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Abstract

In an ever-changing visual world, animals’ survival depends on their ability to perceive and

respond to rapidly changing motion cues. The primary visual cortex (V1) is at the forefront of

this sensory processing, orchestrating neural responses to perturbations in visual flow.

However, the underlying neural mechanisms that lead to distinct cortical responses to such

perturbations remain enigmatic. In this study, our objective was to uncover the neural

dynamics that govern V1 neurons’ responses to visual flow perturbations using a biologically

realistic computational model. By subjecting the model to sudden changes in visual input,

we observed opposing cortical responses in excitatory layer 2/3 (L2/3) neurons, namely,

depolarizing and hyperpolarizing responses. We found that this segregation was primarily

driven by the competition between external visual input and recurrent inhibition, particularly

within L2/3 and L4. This division was not observed in excitatory L5/6 neurons, suggesting a

more prominent role for inhibitory mechanisms in the visual processing of the upper cortical

layers. Our findings share similarities with recent experimental studies focusing on the

opposing influence of top-down and bottom-up inputs in the mouse primary visual cortex

during visual flow perturbations.

Author summary

This study aims to shed light on the intricate dynamics of neural responses within the

mouse primary visual cortex (V1) subjected to visual flow perturbations, unraveling the

emergence of distinct functional classes of excitatory L2/3 neurons, namely depolarizing

(dVf) and hyperpolarizing (hVf) neurons. Through the implementation of a biologically

realistic computational model, the investigation highlights the profound impact of synap-

tic connectivity, inhibitory circuits, and dynamic inputs on shaping these responses. The

identified competition by common inhibition mechanism between dVf and hVf neurons,

driven not only by long-range thalamic inputs but also by local connectivity, provides new

insights into the underlying neural circuitry. This study opens avenues for further explo-

ration into the role of locomotion-related inputs in modulating neural responses, offering
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a comprehensive framework for future investigations into sensory perception and neural

coding.

Introduction

The brain’s proficiency in visual processing, specifically its ability to perceive and respond to

dynamic changes in the environment, highlights the intricate mechanisms underlying sensory

perception. This capacity is vital for the survival, navigation, and adaptive behaviour of ani-

mals in their complex and rapidly changing natural habitats [1–3].

Deciphering the neural basis of motion perception and the response to visual flow perturba-

tions is a crucial objective in sensory neuroscience. The accomplishment of this goal has the

potential to shed light into the complexities underlying attentional modulation and decision-

making processes [4–6].

In this context, the concept of predictive coding offers a prominent framework to under-

stand how prior expectations influence these responses [7]. It posits that the brain forms inter-

nal representations of the world to predict incoming sensory information, constantly striving

to minimize the discrepancy between these predictions and actual sensory inputs [8, 9]. This

process, which aligns with the principles of Bayesian inference, is central to understanding

how the brains interprets and responds to the world. The notion of prediction errors, signaling

discrepancies between expected and actual sensory inputs, is a conerstone of this hypothesis.

These errors are believed to be computed and relayed by specific neurons to update the brain’s

internal model, a process observable across various neural circuits including the visual cortex

[10, 11], the auditory cortex [12], and the reward system [13].

In the field of visual information processing, particularly within the primary visual cortex

(V1), excitatory neurons in layer 2/3 (L2/3) have been identified as key players in responding

to changes in visual flow [11, 14, 15]. Intriguingly, these neurons exhibit distinct responses to

visual pertubations even in scenarios devoid of explicit sensorimotor expectations [11, 15].

This observation suggests that, despite the well-established role of locomotion in influencing

the activity of V1 neurons [11, 14, 16–19], excitatory L2/3 neurons possess the capacity to sig-

nal peturbations in visual flow. These signals manifest in two ways: some neurons depolarize,

referred to as dVf neurons, while others hyperpolarize, referred to as hVf neurons.

Therefore, an essential research question arises: How does the genetically encoded structure

of canonical microcircuits in the neocortex lead to the emergence of these two classes of per-

turbation-responsive neurons? While some studies have provided useful insights into the

computational roles of different neuronal populations [20] and the conditions required for the

emergence of prediction error neurons [21, 22], when considering V1 neurons, feature selec-

tivity becomes a prominent aspect, given the role of certain neurons as feature detectors [15,

23–25]. In addition, recent experiments suggest that in the absence of sensorimotor expecta-

tion, the response of some neurons to visual perturbations can be solely explained by a combi-

nation of neurons feature selectivity and locomotion gain [15]. Therefore, the coexistence of

diverse functional types of neurons in V1, including prediction error neurons [11] and pertur-

bation-responsive neurons [15], further underscores the complexity of visual processing in

this region of the brain. These types of neurons may share similar characteristics, necessitating

a comprehensive understanding of the underlying neural dynamics and circuitry.

The focus of our study aligns with the broader context of predictive coding but focuses on a

specific aspect: the emergence of distinct classes of neurons in V1 that are responsive to visual

flow perturbations in the absence of sensorimotor expectations. Additionally, we sought to
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identify the underlying factors responsible for the emergence of these distinct response classes.

Our work encompassed various aspects, including the study of the V1 connectome, the influ-

ence of neural and synaptic dynamics, and the interaction between external and internal

(recurrent) inputs. Although earlier studies primarily emphasized the structural aspects of

brain networks [26, 27], recent evidence highlights the importance of incorporating neural

dynamics for a correct description of circuit behavior [28–30]. It is crucial to recognize that

the presence of an anatomical connection between neurons does not necessarily guarantee a

functional connection, since this also depends on the dynamic activity of the neurons. On the

contrary, the existence of functional connectivity does not always imply an underlying ana-

tomical connectivity. In particular, functional hubs, which have been identified as efficient

nodes for information transmission in brain networks [31], may not align with structural

hubs. The interplay between anatomical and functional connectivity underscores the complex-

ity of brain networks and necessitates extensive research to unravel the mechanisms governing

responses to visual flow perturbations. By investigating this phenomenon, we aim to contrib-

ute to the understanding of how the brain processes visual information under changing

conditions.

In our work, we employed a biologically realistic computational model for the mouse area

V1 and the thalamic lateral geniculate nucleus (LGN) [32]. This model, which we refer to as

the Billeh model (Figs 1A and 2), integrates a large body of experimental evidence to capture

the feature selectivity of V1 neurons in mice. It offers several advantages: (i) it allows us to

explore how different configurations of visual input features influence the response of the dif-

ferent V1 cortical layers, enabling comparisons with experimental observations; (ii) it provides

direct access to the postsynaptic currents (PSCs) of each neuron, facilitating an in-depth explo-

ration of the role of recurrent and visual inputs in the system’s dynamics; and (iii) it offers

insights into the contribution of inhibitory neurons to the network dynamics.

In our endeavor to understand the emergence of distinct classes of neurons in response to

visual flow perturbations, we conducted extensive numerical simulations using the Billeh

model, specifically analyzing the effects of various visual stimuli on excitatory L2/3 neurons.

By examining the contributions of the different PSC sources, both excitatory and inhibitory,

we sought to unravel the specific roles of each neuron type within the cortical microcircuit.

Remarkably, our investigation confirmed that excitatory L2/3 neurons displayed a two-way

response to visual flow perturbations (dVf and hVf neurons), in resemblance to recent experi-

mental findings [11, 15]. In particular, this unique behavior was not observed in the infragra-

nular layers (L5/6), which exhibited a one-way response to visual flow perturbations. Through

network dynamics analysis, we not only gained insight into the properties of the network that

were not directly observed in its structure, but also deepened our understanding of the compu-

tational properties of excitatory L2/3 neurons. In particular, we identified the L2/3 circuitry

that enables the presence of dVf and hVf neurons within the Billeh model, with inhibitory Par-

valbumin neurons playing a key role in this process.

Materials and methods

Data-driven cortical laminar microcircuit model

The construction of mammalian cortical microcircuit models, incorporating a vast diversity of

genetically, morphologically, and electrophysiologically different neuron types, has been a

long-standing challenge due to limited insights into their specific connectivities. Despite these

complexities, recent studies [33–35] have culminated in a detailed cortical microcircuit model

of the mouse V1 area [32] (Figs 1A and 2), which effectively replicates the computational
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Fig 1. Billeh model and its response to the sudden onset of visual flow. (A) The Billeh model describes a patch of mouse cortical area V1 and consists of

230,924 point-neurons divided into one excitatory and three main types of inhibitory neurons (Pvalb, Sst, Htr3a) in each of the cortical layers L2/3, L4, L5,

and L6, whereas L1 contains a single inhibitory Htr3a neuron type. Each of these neuron types is subdivided into various models of neurons. The neurons

in each population are evenly distributed within a cylindrical domain. The cortical microcircuit model receives the visual input from a thalamus model that

transforms the visual input into input currents. In this study, we mainly focused on the detailed “core” region (400μm radius) of the model. This

visualization shows only 0.5% of those core neurons. (B) Top: Raster plot of the spike response of LGN units to visual stimulus. Middle: Laminar raster plot

of the spike response of V1 neurons to the visual stimulus. Different colors represent different populations of neurons, following the same palette as in (A).

Several horizontal patches of higher firing rates can be seen due to the directional selectivity of individual neurons. The yellow box highlights excitatory L2/

3 neurons, which are the main concern of this research. Vertical dashed lines indicate the period of visual flow. Bottom: Temporal frequency of the visual

flow, which consisted of vertical gratings moving horizontally.

https://doi.org/10.1371/journal.pcbi.1011921.g001
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Fig 2. Overview of the data-driven cortical laminar microcircuit model of Billeh et al (2020) [32]. (A) Base connection probabilities at 75μm
intersomatic distance depending on presynaptic (Src) and postsynaptic (Trg) neuron types. White grid cells indicate unknown values, which are assumed

to be zero in the model. (B) Gaussian scaling of the base connection probabilities shown in (A) as a function of the intersomatic distance for the different

types of connections. The probability of a synaptic connection is obtained by multiplying the base connection probability for the presynaptic and

postsynaptic neurons with this scaling function. (C) Average synaptic weights depending on presynaptic (Source) and postsynaptic (Target) neuron types.

https://doi.org/10.1371/journal.pcbi.1011921.g002
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properties of real V1 circuits. Additionally, the model incorporates an LGN module, designed

to simulate thalamic action potentials in response to visual stimuli (Fig 1A).

Structure of the model. We implemented the point-neuron version of this model to

explore the network dynamics. The model represents a V1 patch with a radius of 845μm,

encompassing 230,924 point neurons. Within this, 51,978 neurons were located in the “core

region”, a 400μm radius internal cylinder surrounded by an annulus to mitigate border arti-

facts. Neurons were categorized into various types, including excitatory, Htr3a-positive

(Htr3a) inhibitory, Parvalbumin (Pvalb) inhibitory, and somatostatin (Sst) inhibitory neurons,

spread across layers L2/3, L4, L5, and L6. Besides, L1 exclusively contained Htr3a inhibitory

neurons (Fig 1A). This classification resulted in 17 data-based neuron types, characterized by

111 generalized leaky integrate-and-fire models, each derived from the Allen Cell Types Data-

base [36]. Notably, the model considered a single L2/3 excitatory neuron model, implying that

unique dynamic behaviors in these neurons arise from differences in neuron input [32].

Model connectome. The model’s connectome is based on experimental data and Gauss-

ian scaling relative to planar intersomatic distances [32] (Fig 2A and 2B). Postsynaptic weights

were determined considering planar intersomatic distance, retinotopic visual space distance,

and functional rules based on preferred direction angle similarity. This led to the synaptic

weights shown in Fig 2C. Important functional rules include:

1. E-E synapses exhibit ‘‘like-to-like’’ preferences, with neurons sharing similar motion direc-

tions being preferentially and more strongly connected [32, 37]. Similar connectivity rules

apply to the strength (but not the probability) of other pairs of neuron types.

2. A decrease in E-E synaptic strength with increasing retinotopic visual space distance pro-

jected to the target neuron preferred direction.

3. Retinotopic correction in E-E synaptic weights to prevent asymmetric retinotopic

magnification.

The network comprises 70,139,111 synapses, with a 0.263% connection probability between

two random neurons.

Neuron models. The generalized leaky integrate-and-fire model with after-spike currents

(GLIF3), a variant of the conventional leaky integrate-and-fire (LIF) model, includes neuronal

refractoriness by incorporating slow ion-channel effects with a set of two after-spike currents

(ASC), Imj , with slow and fast time scales. The membrane potential vj(t) and spiking dynamics

zj(t) are defined by

vjðt þ dtÞ ¼ avjðtÞ þ
1 � a

C
t Iextj ðtÞ þ Iintj ðtÞ þ gEL

� �

Iextj ðtÞ ¼ Iinj ðtÞ þ Inoisej ðtÞ þ Irecj ðtÞ

Iintj ðtÞ ¼
X

m

Imj ðtÞ

zjðtÞ ¼ HðvjðtÞ � vthÞ

ð1Þ

where C is the neuron capacitance, g is the membrane conductance, EL is the resting mem-

brane potential, Iextj is the postsynaptic current, Iintj is the total contribution of ASC, and vth the

firing threshold of the membrane potential. The decay factor α in the model is defined as e−δt/τ,

where τ = C/g is the membrane time constant, and δt is the discrete-time step size, set to 1ms
in our simulations. H denotes the Heaviside step function.
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Each after-spike current Imj ðtÞ in the model follows its own dynamic equation, characterized

by predefined time scales, kmj , and an after-spike additive constant, Am
j , as follows

Imj ðt þ dtÞ ¼ e� k
m
j dtImj ðtÞ þ zjðtÞAm

j ; m ¼ 1; 2 ð2Þ

The neurons fires when zj(t) = 1, after which they enter in a short refractory period, δr, that,

depending on the neuron type, ranges from 2ms to 8ms. Following this period, the neuron’s

state variables are updated according to the following reset rules

vjðtþÞ  vr;j
Imj ðtþÞ  Rm

j � Imj ðt� Þ þ Am
j ; m ¼ 1; 2

ð3Þ

with vr,j the membrane voltage reset value, Rj a multiplicative constant, which is typically set to

1, and t+ and t− representing the time just after and before a spike, respectively.

This neuron model parameters were fit to maximize the likelihood of the simulated neuron

reproducing the spike train observed in real neurons [38].

Synaptic dynamics. For each neuron j, each postsynaptic current source, Isyn
j , was defined

by alpha function dynamics with governing equations

Isynj t þ dtð Þ ¼ e�
dt
tsynIsynj tð Þ þ dte�

dt
tsynCsyn

j tð Þ

Csyn
j t þ dtð Þ ¼ e�

dt
tsynCsyn

j tð Þ þ
X

i

Wsyn
ji zi tð Þ e

tsyn

; syn 2 in; noise; recf g:

8
>><

>>:

ð4Þ

These equations incorporate the synaptic time constanst, τsyn, the influence of presynaptic

spikes, zi(t), which could be an LGN unit (in), a Poisson source (noise) or another V1 neuron

(rec), and the synaptic weights Wsyn
ji .

The synaptic time constants τsyn took values 5.5ms for excitatory-to-excitatory (E-E) synap-

ses, 8.5ms for inhibitory-to-excitatory (I-E) synapses, 2.8ms for excitatory-to-inhibitory (E-I)

synapses, and 5.8ms for inhibitory-to-inhibitory (I-I) synapses. Additionally, the synaptic

delays, arising from the physical distance between neurons, were distributed within a range of

1 to 4ms This distribution was derived from empirical data presented in [32] and adapted to

the model’s discrete time steps.

LGN model. The thalamic lateral geniculate nucleus (LGN) is known to project retinal

inputs to V1 via excitatory projections, which represents a bottom-up input [39]. The Billeh

LGN model comprises 17,400 LGN units, each representing a spatio-temporally separable fil-

ter. These units process visual stimuli in the form of gray images or movies, outputting time

series of instantaneous firing rates. These rates are then converted into spike trains using a

Poisson process.

The diversity of the mouse LGN is incorporated by sampling these units from 14 subclasses.

The innvervation pattern of these units is selective; they predominantly target excitatory and

Pvalb neurons across layers L2/3 to L6, and Htr3a neurons in L1, aligning with empirical find-

ings on LGN projections in the mouse brain [20].

Noise model. To simulate the background activity (BKG) typically present in neural cir-

cuits, a noise model is incorporated. This model consists of a single Poisson source, firing at

1kHz, which injects random excitation into all V1 neurons. The synaptic weights for this BKG

noise varied depending on the target neuron type.

Initial conditions. All model state variables were initialized to zero at the beginning of the

first simulation trial.

PLOS COMPUTATIONAL BIOLOGY Modeling circuit mechanisms of opposing cortical responses to visual flow perturbations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011921 March 7, 2024 7 / 27

https://doi.org/10.1371/journal.pcbi.1011921


Visual stimuli

Drifting gratings. The visual stimuli used in the simulations closely resembled those

employed in predictive coding experiments [11, 15]. These stimuli consisted of full-field sinu-

soidal gratings defined by a spatial frequency of 0.04 cycles/˚ and a contrast level of 0.8. These

gratings were set to move uniformly accross various directions, ranging from 0˚ to 315˚ in 45˚

increments. In this context, a 0˚ orientation corresponds to vertically oriented gratings moving

rightward, while 90˚ represents horizontally oriented gratings moving downward.

Each simulation began with a 500ms static grating display. This was followed by a sudden

shift to a drifting grating for 1000ms. After this dynamic phase, the grating returned to a static

state for another 1000ms.
Full field flashes. In the latter part of our study, we introduced a sequence of full-field

flashes. This consisted of displaying a full-field black image for 500ms, followed by a full-field

white image for 1000ms. This sequence concluded with the display of another black image for

an additional 1000ms.

Analysis of the results

For each simulation, we recorded spikes, membrane potential, and input currents for every

neuron at each integration step. However, the utility of membrane potential data in under-

standing network dynamics was somewhat limited, primarily due to the pronounced reset fol-

lowing a spike. Additionally, whereas dopaminergic neurons have the capability to signal

bidirectional variations in their inputs [40], the spiking activity of V1 excitatory L2/3 neurons

is limited to unidirectional signaling, specifically indicating an increase in their input. This

limitation stemmed from their inherently low spontaneous firing rates [41, 42], thereby

obscuring aspects of the depolarizing and hyperpolarizing responses in these neurons.

Despite these challenges, we captured the dynamics of the firing rates by sampling them at

60 Hz and applying a 150 ms Gaussian filter for smoothing. Upon detailed analysis, we deter-

mined that the most appropiate parameter for characterizing the network dynamics was the

total postsynaptic current, or simply total input current, injected into individual neurons given

by

IjðtÞ ¼ Iextj ðtÞ þ Iintj ðtÞ ð5Þ

Baseline values were established during the 500 ms period preceding the onset of visual

flow. The network’s response to the onset of visual flow was then obtained by subtracting these

baseline values, enabling a clearer understanding of the network’s reaction dynamics.

Determination of the rheobase. For each cell model, we determined its rheobase, denoted

as θrheo, which represents the minimum injected somatic current required to elicit a spike in

response to rectangular-shaped current stimulation. we applied rectangular current pulses for

1000ms to the cell model, starting with a 1pA pulse and incrementing by 0.01pA after every 1s
resting interval, until a spike was elicited. The current at which the cell first fired was recorded

as its rheobase (illustrated in S1 Fig).

Classification of excitatory L2/3 neurons. Neurons were classified based on their average

response to visual flow, determined as

DIj ¼< Ij > � Ij;0 ¼< Iinj > þ < Inoisej > þ < Irecj > þ <
X

j

Imj > � Ij;0; ð6Þ

where Ij,0 is the baseline value of the total input current, Iinj is the LGN bottom-up current, Inoisej
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is the BKG noise, Irecj is the PSC due to other V1 neurons, and Imj represent the m-th ASC.

Averages were taken over 20 trials and 1000ms duration.

Those neurons exhibiting an increase in their total input current during the visual flow,

ΔIin, that exceeded a certain threshold, θd were identified as depolarized with the visual flow

(dVf). Conversely, neurons whose total input current response was lower than a certain value,

θh, were classified as hyperpolarized with visual flow (hVf). Neurons not meeting these criteria

were labeled as unclassified.

Since each neuron type had individual characteristics, thresholds were set at ±0.05 times

the cell’s rheobase. Despite the arbitrary nature of these thresholds, our results proved robust

across a range of threshold values.

DIj < � 0:05� yrheo ! hVf

DIj > þ0:05� yrheo ! dVf

other ! unclassified

8
>>><

>>>:

ð7Þ

Ripley’s K function. To investigate the spatial distribution homogeneity of excitatory L2/

3 neurons and to explore the tendency of neurons of the same class, i.e. dVf, hVf or unclassi-

fied, to form clusters, we determined the Ripley’s K function for each class [43], which is

defined as

KðtÞ ¼
A
n2

Xn

i¼1

NiðtÞ; ð8Þ

where A is the circular area of layer 2/3, t is the search radius, the index i runs over the cells in

the class, and n is the total number of cells in the class. Ni(t) represents the number of cells in

the class within an intersomatic planar distance t from cell i. When the search area falls par-

tially outside of the V1 column, we apply a weighting factor based on the ratio of the search

area that falls within V1 to the total search area. The effects of edge corrections are more

important for large t because large search circles are more likely to be outside the V1 column,

leading to an underestimation of Ripley’s K real value.

This statistical measure evaluates spatial clustering compared to a null model of random

homogeneous distribution, which scales as k(t) = πt2 until the system edge is reached. If the K
(t) value exceeds the random curve for a certain search radius t, it indicates spatial clustering at

that scale.

Effective synaptic weight. We defined the effective synaptic weight between a presynaptic

neuron i and a postsynaptic neuron j as

Weff
neuron i!j ¼

1

Dt

X

Dt

Wrec
ij xiðtÞ; ð9Þ

taking into account the recurrent synaptic weight, Wrec
ij , and the firing state of the presynaptic

neuron, xi(t), which takes the value 1 if at time t the presynaptic neuron fired and 0 otherwise,

over a period Δt. To determine the effective synaptic weight from neuron type i (presynaptic) to

neuron j (postsynaptic), we summed the contributions from each presynaptic neuron of type i,

Weff
type i!neuron j ¼

XNi

i¼1

Weff
neuron i!j; ð10Þ

where Ni represent the number of type i neurons.
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Statistics

For statistical analysis, each simulation included 20 trials, although the first trial was excluded,

that were averaged when computing the desired quantities. To compare mean values among

more than two classes (e.g., hVf, dVf, and unclassified L2/3 neurons), we initially conducted a

one-way ANOVA test. In case of a significant result (p< 0.01), we further applied two-sided

Welch’s t-tests to assess the significance of differences between the mean values of these

groups. The significance levels were denoted as follows: ns (not sifnificant), * (p< 0.05), **
(p< 0.01), *** (p< 0.001), **** (p< 0.0001).

In those cases where only two distributions were compared (e.g., excitatory L2/3 versus L5/

6 neurons), a two-sided Welch’s t-test was directly performed.

For graphical representation of the data, we sometimes employed box-and-whisker plots.

In these plots, the box represents the interquartile range and the median, while the whiskers

extend to the 10th and 90th percentiles.

Results

Excitatory L2/3 neurons exhibit opposing responses to visual flow

perturbations

In the context of visual flow perturbations, divergent definitions have been adopted in experi-

mental studies, considering either sudden visual flow onset or halt [11, 15, 44]. In this investi-

gation, we focused predominantly on sudden visual flow onset, while also briefly exploring the

comparison between sudden onset and sudden halt scenarios. Thus, we initiated our study by

exposing the Billeh model to vertically static gratings that suddenly started drifting horizon-

tally at a frequency of 2 Hz (see Methods for details and Fig 1B).

Consistent with the bidirectional mismatch responses detected in previous experimental

studies [11, 15], we observed excitatory L2/3 neurons with depolarizing and hyperpolarizing

responses at the onset of visual flow (Fig 3A). To classify these responses, we labeled neurons

as depolarized (dVf) or hyperpolarized (hVf) with visual flow based on whether their average

input current change at visual flow onset surpassed 0.05× the rheobase current (dVf) or fell

below −0.05× the rheobase current (hVf), the rheobase current being the threshold above

which a neuron fires (see Methods for details and S1 Fig). Additionally, excitatory L2/3 neu-

rons that did not show a clear response to the stimulus were identified as unclassified (unc)

(see S2 Fig).

Before visual flow onset, all classes of excitatory L2/3 neurons exhibited similar values for

the different input current sources, maintaining an excitatory-inhibitory balance among recur-

rent currents with minimal recurrent contribution compared to the LGN current (S1 Table).

Upon visual flow onset, significant changes were observed between excitatory L2/3 classes.

Depolarization in dVf neurons primarily stemmed from increased LGN currents, while recur-

rent inputs remained relatively stable (Fig 3A and S1 Table). Conversely, hyperpolarization in

hVf neurons may have resulted from reduced recurrent excitation, possibly due to increased

activity of inhibitory presynaptic neurons, reduced activity of excitatory presynaptic neurons,

or a combination of both. Notably, there were slightly more neurons in the hVf class compared

to the dVf class (dVf, 23.2% (2948/12689); hVf, 26.5% (3363/12689), unclassified, 50.3% (6378/

12689)) (S1 Table).

Interestingly, the total input current (Fig 3A) and firing rate (Fig 3B) of dVf and hVf neu-

rons exhibited opposite phases, so that hVf neurons were suppressed when dVf neurons

became more active, and vice versa. Baseline neural behaviors also differed significantly

between excitatory L2/3 classes, as reflected in the mean and standard deviation of baseline
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Fig 3. Opposing excitatory L2/3 neural responses to visual flow onset. (A) Change in excitatory L2/3 neurons PSCs to 2Hz spatial frequency visual flow

onset, accros 20 trials. Include inputs from V1 neurons (left) and LGN (middle). Also, the total PSC is shown (right). Top: Heatmap of 30 randomly

selected neurons, sorted by average response. White rows show zero input. Bottom: Class traces with SEM shading. Horizontal dotted lines mark

classification thresholds. (B) Top: Firing rates (FR) for excitatory L2/3 neurons. Middle: FR averaged for dVf (turquoise) and hVf (orange) neurons.

Bottom: Visual stimulus temporal frequency. (C) Input current response of excitatory L2/3 and L5/6 neurons to visual flow onset. Shading indicates the
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input distributions (S3(A) and S3(B) Fig). This correlation between characteristic visual flow

onset responses and baseline behaviors parallels experimental findings [11].

Divergent visual integration strategies in excitatory L2/3 and L5/6 neurons

Prior research has proposed that the infragranular layers, namely L5/6, employ different visual

input integration mechanisms compared to L2/3 [8, 20]. In particular, the sudden onset of

drifting gratings in open-loop experiments triggered widespread depolarization among excit-

atory L5/6 neurons [11].

Our findings obtained using the Billeh model in the absence of top-down input also

revealed widespread depolarization of excitatory L5/6 neurons upon visual flow onset (Fig 3C

and 3D and S1 Table), consistent with a positive integration of visual input within this layer.

Specifically, excitatory L5/6 neurons displayed a marked imbalance between depolarizing and

hyperpolarizing responses (dVf: 62.7% (12816/20451); hVf: 0.3% (67/20451); unclassified: 37%

(7568/20451)). Consequently, a significant difference was observed between average responses

to visual flow onset in excitatory L2/3 and L5/6 neurons (mean ± SD, L2/3: 0.2 ± 7.9 pA; L5/6:

13 ± 11 pA) (Fig 3D).

Connectome exploration of excitatory L2/3 neuron classes

The observed division of excitatory L2/3 neurons into distinct classes in the sole presence of a

visual input that varies over time encourages an exploration of the underlying fundamental

principles driving this phenomenon. Computational studies on cortical microcircuits have

shown that prediction error neurons may require a balance between excitation and inhibition

in multiple pathways, highlighting the relevance of network connectivity [22].

At first glance, it would be reasonable to assume that there exists a difference in the connec-

tivity of the hVf and dVf neurons, i.e., that they were affected by significantly different synap-

ses. Notably, we found that the main difference lay in the number of connections from the

LGN, with dVf neurons receiving almost twice as many as hVf neurons did (S2 and S3 Tables).

In fact, many hVf neurons lack direct connections from LGN, indicated by zero in-degree val-

ues, i.e. number of incoming connections to a neuron (Fig 4A). This observation aligns with

the existing idea that the LGN predominantly projects to L4, with projections to L2/3 being

sparse and exhibiting weaker connectivity [45, 46].

The analysis of the probability of connection between pairs of excitatory L2/3 neurons dis-

played a tendency indicating that neurons of the same class, such as two dVf or hVf neurons,

were more likely to be connected to each other than to neurons of a different class (Fig 4B).

Interestingly, the strength of connections between neurons of the same class was stronger

compared to connections between neurons of different classes (Fig 4C).

This pattern closely aligns with a modular structure in dVf and hVf neurons, a feature

observed in cortical functional networks [29, 47–49]. In a modular structure, neurons within

the same module (or class) are more densely interconnected, which facilitates specialized pro-

cessing within the cortical column [45, 50]. Similar patterns have been identified in fosGFP-

expressing layer 2/3 pyramidal cells in the primary somatosensory cortex, which displayed ele-

vated spontaneous activity and were more likely to form connections with each other [45, 51].

SEM across neurons and realizations. (D) Average input current response of excitatory L2/3 and L5/6 neurons to visual flow onset (t = −110.7, p = 0,

n = 33140, nE2/3 = 12689, nE5/6 = 20451, Welch’s t-test). Turquoise and orange shading indicate depolarization and hyperpolarization regions. Horizontal

lines denote quartiles of the distributions.

https://doi.org/10.1371/journal.pcbi.1011921.g003
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However, due to the relative scarcity of neurons in each excitatory L2/3 class and the rela-

tively weak nature of their synapses, the total synaptic weight between these classes was negligi-

ble compared to inputs from excitatory L4 neurons (Fig 4D and 4E). Consequently, excitatory

L2/3 neurons had a minimal direct influence on the specific responses of other excitatory L2/3

neurons.

Further investigation of the in-degree and out-degree, i.e. number of outgoing connections

of a neuron, of both classes revealed a similarity in the recurrent V1 connections (S2 Table).

Notably, dVf and hVf neurons exhibited similar distributions of presynaptic neuron types (Fig

4D). However, dVf neurons possess slightly stronger incoming recurrent synapses, primarily

due to contributions from excitatory L4 neurons (Fig 4E), and increased LGN input (Fig 4A

and S3 Table).

Fig 4. Connectivity of excitatory L2/3 neurons. (A) Distribution of in-degrees from LGN units for hVf (orange) and dVf (turquoise) neuron classes. (B)

Probability of the connection (in %) between two randomly selected excitatory L2/3 neurons. Note the symmetry of the matrices, which shows that there is

no bias in the source-target order. (dVf source, dVf vs hVf target: t = 17.4, p = 2.7 × 10−66; hVf source, dVf vs hVf target: t = −14.1, p = 3.3 × 10−44, n = 6311,

ndVf = 2948, nhVf = 3363, Welch’s t-test). (C) Average synaptic weight of a given connection between two randomly selected excitatory L2/3 neurons. (dVf

source, dVf vs hVf target: t = 45.1, p = 0; hVf source, dVf vs hVf target: t = −37.8, p = 0, n = 6311, ndVf = 2948, nhVf = 3363, Welch’s t-test). (D) Number of

synapses with different populations of presynaptic neurons for the hVf (orange) and dVf (turquoise) classes. (E) Average synaptic weight with different

populations of presynaptic neurons for the hVf (orange) and dVf (turquoise) classes. Shading indicates regions of excitatory (red) and inhibitory (blue)

synaptic weights.

https://doi.org/10.1371/journal.pcbi.1011921.g004
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It is important to note that connectivity rules of the Billeh model (see Methods for details)

may introduce some differences regarding the spatial distribution of dVf, hVf, and unclassified

neurons. However, a spatial analysis reveals that all these excitatory L2/3 neurons are evenly

distributed within the model’s radius and depth (S4 Fig). Exploring spatial clustering through

Ripley’s K function [43] indicates that dVf and hVf neurons do not indicate strong preferences

for grouping functionally similar neurons. While slight deviations from a random distribution

are observed, there is insufficient evidence to conclude substantial proximity preferences

between dVf and hVf neurons (S4 Fig).

Dynamical origin of excitatory L2/3 classes

The role of network connectivity is evident in the emergence of dVf and hVf neurons. How-

ever, to gain a more complete understanding of the mechanism that segregates dVf and hVf

neurons, it is necessary to analyze the dynamics of the network. To this end, we determined

effective synaptic weights, which combine synaptic weight and presynaptic neuron activity for

each pair of neuron types (see Methods for details) (Fig 5, S5 and S6 Figs). This comprehensive

dynamic exploration of the main sources of recurrent current is essential to understand the

mechanism leading to the segregation of the dVf and hVf neurons.

Notably, dVf neurons experienced a substantial increase in recurrent excitation (mainly

from excitatory L4 neurons) and LGN inputs (Fig 5A). This recurrent excitation overcame the

increased recurrent inhibition, mainly from L2/3 and L4 Pvalb populations, resulting in the

depolarization of these neurons. On the contrary, the hVf neurons experienced a slight

increase in excitation received from LGN and L4 neurons which was not sufficient to over-

come inhibition originating primarily from L2/3 and L4 Pvalb interneurons, leading to hyper-

polarization of these neurons (Fig 5A). Somewhere between these two classes of neurons were

unclassified neurons, where inhibition originating from Pvalb interneurons was balanced by

excitation originating from layer 4 excitatory neurons and LGN input (Fig 5B). This indicates

that the different behavior of excitatory L2/3 neurons is the result of the interplay between

LGN input excitation, excitation from L4 neurons, and inhibition from both L2/3 and L4

Pvalb interneurons.

Further insights arise from comparative analysis with experimental evidence in the primary

somatosensory cortex, where highly active L2/3 excitatory neurons received enhanced excit-

atory inputs from layer 4, highlighting the relevance of network connectivity in shaping these

neuron subsets [45].

Therefore, a comprehensive dynamic exploration of the main sources of recurrent current,

namely L4 excitatory neurons, L4 Pvalb interneurons, and L4 Pvalb interneurons, is essential

to understand the mechanism leading to the segregation of the dVf and hVf neurons.

L4 excitatory neurons. Operating as amplifiers of LGN excitation (Fig 5B), excitatory L4

neurons received increased LGN bottom-up input, which triggered a positive feedback loop

within the population. This result was consistent with the literature, positioning L4 excitatory

neurons as upstream components in the specialized local excitatory network for sensory pro-

cessing [20].

L4 Pvalb interneurons. Similar to their excitatory counterparts, L4 Pvalb interneurons

respond to elevated activity from LGN and L4 excitatory neurons, resulting in the increased

inhibitory influence that is directed to the L2/3 circuitry (Fig 5C) [52].

L2/3 Pvalb interneurons. Crucial to the emergence of dVf and hVf neurons, L2/3 Pvalb

interneurons significantly depolarize during the visual flow onset (Fig 5C and S1 Fig). Activa-

tion of dVf neurons notably drives this depolarization, interacting dynamically with L2/3

Pvalb interneurons. Intriguingly, these inhibitory Pvalb neurons do not preferentially connect
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Fig 5. Dynamic origins of excitatory L2/3 hyperpolarizing and depolarizing responses to the onset of visual flow. (A) Effective synaptic

input weight for dVf and hVf neurons. Bars represent the effective weight 500ms before (orange) and 500ms after (purple) the onset of visual

flow. (B) As in (A), but for layer 2/3 unclassified neurons and layer 4 excitatory neurons. (C) As in (A), but for Pvalb neurons in layers 2/3 and 4.

Notably, the comparison between static and drifting gratings’ effective synaptic weights is statistically significant for all presynaptic populations,

with p-values of 0.0001 or lower.

https://doi.org/10.1371/journal.pcbi.1011921.g005
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with any specific excitatory counterparts (dVf, hVf, or unclassified) (S7(A) Fig) when the total

synaptic weight was divided by the number of presynaptic neurons, in accordance to experi-

mental evidence [47].

Additionally, other L2/3 inhibitory neuron types (Htr3a and Sst), which depolarized as a

result of the onset of visual flow (S6 Fig and S1 Table), have minor contributions to the dynam-

ics of dVf and hVf neurons (Fig 5A). While experimental evidence suggests that Htr3a and Sst

neurons are generally less excited by LGN inputs [46], with the influence of top-down inputs

they could play a more substantial role in the formation of prediction error neurons, as sug-

gested by computational models [21, 22].

Finally, our analysis revealed that depolarization of excitatory L5/6 neurons is triggered pri-

marily by excitatory inputs of LGN and L4, along with recurrent intralayer excitation (S6 Fig).

Hence, the lack of hyperpolarizing responses in L5/6 results from insufficient visually-driven

recurrent inhibition, thus disabling the establishment of a multi-pathway excitatory-inhibitory

balance (S1 Table).

Impact of feature selectivity in excitatory L2/3 neuron classes

In light of the “like-to-like” connectivity principles employed in constructing the V1 model, it

is possible that differences might exist in the direction tuning of dVf and hVf neurons [32].

The preferred direction of stimulus motion of each neuron, as assigned during model design,

varied between the different excitatory L2/3 neuron classes (Fig 6A). For instance, dVf neurons

exhibited a preference for vertical gratings drifting horizontally, aligning with the perturbation

direction —a correlation validated through experimental findings [15]. In contrast, hVf and

unclassified neurons exhibited a slight preference towards horizontally-oriented gratings

undergoing vertical motion.

Previously, excitatory L2/3 neurons were categorized as dVf or hVf based on their response

to horizontal drifts of vertical gratings at 2 Hz. Considering the sensitivity of dVf and hVf neu-

rons to drifting gratings, it was plausible to hypothesize that hVf neurons might exhibit a pref-

erence for static gratings over drifting ones, and vice versa for dVf neurons, aligning with

experimental observations where visual flow and running speed were uncoupled [15]. To fur-

ther investigate this, the grating drift speed was increased to 8 Hz, leading to a reclassification

of excitatory L2/3 neurons based on their response to this new stimulus. Interestingly, our

findings revealed that neuron assignments to dVf and hVf classes remained largely unaffected,

with the PSC responses maintaining a comparable magnitude (Fig 6B and 6C). This outcome

stands in constrast to the temporal frequency preferences exhibited by perturbation-sensitive

neurons [15], as well as the behaviour of mismatch-responsive neurons, which demonstrated

linear scaling of responses with the difference between running speed and visual flow speed

[10, 53]. This observation highlights a specific limitation within the Billeh model when han-

dling different temporal dynamics of visual stimuli.

Our analysis revealed that dVf neurons exhibited a particular preference for the vertical ori-

entation of the gratings (Fig 6A). Could this mean that the particular behavior of a dVf or hVf

neuron depended exclusively on the orientation of the stimulus, unveiling them as purely ori-

entation-selective neurons? To tackle this question, we considered a visual stimulus consisting

of horizontal gratings drifting vertically at 2 Hz, to explore the effect of orientation tuning. In

this scenario, the reclassification of excitatory L2/3 neurons diverged significantly from the ini-

tial classification, implying a strong influence of grating orientation on the individual behavior

of these neurons. This result was expected since the Billeh model supports orientation

selectivity.
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Fig 6. Responses of excitatory L2/3 neuron classes to various visual input features. (A) Distribution of tuning angles for visual flow among excitatory

L2/3 hVf (left), unclassified (middle), and dVf (right) neurons. (B-C) The different visual stimuli consisted of a faster visual flow composed of vertical

gratings moving at 8Hz (left), horizontal gratings with vertical motion (middle left), reversed direction of motion (middle right), and a sudden visual flow

halt (right). (B) Confusion matrices showing the fraction (0–1) of excitatory L2/3 neurons classified in each class according to their response to the novel

visual stimulus (horizontal axis) compared to the classification from the original experiment (vertical axis). (C) Heatmap representing input current

responses to the given stimulus for the same neurons depicted in Fig 3A. Here, TF denotes the temporal frequency of the visual flow. Note the different y-

axis scale in left stimulus panel of (C).

https://doi.org/10.1371/journal.pcbi.1011921.g006
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We also analyzed the effect of reversing the motion direction of vertical gratings drifting at

2 Hz (Fig 6B and 6C). Notably, the input currents displayed minimal changes compared to the

original visual stimulus, and the reclassification of excitatory L2/3 neurons demonstrated a

high correlation with the original classification. Consequently, the dynamic behavior of these

neurons appears unaffected by the visual flow direction.

Finally, we subjected the Billeh model to a sudden halt of the visual flow. As expected, the

behavior of dVf and hVf neurons was reversed: hVf neurons depolarized and dVf neurons

hyperpolarized as a response to the visual flow perturbation (Fig 6B and 6C), similar to what

was found experimentally [11]. Importantly, our observations occurred without top-down

input influence.

Direction selectivity vs Perturbation sensitivity

Considering the relevance of grating orientation in the emergence of the dVf and hVf neuron

classes, an intriguing question arose: Could there be neurons exhibiting consistent behavior

regardless of the direction of grating motion? An affirmative response to this query would sug-

gest that these neurons primarily react to the perturbations of the visual flow. This phenome-

non has already been observed experimentally in V1 neurons [15].

Previously, excitatory L2/3 neurons had been classified as dVf or hVf based on their

responses to horizontally drifting gratings. In this study, these neurons were reclassified based

on their average input current responses to visual flow onset across a wide range of visual flow

directions (0˚ : 315˚ : 45˚). Intriguingly, a subset of dVf (241/2948) and hVf (519/3363) neu-

rons exhibited consistent responses across all drifting directions, i.e., this subset of dVf/hVf

neurons depolarized/hyperpolarized for every gratings direction (S8 Fig). These neurons were

categorized as perturbation-sensitive neurons, as they exhibited significant responses to sud-

den changes in the visual flow, regardless of its direction. Remarkably, the response magnitude

remained fairly uniform across visual flow directions, with a slight preference for the front-to-

back direction (S8 Fig), aligning with experimental observations [54]. These perturbation-sen-

sitive neurons emerged as suitable candidates for encoding sudden visual flow changes in

open-loop scenarios, aligning with their potential role as prediction error neurons in such con-

texts. Particularly, dVf and hVf neurons are well-positioned to function as positive and nega-

tive prediction error neurons, respectively, under these circumstances.

The consistent responses of perturbation-sensitive neurons may be stem from their intrin-

sic preferences. Specifically, it is plausible that hVf neurons tend to favor slower visual flow

speeds, such as static gratings, while dVf neurons lean towards faster visual flow speeds, indi-

cating a positive response to increased speed. To investigate this, we examined the responses

of these neurons across various visual flow temporal frequencies (1 : 9 : 1 Hz) while maintain-

ing a vertical grating orientation. The preferred frequency for each neuron in this orientation

was determined as the frequency at which the dVf/hVf neuron received the highest/lowest

input current during visual flow. Remarkably, both dVf and hVf neurons exhibited similar dis-

tributions of preferred frequencies (S8 Fig), peaking around 5 Hz.

Conversely, a subset of dVf (892/2948) and hVf (503/3363) neurons exclusively responded

to visual flow onset in a particular direction while showing unclassified behavior in others, so

we identified them as direction-selective neurons.

To conclusively determine if perturbation-sensitive neurons are indeed encoding visual

perturbations, i.e. sudden changes in visual input, we presented the model with black-to-white

full-field flash and tracked the responses of excitatory L2/3 neurons (Fig 7 and S9 Fig). Nota-

bly, dVf/hVf perturbation-sensitive neurons exhibited an abrupt increase/decrease in input

current in response to the flash, regardless of whether the transition was from black-to-white
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Fig 7. A subset of excitatory L2/3 neurons exhibit perturbation sensitivity. (A) Input current traces for perturbation-sensitive dVf (top)

and hVf (bottom) neurons in response to various grating directions. (B) Schematic of the full-field flash visual stimulus. (C) Average input

current responses to the full-field flash among distinct subsets of excitatory L2/3 neurons (Dir. sel. dVf vs Pert. resp. dVf, t = 6.78,

p = 7.3 × 10−11; Dir. sel. hVf vs Pert. resp. hVf, t = −22.1, p = 1.2 × 10−83, Welch’s t-test). Turquoise and orange shading represent dVf and

hVf classification regions. (D) Input current responses of perturbation-sensitive and direction-selective excitatory L2/3 neurons to the full-

field flash. Vertical dotted lines mark the full-field flash. Shaded areas indicate SEM.

https://doi.org/10.1371/journal.pcbi.1011921.g007
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or from white-to-black (Fig 7C and 7D). This response faded after a few hundred milliseconds,

with the neuron’s postysnaptic currents returning to baseline levels. In contrast, direction-

selective neurons demonstrated a significantly different response, with both dVf and hVf

direction-selective neurons exhibiting similar behavior (Fig 7C and 7D). These findings con-

firmed that perturbation-sensitive neurons acted as broad detectors of visual input perturba-

tions, while direction-selective neurons focused primarily on detecting the movement in a

particular direction.

Discussion

The emergence of different neural responses to visual flow perturbations in the primary visual

cortex (V1) has drawn attention due to its relevance to sensory perception, attentional modu-

lation, and decision-making [4, 6, 11, 15]. The discovery of error neurons in L2/3 that report

positive and negative errors between visual flow prediction based on motor signals and actual

visual flow has opened avenues for investigating the neural mechanisms underlying prediction

and adaptation [11, 55]. Notably, subsequent work showed that similar neural responses can

also be detected even in situations where animals remain stationary, suggesting that these

error neurons rather report changes in visual flow [15].

This study aimed to explore the emergence of distinct perturbation-responsive V1 neuron

classes in the absence of a sensorimotor expectation using the Billeh model, a biologically real-

istic computational model [32]. Our investigation revealed the presence of two functional clas-

ses of excitatory L2/3 neurons, termed dVf and hVf (Fig 3), mirroring the depolarizing (dMM)

and hyperpolarizing (hMM) mismatch neurons observed in previous experiments where

visual flow was uncoupled from locomotion speed and visual flow perturbations appeared as

sudden onsets of drifting gratings [11]. This unique behavior emerged despite that, in terms of

model composition and wiring, the Billeh model assumes only one model of excitatory L2/3

neuron, showcasing the importance of the network dynamics in neural responses.

In particular, these two classes of neurons emerged due to differences in both synaptic and

effective connectivity, particularly with inhibitory neurons. The relevance of connectivity in

this context is not surprising, as theoretical studies have suggested that the connectome

encodes essential features of the world within its weight distribution, enabling rapid adaptation

to sensory evidence [56].

Divergent synaptic input patterns from the lateral geniculate nucleus (LGN) and excitatory

L4 neurons led to varying levels of excitation, where dVf neurons exhibited stronger excitation

and hVf neurons showed weaker visually-driven inputs (Figs 4 and 5A). Indeed, the LGN

input did not have a direct functional influence on most hVf neurons (Fig 4A). This structural

discrepancy profoundly shapes the distinct depolarizing and hyperpolarizing responses

observed, presenting a testable prediction that could be experimentally validated if these two

classes of neurons were identified.

Recent experimental findings suggested that positive and negative prediction error neurons

in L2/3 map to different transcriptomically defined neuron types [57]. If that is correct, then one

can expect the above-mentioned connectivity differences between these classes—namely, promi-

nent differences in inputs to the different classes of excitatory L2/3 neurons from, e.g., L4, but rel-

atively similar recurrent connections within L2/3. In this case, the genetic labels of these different

classes can also help experimentalists to test our modeling predictions regarding connectivity.

Further dynamic analysis of the network revealed that dVf neurons influenced inhibitory

Parvalbumin (Pvalb) neurons, indirectly inhibiting hVf neurons through a competitive inter-

action mediated by shared inhibition (Fig 8). Thus, this inhibitory connections from Parvalbu-

min neurons in layers 2/3 and 5 link excitatory L2/3 neurons across the fine-scale dVf and hVf
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subnetworks, in agreement with experimental studies [47]. Overall, this increased inhibition

could not be overcome by the excitatory inputs received by hVf neurons, resulting in a visually

driven hyperpolarization. On the other hand, unclassified neurons exhibited a balance between

recurrent inhibition and excitation, resulting in minimal responses to visual flow perturbations

(S1 Table) This interplay highlighted the significance of dynamic inhibitory circuits in shaping

neuron responses.

Recent publications on cortical microcircuit modeling have revealed interesting conditions

for the emergence of prediction error neurons [21, 22]. They considered a particular circuit of

bottom-up and top-down connections and emphasized that, while the distribution of bottom-up

and top-down inputs to excitatory cells was well studied, the distribution between different types

of cortical inhibitory interneurons was less understood and probably diverse. Therefore, various

input configurations led to different circuits for the prediction error neurons. In our study, the

thalamocortical connectivity of the Billeh model, which is supported by experimental studies

[46, 58, 59], suggests that the bottom-up input almost exclusively targets excitatory and Pvalb

neurons in all layers and Htr3a neurons in L1. This led us to the circuitry shown in Fig 8, where

dVf neurons indirectly inhibited hVf neurons during the onset of visual flow, by activating L2/3

Pvalb interneurons. This circuit is reminiscent of a competition by common inhibition between

dVf and hVf neurons, where the former use the pool of Parvalbumin neurons to suppress the

activity of the latter [60]. Further evidence for this hypothesis can be seen in Fig 3B, where the

firing rate of dVf neurons is anti-correlated with the firing rate of hVf neurons. This outlines a

modeling prediction of a connectivity motif, which our work suggests to be important for main-

taining the dVf and hVf functional classes, and which can potentially be observed experimentally

if one can correlate functional properties of L2/3 neurons with their local connectivity.

The study also delved into the role of visual input characteristics in shaping neuronal

behaviors. In particular, it revealed that the identified dVf neurons tended to prefer the

Fig 8. Network dynamics reveal crucial L2/3 inhibitory pathways. Diagram illustrating the influence of LGN bottom-up input on the segregation of hVf and dVf

neurons. The arrows represent variations in effective synaptic weights triggered by the visual flow onset. Excitatory projections are denoted by red arrows, while

inhibitory projections are indicated by blue arrows. The diagram selectively displays neuronal populations deemed pivotal in the functional division among excitatory

L2/3 neurons.

https://doi.org/10.1371/journal.pcbi.1011921.g008
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orientation of the given grating relative to others, while the unclassified neurons tended to pre-

fer perpendicular gratings (Fig 6A). Furthermore, when the vertical orientation of the gratings

was changed to a horizontal orientation (Fig 6), some dVf and hVf neurons behaved as unclas-

sified neurons, while others continued to behave in the same way. Furthermore, a subset of

dVf and hVf neurons exhibited consistent responses across different directions, indicative of

their role in detecting general visual input perturbations. This was confirmed through a full

field flash visual stimulus (Fig 7). Consequently, this subset of dVf and hVf neurons aligned

with the positive and negative perturbation-sensitive neurons found in previous experiments

[15].

It is important to acknowledge the role of additional factors, such as locomotion-related

inputs [14, 16–19, 55] and feedback from higher visual areas [61], in modulating V1 neuron

responses to visual flow perturbations. Particularly, locomotion has been shown not only to

modulate V1 activity [16], but also to strongly drive motor-related responses in V1, even dur-

ing dark running conditions [14]. The precise role of locomotion-induced top-down input

remains a subject of ongoing investigation; it potentially operates as a gain modulator, enhanc-

ing V1 neuron responses while preserving orientation selectivity [15, 16]. This amplification

effect appears to be smoothly contingent on the animal’s speed [18]. Alternatively, this input

may also provide a prediction of incoming visual flow which is dependent on previous visuo-

motor coupling experience, leading to the emergence of prediction error neurons [11, 14, 55].

Recent experimental evidence suggests that mouse visual areas prioritize the encoding of

potentially fast-changing and behaviorally relevant visual features during locomotion [44],

which may imply that a larger number of perturbation-sensitive neurons would appear in the

presence of locomotion. Considering these insights alongside the pronounced preference of

dVf neurons for gratings aligned with their preferred direction, it becomes plausible that loco-

motion amplifies the number of perturbation-sensitive neurons and accentuates the differenti-

ation between dVf and hVf neurons. In general, these findings suggest that top-down

locomotion inputs play a crucial role in modulating V1 neuron responses to visual flow pertur-

bations, enabling efficient encoding and integration of behaviorally relevant visual inputs.

Finally, it is worth mentioning that, although the version of the Billeh model that we used

systematically integrates a wide range of detailed biological data, it describes neuronal cells as

point neurons. Recent modeling and experimental studies suggest that dendritic arbours may

play a signification role in the computation of prediction errors [21, 61, 62]. Hence, studying

the roles of dendritic computations in producing the effects we described above would be a

potentially fruitful area for future work.

To conclude, the insights derived from the Billeh model provide a window into the dynam-

ics of V1 neural responses to visual flow perturbations, highlighting the complex interplay

between synaptic connectivity, inhibitory circuits, and dynamic inputs. The emergence of dis-

tinct response classes, in the absence of explicit sensorimotor expectations, underscores the

computational richness of V1’s microcircuitry.

Supporting information

S1 Fig. Illustration of the procedure used to determine the rheobase of cell models. Top:

Injected current into the cell soma consisting of increasingly larger current steps interleaved

by resting periods. The red line represents the identified rheobase. Middle: Cell model mem-

brane voltage as a response to the injected current. The red line represents the voltage thresh-

old in the model. Bottom: After-spike currents of the model. Sharp vertical lines indicate the

presence of a spike.

(TIF)
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S2 Fig. Responses to sudden onset of visual flow for representative excitatory L2/3 neu-

rons. (A) Left: Neuron’s membrane voltage response (top), input current response (middle),

and firing rate (bottom) for a sample dVf neuron. The mean input current during visual flow

(blue horizontal line) and the classification thresholds (black dots) are shown. Right:

Responses of the different PSC sources for a sample dVf neuron, including total input current

(red), recurrent current (olive), and LGN current (blue). Vertical dashed lines mark the visual

flow period. (B) As in (A), but for a sample unclassified neuron. (C) As in (A), but for a sample

hVf neuron.

(TIF)

S3 Fig. Baseline distributions of excitatory L2/3 neurons. (A) Distribution of baseline input

current mean for excitatory L2/3 classes (ANOVA: F = 162.8, p = 1.5 × 10−70, n = 12689; dVf vs

hVf: t = 15.72, p = 1.5 × 10−54, n = 6311; dVf vs unc: t = 4.18, p = 2.9 × 10−5, n = 9326; hVf vs unc:

t = 13.6, p = 2.8 × 10−41, n = 9741, Welch’s t test). (B) Distribution of baseline input current stan-

dard deviation (SD) for excitatory L2/3 classes (ANOVA: F = 14.96, p = 3.2 × 10−7, n = 12689;

dVf vs hVf: t = 5.24, p = 1.7 × 10−7, n = 6311; dVf vs unc: t = 3.58, p = 3.5 × 10−4, n = 9326; hVf vs

unc: t = 2.72, p = 0.0065, n = 9741, Welch’s t-test). Red triangles indicate the class mean.

(TIF)

S4 Fig. Spatial distribution of dVf, hVf, and unclassified neurons. (A) The density distribu-

tion of the distance to the center of the column, which we refer to as radius, (left), and the

depth within the layer (right) is depicted for dVf, hVf, and unclassified neurons. (B) Ripley’s K
divided by the layer 2/3 area as a function of the search radius t. The colors of the curves and

dots represent the results for dVf (turquoise), hVf (orange), and unclassified (gray) neurons.

The black points represent the outcome of a random null model of 10,000 neurons averaged

over 100 realizations. Also, the excitatory L2/3 classes are represented in the V1 cylinder.

(TIF)

S5 Fig. Full dynamic origins of excitatory L2/3 hyperpolarizing and depolarizing responses

to the onset of visual flow. Effective synaptic weight for various neuron types: (A) dVf and

hVf neurons; (B) L2/3 unclassified and L4 excitatory neurons; and (C) L2/3 and L4 inhibitory

Pvalb neurons. The bars represent the effective weight 500ms before (orange) and 500ms after

(purple) the onset of visual flow.

(TIF)

S6 Fig. Distributions of effective synaptic weights for different neuronal populations.

Effective synaptic weight for various neuron types: (A) L1 and L2/3 inhibitory Htr3a neurons;

(B) L2/3 and L4 inhibitory Sst neurons; and (C) excitatory L5 and L6 neurons. The bars repre-

sent the effective weight 500ms before (orange) and 500ms after (purple) the onset of visual flow.

(TIF)

S7 Fig. Presynaptic weight distributions for different neuronal populations. Total synaptic

weight of several presynaptic populations for: (A) L2/3 and L4 inhibitory Parvalbumin neu-

rons; (B) L2/3 unclassified and excitatory L4 neurons; and (C) excitatory L5 and L6 neurons.

(TIF)

S8 Fig. Orientation and frequency preferences of excitatory L2/3 perturbation-responsive

neurons. (A) Input current responses in various drift directions normalized to the input cur-

rent responses to horizontal drift (0˚ direction). (B) Distribution of preferred visual flow fre-

quency of dVf (turquoise) and hVf (orange) neurons, and horizontal drift vertical gratings.

(TIF)
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S9 Fig. Raster plot of V1 model response to the full-field flash stimulus. Top: Raster plot of

the spike response of LGN units to full-field flash. Bottom: Laminar raster plot of the spike

response of V1 neurons to full-field flash. The colors of the spikes represent the different popu-

lations of neurons, following the same palette as in Fig 1. Vertical dashed lines indicate the

period of full-field flash.

(TIF)

S1 Table. Input currents for different neuron populations. Mean values for the different

PSC sources during the static gratings (baseline) and drifting gratings (visual flow) periods. In

some populations, a classification of the belonging neuron’s response to the drifting gratings

was made (see Methods for details). The SEM on the sample population and realizations is

taken as the error. The total current considers the contributions of the recurrent, bottom-up,

ASC and BKG currents.

(PDF)

S2 Table. In/Out degrees for excitatory L2/3 classes. Connections with other V1 neurons

(recurrent), thalamus (LGN), and noisy background sources (BKG) are considered. The SEM

for each variable is taken as the error.

(PDF)

S3 Table. Weighted in/out degrees for excitatory L2/3 classes. Weighted in/out-degrees, i.e.

the number of incoming/outgoing connections multiplied by the synaptic weight, with other

V1 neurons (recurrent), thalamus (LGN), and noisy background sources (BKG) are consid-

ered. The SEM for each variable is taken as the error.

(PDF)

S4 Table. Statistical significance testing results for the comparison of total presynaptic

weight sources between dVf and hVf neurons. The table presents the statistical significance

testing results, providing insights into the microcircuitry differences between dVf and hVf

neurons. Welch’s t-test were performed, with the low p-values attributed to the large number

of neurons within both dVf and hVf classes.

(PDF)

S5 Table. Statistical significance testing results for comparing the number of synapses by

source type between dVf and hVf neurons. The table presents the statistical significance test-

ing results, providing insights into the microcircuitry differences between dVf and hVf neu-

rons. Welch’s t-test were performed, with the low p-values attributed to the large number of

neurons within both dVf and hVf classes.

(PDF)
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