36]. [23] used VGG-16 to
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quantitatively demonstrate an explicit gradient of feature complexity encoded in the ventral

visual pathway. [35] used VGG-16 to model the visual cortical activity of human participants

viewing images of objects and demonstrated that activities in different layers of the model

highly correlate with brain activities in different visual areas. [36] investigated qualitative simi-

larities and differences between VGG-16 and other feed-forward CNNs in the representation

of the visual object and showed these CNNs exhibit multiple perceptual and neural phenom-

ena such as the Thatcher effect [37] and Weber’s law [38].

In this study, we mainly focused on VGG-16 pre-trained on ImageNet as the model of the

human visual system and used AlexNet [39], which is another well-established CNN model of

visual processing, to test whether the results can be replicated. Using two well-established

affective image datasets: International Affective Picture System (IAPS) [15] and Nencki Affec-

tive Picture System (NAPS) [16], we examined whether emotion selectivity can spontaneously

emerge in such systems and whether such emotion selectivity has functional significance. For

each filter within a layer of the model, the emotional selectivity for the resulting feature map

was established by first computing neural responses to three broad classes of images: pleasant,

neutral, and unpleasant (tuning curves) at the level of each unit and then averaging these

responses across all the units within the feature map. A feature map, also referred to as a neu-

ron in what follows, is considered selective for a particular emotion if its tuning responses are

robust and exhibit the strongest responses to images of that category from both datasets. To

test whether these emotion-selective neurons have a functional role, we replaced the last

1000-unit object-recognition layer of the VGG-16 with a two-unit emotion-recognition layer

and trained the connections to this layer to decode pleasant versus non-pleasant, neutral vs.

non-neutral, and unpleasant vs. non-unpleasant images. Two neural manipulations were car-

ried out: lesion and feature attention enhancements. Lesioning the neurons selective for a spe-

cific emotion is expected to degrade the network’s performance in recognizing that emotion,

whereas applying attention enhancement to the neurons selective for the emotion is expected

to increase the network’s performance in recognizing that emotion.

Results

We tested whether emotion selectivity can naturally arise in a CNN model trained to recognize

visual objects. VGG-16 pre-trained on ImageNet data [27] was used for this purpose (see

Fig 1). Filters/channels within a layer were referred to as neurons and responses from the units

within the feature maps were averaged and treated as neuronal responses. Selectivity for pleas-

ant, neutral, and unpleasant emotions was defined for each neuron based on its response pro-

files to images from two affective picture sets (IAPS and NAPS). The functional significance of

these neurons was then assessed using lesion and attention enhancement methods.

Neuronal responses to emotional images in different convolutional layers

The tuning curve for a neuron is defined as the normalized mean response (tuning value) to

pleasant, neutral, and unpleasant images in a given dataset plotted as a function of the emotion

category. The maximum of the tuning curve indicates the neuron’s preferred emotion category

for that picture set. Fig 2A (top) shows the tuning curves of three neurons from the Convolu-

tional Layer 3 (an early layer) for both IAPS and NAPS datasets. According to the definition

above, these neurons are selective for pleasant, neutral, and unpleasant categories, respectively.

For the top 100 images from IAPS and NAPS that elicited the strongest response in these neu-

rons, Fig 2A (bottom) shows the valence distribution of these images. As can be seen, for these

early layer neurons, while the pleasant neuron is more activated by images with high valence

ratings (pleasant), for the neutral and unpleasant neurons, the patterns are less clear. For the
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neurons in Convolutional Layer 6 (a middle layer), however, as shown in Fig 2B, their emotion

selectivity and the category of images they prefer show greater agreement. Namely, the pleas-

ant neuron prefers predominately images with high valence (pleasant), the neural neuron pre-

fers predominately images with intermediate valence (neutral), and the unpleasant neuron

prefers predominately images with low valence (unpleasant). The results for the three neurons

from Convolutional Layer 13 (a deep layer) are similar to those from Layer 6; see Fig 2C.

Emotion selectivity in different convolutional layers

Whereas tuning value and tuning curve characterize a neuron’s response to images from dif-

ferent emotion categories, the selectivity index (SI), which highlights the difference between

responses to different emotion categories of images, is a better index for defining emotion

selectivity. As shown in Fig 3A, emotion selectivity became stronger as one ascended the layers

from early to deep, an effect that is especially noticeable for the IAPS datasets, supporting the

notion that emotion differentiability increases as we go from earlier to deeper layers. In light of

the computational principle that earlier layer neurons encode lower-level stimulus properties

(e.g., shapes and edges) and deeper layer neurons encode higher-level properties such as

semantic meaning (e.g., object identities) [40–42], the results in Fig 3A as well as Fig 2 suggest

that from earlier to deeper layers, emotion as a higher level cognitive construct becomes pro-

gressively better defined and better differentiated.

To examine the role of the training to recognize objects in the foregoing observations, we

performed the same analysis in a VGG-16 with randomly initialized weights (i.e., not trained

to recognize objects). As seen in Fig 3A, emotion selectivity is generally low as evaluated by

both datasets, and there is no clear layer-dependence in emotion selectivity, suggesting that the

increased ability to represent and differentiate emotion in deeper network layers of the pre-

trained VGG-16 is an ability acquired through the training for object recognition.

Fig 1. The architecture of the VGG-16 model. We used the VGG-16 pre-trained on ImageNet to model the visual system. VGG-16 has 13

convolutional layers and three fully connected (FC) layers. Each convolutional layer (light yellow color) is followed by a ReLU activation layer (yellow

color) and a max-pooling layer (red color). Each FC layer (light purple color) is followed by a ReLU layer (purple color). The last FC layer is followed by

a ReLU and a SoftMax layer (dark purple color). In the original VGG-16, the last layer was used to recognize 1000 different objects. In our model it was

replaced by a two-unit layer whose connections to the preceding layer were trained to recognize different emotions: pleasant vs. non-pleasant; neutral

vs. non-neutral; unpleasant vs. non-unpleasant. Affective images in grayscale from two datasets (IAPS and NAPS) were presented to the model to define

the emotion-selectivity of neurons in the convolutional layers. Lesion and attention enhancement were applied to assess these neurons’ functional

significance.

https://doi.org/10.1371/journal.pcbi.1011943.g001
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Generalizability of emotion-selective neurons

Fig 2 shows that a neuron can be tuned for the same emotion for both IAPS and NAPS data-

sets. A natural question is whether such neurons arise as the result of random chance or as an

emergent property of the trained network. Further, based on the value of SI, all neurons are

Fig 2. Tuning curves and emotion selectivity. (A-C) Tuning curves of example neurons from different convolutional

layers (top panel) along with the valence distribution of the top 100 images that elicited the strongest responses for a

given neuron.

https://doi.org/10.1371/journal.pcbi.1011943.g002
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selectivity for one emotion or the other. Small SIs are likely subject to the influence of chance,

and as such, neurons with small SIs should be removed from further consideration. How to

determine the threshold for removal?

Fig 3. Emotion selectivity and its generalizability. (A) Emotion selectivity as a function of layer for IAPS and NAPS. (B-

top) Number of neurons determined to be selective for a given emotion for both IAPS and NAPS datasets compared with

the number of neurons in the overlap of two random sets of neurons. (B-bottom) The number of neurons determined to be

selective for a given emotion for both IAPS and NAPS datasets in VGG-16 pretrained on ImageNet and with randomly

initialized weights. (C) Removing successively larger percentages of neurons with small SI values and comparing the

performance of attention-enhancing the remaining neurons yielded a threshold of 80% for determining emotion selectivity.

https://doi.org/10.1371/journal.pcbi.1011943.g003
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We performed two analyses to address the two questions. First, we rank-ordered neurons

according to their SI values, removed certain percentages of neurons with small SI values, and

attention-enhanced the remaining neurons (see next subsection) and observed the resulting

performance improvement. The results in Fig 3C suggest that removing neurons whose SIs fell

in the lower 20% (keeping 80%) is a reasonable threshold. Second, neurons determined to be

emotion selective according to IAPS and that according to NAPS were subjected to an overlap

analysis. Fig 3B (top) compares the number of neurons selective for the same emotion for both

IAPS and NAPS datasets against the number of neurons to be expected from the overlap of

two random sets of neurons. The former is consistently higher than the latter across all layers,

with the effect becoming more prominent in deeper layers, suggesting that emotion selectivity

generalizes across the two datasets and the generalizability is not due to chance.

What is the role of training to recognize visual objects in the generalizable emotion selectiv-

ity? To answer this question, we compared the number of emotion-selective neurons from the

overlap analysis derived from pre-trained VGG-16 on ImageNet against that derived from ran-

domly initialized VGG-16. Fig 3B (bottom) shows that for all emotion categories—pleasant,

neutral, and unpleasant—the pre-trained network consistently demonstrated a higher number

of emotion-selective neurons in the later layers, especially from Layer 5 onwards. These find-

ings suggest that emotion selectivity is an emergent property as the result of a neural network

undergoing training for object recognition.

The functionality of emotion-selective neurons

To test whether emotion-selective neurons have a functional role, we followed [43] and

replaced the last layer of the VGG-16, which originally contained 1,000 units for recognizing

1000 different types of objects, with a fully connected layer containing two units for recogniz-

ing two types of emotions. Three models were trained and tested for each of the two affective

picture datasets: Model 1: pleasant versus non-pleasant, Model 2: neutral versus non-neutral,

and Model 3: unpleasant versus non-unpleasant. Once these models were shown to have ade-

quate emotion recognition performance (see Table 1), two neural manipulations were consid-

ered: feature attention enhancement and lesion. For feature attention enhancement [44–46],

the gain of the neurons selective for a given emotion for both datasets is increased by increas-

ing the slope of the ReLU activation function (see Methods) [47–50], whereas for lesion, the

output of the neurons selective for a given emotion for both datasets was set to 0, which effec-

tively removes the contribution of these neurons, i.e., they are lesioned. We hypothesized that

[1] with attention enhancement, the network’s ability to recognize emotion is increased [2]

with lesioning, the network’s ability to recognize emotion is decreased, and [3] such effects are

not observed for modulating randomly selected neurons.

Table 1. Original and Enhanced and Lesioned Performance (F1-score) in VGG-16. The maximum performance changes for both enhancing and lesioning selective

neurons across different layers are shown below.

Dataset Emotion to Recognize Original Performance Enhanced Performance Enh. Increased (%) Lesioned

Performance

Les. Decreased (%)

IAPS Pleasant 0.70 0.73 4.29% 0.56 20%

Neutral 0.63 0.69 9.52% 0.26 58%

Unpleasant 0.62 0.69 11.29% 0.13 80%

NAPS Pleasant 0.70 0.72 2.86% 0.49 31%

Neutral 0.63 0.67 6.35% 0.25 61%

Unpleasant 0.67 0.71 5.97% 0.41 39%

https://doi.org/10.1371/journal.pcbi.1011943.t001
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Feature attention enhancement. For IAPS images, Fig 4 compares performance changes

after enhancing the emotion-selective neurons as well as enhancing the same number of ran-

domly sampled neurons; see also Table 1. The optimal tuning strength for which we achieved

the best performance enhancement was chosen for each layer in the plot. As one can see, for

pleasant versus non-pleasant, neutral versus non-neutral, and unpleasant versus non-unpleas-

ant emotions, enhancing the gain of the neurons selective for a specific emotion can signifi-

cantly improve the emotion recognition performance of the CNN model for that emotion.

Moreover, deeper layer attention enhancement tends to yield greater performance improve-

ments than earlier layer attention enhancement. Increasing the gain in randomly selected

Fig 4. Effects of enhancing emotion-selective neurons and randomly selected neurons on IAPS dataset.

https://doi.org/10.1371/journal.pcbi.1011943.g004
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neurons, however, shows either a marginal performance improvement or a significant perfor-

mance decline. The feature-attention performance of emotion-selective neurons over random

neurons is highly statistically significant in the middle and deeper layers (p< 1.2e-02). Fig 4

(right) shows the performance changes across layers as the tuning strength varied from 0 to 5.

We carried out the same analysis for the NAPS dataset in Fig 5. The results largely repli-

cated that in Fig 4 for the IAPS dataset.

Lesion analysis. The functional importance of the emotion-selective neurons can be fur-

ther assessed through lesion analysis [51–54]. As shown in Fig 6 (see also Table 1), we com-

pared the emotion recognition performance changes by setting the output from emotion-

Fig 5. Effects of enhancing emotion-selective neurons and randomly selected neurons on NAPS dataset.

https://doi.org/10.1371/journal.pcbi.1011943.g005
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selective neurons to 0 as well as by setting the output of an equal number of randomly chosen

neurons to 0. As can be seen, lesioning the emotion-selective neurons led to significant perfor-

mance declines, especially for the deeper layers; the performance decline can be as high as

80%. In contrast, lesioning randomly selected neurons produces almost no performance

changes. These results, replicated across both datasets, further support the hypothesis that

emotion-selective neurons are important for emotion recognition, and the importance is

higher in deeper layers than in earlier layers.

Discussion

It has been argued that the human visual system has the intrinsic ability to recognize the moti-

vational significance of environmental inputs [55]. We examined this problem using convolu-

tional neural networks (CNNs) as models of the human visual system [56–61]. Selecting the

VGG16 pre-trained on images from the ImageNet as our model [62–64] and using two sets of

affective images (IAPS and NAPS) as test stimuli, we found the existence of emotion-selective

neurons in all layers of the model even though the model has never been explicitly trained to

recognize emotion. Additionally, emotion selectivity becomes stronger and more consistent in

the deeper layers, in agreement with prior literature suggesting that the deeper layers of CNNs

encode higher-level semantic information. For VGG-16 with randomly initialized weights

(i.e., not trained to recognize objects), however, no such effects were observed, suggesting that

emotion selectivity may be an emergent property through network training. Applying two

manipulations: feature attention enhancement and lesion, we can show further that the

Fig 6. Lesion Analysis. Performance changes were compared between lesioning emotion-selective neurons and randomly selected neurons.

https://doi.org/10.1371/journal.pcbi.1011943.g006
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emotion-selective neurons are functionally significant, specifically: [1] after increasing the gain

of emotion-selective neurons (e.g., feature attention enhancement), the network’s performance

in emotion recognition is enhanced relative to increasing the gain of randomly selected neu-

rons and [2] in contrast, after lesioning the emotion-selective neurons, the network’s perfor-

mance in emotion recognition is degraded relative to lesioning randomly selected neurons.

These performance differences are stronger and more noticeable in deeper layers than in ear-

lier layers. In Figs F, G H, and I in S1 Text, we reported similar findings on the AlexNet, which

is a simpler CNN that has also been used in numerous studies as a model of the ventral visual

system [65–68]. Together, our findings indicate that emotion selectivity can spontaneously

emerge in CNN models trained to recognize visual objects, and these emotion-selective neu-

rons play a significant role in recognizing emotion in natural images, lending credence to the

notion that the visual system’s ability to represent affective information may be intrinsic.

Affective processing in the visual cortex

The perception of opportunities and threats in complex visual scenes represents one of the

main functions of the human visual system. The underlying neurophysiology is often studied

by having observers view pictures varying in affective content. [69] reported greater functional

activity in the visual cortex when subjects viewed pleasant and unpleasant pictures than neutral

images. [70] showed the visual cortex has differential sensitivities in response to emotional sti-

muli compared to the amygdala. [71] demonstrated that emotional significance (e.g., valence

or arousal) could modulate the perceptual encoding in the visual cortex. Two competing but

not mutually exclusive groups of hypotheses have been advanced to account for emotion-spe-

cific modulations of activity in the visual cortex. The so-called reentry hypothesis states that

the increased visual activation evoked by affective pictures results from reentrant feedback,

meaning that signals arising in subcortical emotion processing structures such as the amygdala

propagate to the visual cortex to facilitate the processing of motivationally salient stimuli [72–

74]. Recent work [20] provides support for this view. Using multivariate pattern analysis and

functional connectivity, these authors showed that [1] different emotion categories (e.g., pleas-

ant versus neutral and unpleasant versus neutral) are decodable based on the multivoxel pat-

terns in the visual cortex and [2] the decoding accuracy is positively associated with the

strength of connectivity from anterior emotion-modulating regions to ventral visual cortex. A

second group of hypotheses states that the visual cortex may itself have the ability to code for

the emotional qualities of a stimulus, without the necessity for recurrent processing (see [75]

for a review). Evidence supporting this hypothesis comes from empirical studies in experimen-

tal animals [76,77] as well as in human observers [78], in which the extensive pairing of simple

sensory cues such as tilted lines or sinusoidal gratings with emotionally relevant outcomes

shapes early sensory responses [79]. Beyond simple visual cues, recent computational work

using deep neural networks has also suggested that the visual cortex may intrinsically represent

emotional value as contained in complex visual media such as video clips of varying affective

content [32]. Our findings reveal that emotion-selective neurons are present in all layers of

two CNN models, which are computational representations of the visual cortex. These neurons

play a crucial role in emotion recognition. This contributes to the growing computational evi-

dence suggesting that the visual cortex may inherently possess the capability to evaluate the

emotional significance of visual stimuli.

Neural selectivity in ANNs and the brain

That CNNs, or more generally ANNs, can be trained to recognize a large variety of visual

objects has long been recognized. Remarkably, recent studies note that ANNs trained on
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recognizing visual objects can spontaneously develop selectivity for other types of input,

including visual numbers and faces [80]. The number sense is considered an inherent ability of

the brain to estimate the quantity of certain items in a visual set [81,82]. There is significant

evidence demonstrating that the number sense exists in both humans (e.g., adults and infants)

[83–85] and non-human primates (e.g., numerically naïve monkeys) [86–88]. [89] found that

number-selective units spontaneously emerged in a deep artificial neural network trained on

ImageNet for object recognition. [90] demonstrated that number selectivity can even arise

spontaneously in randomly initialized deep neural networks without any training. Both studies

focused on the last convolutional layers, in which the number-selective units were found, and

they also demonstrated that the emergence of number-selective units could result from the

weighted sum of both decreasing and increasing the activity of some units. In addition, it is

well known that face-selective neurons exist in humans [91] and non-human primates. [80]

showed that neurons in a randomly initialized deep neural network without training could

selectively respond to faces, and the neurons in the deeper layers are more selective. [92] dem-

onstrated that brain-like functional segregation can emerge spontaneously in deep neural net-

works trained on object recognition and face perception and proposed that the development

of functional segregation of face recognition in the brain is a result of computational optimiza-

tion in the cortex. Augmenting this rapidly growing literature, our study demonstrates that

emotion selectivity can emerge in deep artificial neural network models of the human visual

system trained to recognize objects.

Layer dependence

Like the biological brain, the CNN model has a layered structure which allows the processing

of information in a hierarchical fashion. Our layer-wise analysis showed that the extent and

strength of emotion selectivity are a function of the model layers. Compared to the early layers,

the deeper layers have larger portions of neurons that show emotion selectivity, and the selec-

tivity is stronger, consistent with the previous observations that deeper layers of CNN models

encode more abstract concepts. For example, [40,93] examined the internal representations of

different layers in a CNN and found that deeper layers of the network tend to encode more

abstract concepts, such as object parts and textures. The layered processing of emotional infor-

mation may have several functional benefits. First, by processing visual information in hierar-

chical stages, the brain can quickly and efficiently respond to stimuli without the need for a

complete and detailed analysis of the entire stimulus at once [94–96]. This is especially impor-

tant for the processing of emotionally salient stimuli, as quick and accurate emotional

responses can be crucial for survival. Second, it would offer more flexibility for the processing

of emotion at different levels of detail, which may depend on the perception task and the envi-

ronmental context. For example, if the stimulus is perceived as significant or crucial for sur-

vival, it elicits a stronger and more widespread neural response, engaging multiple regions and

processing stages. On the other hand, if the stimulus is not significant, it elicits a weaker and

more limited neural response involving fewer regions or layers and processing stages [97–99].

Third, the integration of information from different levels allows for a more complete and

nuanced representation of the visual stimulus and emotional response. This allows for the cre-

ation of a final representation that takes into account not just the visual properties of the stim-

ulus but also its emotional significance and its impact on the individual [100–102]. Lastly, by

processing information in a layer-dependent manner, the brain can adapt and change the pro-

cessing of information based on experience and learning [103]. This allows the brain to refine

its processing strategies and improve its performance over time [104].
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Relation to prior literature

[32], to the best of our knowledge, is the first to examine emotion processing in deep neural

networks. Their model, which is a modified AlexNet called the EmoNet, was shown to have

the ability to classify affective images into 20 different emotion categories. Importantly, using a

20-way linear decoder, they further showed that neural activities in different layers of the net-

work especially the deeper layers can differentiate different emotions in the input images, sug-

gesting the existence of emotion selectivity neurons in CNNs. Building on this work, our main

contributions are threefold: [1] confirming and characterizing emotion selectivity at the single

filter (neuron) level, [2] demonstrating the functional significance of emotion-selective neu-

rons through the application of lesion and attention enhancement methods, and [3] replicating

the findings across two CNN models (VGG-16 and AlexNet) and two affective image sets

(IAPS and NAPS).

Limitations and other considerations

Several limitations of our study should be noted. Firstly, emotion was divided into three broad

categories: pleasant, unpleasant, and neutral. While this is in line with many neurophysiologi-

cal studies in humans, future work should examine finer differentiations of emotion, e.g., joy,

sadness, horror, disgust, and so on, and their neural representations in the brain. Secondly,

there might be other factors (e.g., low-level features) that drive the emotion selectivity of neu-

rons. Since we used grayscale images in this study, we can rule out color as a possible con-

founding low-level feature. Applying the GIST algorithm [105] to extract low-level features

from images and the support vector machine (SVM) algorithm [106], we found that images

from different emotion categories cannot be decoded from the low-level features; see Fig J in

S1 Text. The impact of an image’s object category and its emotion category on neural activa-

tion was examined by placing images in the IAPS and NAPS datasets into object categories

based on the descriptions of the images (Figs LA and MA in S1 Text) and applying Two-Way

ANOVA tests to filter activations in the VGG-16 model. We found that the neurons responded

more strongly to emotion categories than object categories and there were significant interac-

tions between the two categories in deeper layers (Fig LB and MB in S1 Text). We do note that,

as the number of images in different object categories are relatively small in both affective data-

sets, this analysis should be viewed as preliminary. The influence of other factors such as the

presence of faces and image animacy is more difficult to ascertain. Thirdly, although the pres-

ent study is motivated by neuroscience questions, to what extent our results have a direct bear-

ing on understanding brain function is unclear. Whereas previous work did compare activities

in VGG-16 and other deep neural networks with neural recordings during object recognition

[67, 107–109], there is no study to date comparing activities in deep neural networks and neu-

ral recordings during emotion recognition. In this sense, this work’s neural relevance should

be considered speculative.

Materials and methods

Affective picture sets

Two sets of widely used affective images were used in this study. The IAPS library includes

1,182 images covering approximately 20 subclasses of emotions such as joy, surprise, entrance-

ment, sadness, romance, disgust, and fear. The NAPS library has 1,356 images that can be

divided into similar subclasses. For both libraries, each image has a normative valence rating,

ranging from 1 to 9, indicating whether the image expresses unpleasant, neutral, or pleasant

emotions; the distributions of the valence rating from the two datasets were given in Fig AC
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(right) in S1 Text. In this study, for simplicity and following the common practice in human

imaging studies of emotion [20,110–112], we classified images into three main categories

based on their valence scores: "pleasant," "neutral," and "unpleasant." For images that fell near

the boundary between categories, we used soft thresholds of 4.3±0.5 and 6.0±0.5 to determine

their classification as either "unpleasant" or "neutral," or "neutral" or "pleasant." We also visu-

ally examined each image to confirm its category. Finally, any images that we could not confi-

dently classify were marked as "unknown" and removed from the analysis. This process

resulted in some differences in the number of images in each category from the original data-

sets. After this categorization, IAPS images were divided into 296 pleasant, 390 neutral, and

341 unpleasant images, and NAPS images into 352 pleasant, 477 neutral, and 281 unpleasant

images (see Figs AB in S1 Text). These images were transformed from the original color

images to grayscale images prior to the commencement of the study reported here. The goal

was to remove color as a possible low-level visual feature confounding the emotion selectivity

analysis.

The convolutional neural network model

VGG-16, a well-tested deep convolutional neural network for natural image recognition, was

used in this study to evaluate emotion selectivity. It has 13 convolutional layers followed by

three fully connected layers, with the last fully connected layer containing 1000 units for recog-

nizing 1000 different types of visual objects. Each layer of VGG-16 contains a large number of

filters/channels, the application of each of which results in a feature map consisting of a large

number of units. For convenience, and to stress neurobiological relevance, these filters/chan-

nels were often referred to as artificial neurons or simply neurons in this paper. Each neuron is

characterized by a ReLU activation function (see Fig A in S1 Text). Through this function,

neurons within a given layer, upon receiving and processing the input from the previous layer,

yield activation maps (i.e., feature maps) which become the input for the next layer. Previous

studies have compared the activation patterns of the VGG-16 model with experimental record-

ings from both humans and non-human primates and found that early layers of the model

behave similarly to early visual areas such as V1, whereas deeper layers of the model are more

analogous to higher-order visual areas such as the object-selective lateral occipital areas

[22,113–115].

In this study, VGG-16 was used in two ways. First, to examine whether emotional selectivity

emerges in neurons trained to recognize objects, we took the VGG-16 model pre-trained on

1.2 million natural images from the ImageNet, presented affective pictures from the two afore-

mentioned affective picture datasets to the model, and analyzed the activation profiles of neu-

rons from each layer. The emotional selectivity of each neuron was determined from these

activation profiles (see below). Second, to test the functionality of the emotion-selective neu-

rons, we replaced the last layer of the VGG-16 with a two-unit fully connected layer and

trained the connections to this two-unit layer to recognize two categories of emotion: pleasant

versus non-pleasant, neutral versus non-neutral, or unpleasant versus non-unpleasant. The

training of the last two-unit emotion recognition layer used cross-entropy as the objective

function. It is worth noting that, aside from the last emotion-recognition layer, the other lay-

ers’ weights in the VGG-16 network remained the same as that trained on the ImageNet data;

in other words, they were frozen.

The training data and the testing data for the final 2-unit emotion recognition layer of our

model were separate for IAPS and NAPS to avoid overfitting. Specifically, for each emotion

category, we partitioned the images from both datasets into training, validation, and testing

subsets at a ratio of 50%:25%:25%. We used a learning rate of 1e−3, trained for 10 epochs, and
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set the batch size to 128. Finally, we employed the F1-score to assess the performance of our

model in emotion recognition.

Emotion selectivity definition

We used two methods to evaluate the differential responses of a neuron to images from differ-

ent emotion categories (pleasant, neutral, or unpleasant). Tuning value emphasizes the nor-

malized response to images from the same category. It is used in Fig 2 to illustrate possible

response profiles or tuning curves of different neurons. The selective index (SI), in contrast,

emphasizes the difference between responses to images from one emotion category and those

from other emotion categories. It is thus more suitable for quantifying the emotion selectivity

of a neuron. Results reported in Figs 3 and 4 as well as in Figs F, G, H, and I in S1 Text were

done with the SI.

Tuning value calculation. We followed the method in [43] for calculating the tuning

value in Fig 2. The tuning v focuses on the strength or magnitude of a neuron’s response to a

particular emotion, relative to its average response. The details can be found below.

The output from each filter also referred to as a neuron in this study, see Fig A in S1 Text,

can be written as:

xlk ¼ ð1þ aÞmax½0;wlk � xl� 1� ½1�

where wlk indicates the weights of the kth filter in the lth convolutional layer, and * indicates

mathematical convolution which applies matrix multiplication between w and the outputs X
from the (l−1)th layer. Of note in Eq [1] is that the ReLU activation function typically has a

slope of 1 (α = 0). Here in this work, the slope is a tunable parameter. By tuning the slope of

the ReLU function, we change the gain of the neuron, simulating the effect of feature-based

attention control [43, 53].

Let Xlk
i;jðnÞ represents the response of the unit located at coordinates (i,j) in the kth filter in

layer l to image n. Then

�plk nð Þ ¼
1

WH

XW

i¼1

XH

j¼1
Xlk

i;jðnÞ ½2�

is the response to the image averaged across the entire filter. Here W and H represent the

width and height of the feature map. Thus, the mean activity of the filter k in layer l in response

to all images in a dataset can be formulated as:

p̂lk ¼
1

N

XN

n¼1
�plkðnÞ ½3�

where N represents the total number of images in a given set. The tuning value of the filter is

calculated according to

Slke ¼
1

Ne

PNe
n¼1

�plkðnÞ � p̂lk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
n¼1
ð�plkðnÞ � p̂lkÞ

2
q ½4�

where Slke represents the normalized activation of filter k in layer l in response to all images of

emotion category e, where e2{pleasant, neutral, unpleasant}. A neuron is considered selective

for a specific emotion if the normalized activation for the images within that emotion category

is highest among the three possible values. For example, if Slke¼pleasant = -0.1, Slke¼neutral ¼ 0:2, and

Slke¼unpleasant = 0.3, the artificial neuron k is considered selective for “unpleasant images”.
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Selectivity index calculation: Selectivity Index (SI) [116] is defined as follows. First, consider

d0 pleasantð Þ ¼
�Xpleasant �

�Xneutralþ�Xunpleasant
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
pleasantþσ2

neutralþσ2
unpleasant

2

q

d0 neutralð Þ ¼
�Xneutral �

�Xpleasantþ�Xunpleasant
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
neutralþσ2

pleasantþσ2
unpleasant

2

q ½5�

d0 unpleasantð Þ ¼
�Xunpleasant �

�Xpleasantþ�Xneutral
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
unpleasantþσ2

pleasantþσ2
neutral

2

q

where Xpleasant, Xneutral, and Xunpleasant represents the mean response to the pleasant, neutral,

and unpleasant categories, respectively; s2
pleasant; s

2
neutral, and s2

unpleasant represents the variance of

the response to the pleasant, neutral, and unpleasant category, respectively. SI is the largest d0

and the emotion that gives rise to the largest d0 defines the emotion for which the neuron is

selective.

Identification of emotion-selective neurons. To guard against spurious identification of

emotion selectivity and ensure that neurons designated to be selective for an emotion do so for

both datasets, we applied two analyses. First, we rank-ordered neurons according to their SI

values, eliminated neurons with small SI values, and tested the emotion recognition perfor-

mance under attention enhancement of the remaining neurons (see below). Increasing the

percentage of neurons eliminated until we saw a significant change in performance. That per-

centage was then defined as the threshold for defining emotion selectivity within a dataset (see

Fig 3C for an example of finding the threshold for the pleasant category on the IAPS dataset).

Second, for neurons identified as selective for certain emotions based on IAPS and that based

on NAPS, we overlapped the two sets of neurons and considered the overlapped neurons to be

the genuine emotion-selective neurons.

Testing the functionality of the emotion-selective neurons

Do the emotion-selective neurons defined above have a functional role? We applied two differ-

ent approaches to examine this question: lesion and attention enhancement.

Lesion. If the emotion-selective neurons are functionally important, then lesioning these

neurons should lead to degraded performance in recognizing the emotion of a given image.

Here the lesion of a specific neuron is achieved by setting its output to 0 (namely, setting α =

−1 in Eq [1]). In our experiments, we lesioned the neurons selective for a given emotion as

well as randomly selected neurons in a particular layer and observed the changes in the emo-

tion recognition performance of the model.

Attention enhancement. We further tested whether enhancing the activity of an emo-

tion-selective neuron can lead to performance improvement in emotion recognition. Follow-

ing [43], the strength of α was increased from 0 to 5 with interval step size 0.1, where α = 0 is

the conventional choice and α>0 represents increased neuronal gain (i.e., enhanced feature

attention). According to the feature similarity gain theory, increasing the gain of a neuron

leads to enhanced performance of the neuron in perceiving stimuli with the relevant features.

In our experiments, we enhanced the neurons selective for a given emotion as well as ran-

domly selected neurons in a particular layer and observed the changes in the emotion recogni-

tion performance of the model [43] (see Figs BA and BB in S1 Text).
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