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Abstract

Android malware is becoming more common, and its invasion of smart devices has brought

immeasurable losses to people’s lives. Most existing Android malware detection methods

extract Android features from the original application files without considering the high-order

hidden information behind them, but these hidden information can reflect malicious behav-

iors. To solve this problem, this paper proposes Z2F, a detection framework based on multi-

dimensional Android feature extraction and graph neural networks for Android applications.

Z2F first extracts seven types of Android features from the original Android application and

then embeds them into a heterogeneous graph. On this basis, we design 12 kinds of meta-

structures to analyze different semantic spaces of heterogeneous graphs, mine high-order

hidden semantic information, and adopt a multi-layer graph attention mechanism to itera-

tively embed and update information. In this paper, a total of 14429 Android applications

were detected and 1039726 Android features were extracted, with a detection accuracy of

99.7%.

1 Introduction

With the development of technology, mobile smart devices are increasingly connected to peo-

ple’s lives. In order to satisfy the various needs of people’s lives and production, a wide range

of mobile applications have been developed. According to research, Google’s Android system

dominate smartphone operating systems. The open-source nature of the Android system is

like a double-edged sword. While maximizing convenience for developers, it also faces a great

danger of intrusion by malicious elements. The number of mobile applications is increasing

rapidly, which has led to the entry of malicious applications that invade smart devices and steal

users’ private information, thus causing harm to users such as the leakage of important data

and financial losses. Mobile applications are so relevant to people’s lives, and the detection of

malware is urgent.

Conventionally, researchers use static analysis [1] or dynamic analysis [2] methods for

Android malware detection. The static analysis first uses decompilation tools to decompile the

Android application installation package files, generating a series of decompiled files consis-

tent with the original development framework, reading the decompiled files, then extracting

predefined Android features for detection. The dynamic analysis needs to use a sandbox to
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isolate the environment, running programs on real devices or emulators while extracting

behavioral data and then determine whether the application is benign or malicious. Dynamic

analysis is costly in time and manpower, static analysis cannot resist code obfuscation. To

solve these problems, detection methods based on machine learning [3–11] are gradually

emerging, which use feature engineering to obtain key malware features and represent it in the

form of vectors, followed by classification algorithms to classify Android applications as

benign or malignant. However, these methods often ignore the high-level hidden information

behind the key characteristics of Android, which malware developers want to hide. Therefore,

it is necessary to find an efficient and fast method to extract these hidden information from

the key characteristics of Android, so that the Android malware detection task can perform

better in terms of performance.

Graph neural network technology used to model rich relationships between different ele-

ments is used in many fields [12–16], heterogeneous graph networks(HIN) [17] as a emerging

graph neural network quickly caught people’s attention. It brakes through the single type of

nodes and edges in the homogeneous graph and can accommodate data of different types,

which provide a richer and more comprehensive description of entity relationships in the real

world. Learning based on heterogeneous graphs enables the discovery of implicit associations,

which can reveal hidden association information between different nodes. In the field of

Android application detection, we extract Android features, embedding in heterogeneous

graphs and then discover hidden correlations among them. However, learning based on a het-

erogeneous graph is not an easy task, and the diversity of its node and edge types poses great

difficulties. Although Yiming Hei [18] has solved this problem by defining different meta-

structure templates and using edge attention mechanisms to learn heterogeneous graph data,

it does not consider the impact of redundant features, resulting in the problem of causing

detection performance to be less than optimal.

In this paper, we propose Z2F, a heterogeneous graph-based malware detection framework

for Android. Z2F is aimed at exploring the hidden information behind the multidimensional

Android features. By embedding them into the heterogeneous graph and mining the heteroge-

neous graph data from different semantic spaces to obtain the hidden relationships, using

these hidden information to better distinguish malware from benign. Under extensive research

and experts advice, we first use Apktool [19] to decompile the Android application installation

package file and extract the permission, API, package, class, processor, and interface from the

decompiled Android Manifest.xml file, .smali files, .so files, combined with the official docu-

ments provided by Google to get the permission group information. Building heterogeneous

graphs of applications, combining domain expert knowledge and extensive research, 12 differ-

ent meta-structures [20] are designed, including 5 metagraphs and 7 metapaths, for exploring

hidden information of heterogeneous graphs in different semantic spaces.

Z2F uses one-hot encoding to represent original text features and embeds them into the

heterogeneous graph. After the feature vectors are iteratively updated and aggregated through

the multi-layer attention mechanism [21] based on meta-structures, the final numerical

embeddings are fed into a classifier for detection. First, Android features are embedded, and

then for each meta-structure, we use the graph attention mechanism [22] to obtain the contri-

bution of neighbor nodes to the central node so as to perform the first node update. Then use

the support vector machine to learn and get every meta-structure’s contribution rate, choosing

significant meta-structures and aggregating them with graph attention mechanism using

learned weights to get the final node embedding. This enables the updated node information

to preserve diverse semantic details to the fullest extent, making model training more efficient

and lightweight. The experiments show that deep semantic information mining of heteroge-

neous graphs for Android features is significantly helpful in Android malware detection, Z2F
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outperforms all baselines in terms of accuracy, indicating its effectiveness and reliable for

Android malware detection. We make Z2F publicly available at:https://github.com/Jully-

xiaoman/Z2F.

This paper makes the following contributions:

1. With the help of AndroZoo [23], We collected and decompiled 20,000 Android applica-

tions, checking 14,429 Android applications. The large and diverse sample base ensures the

richness, extensiveness, and authenticity of the experimental data from the root, providing

strong support for extraction and exploration.

2. This article proposes after use one-hot encoding of text-type Android features, and then use

the Linear Discriminant Analysis(LDA) algorithm to reduce the dimensionality of the

Android features to remove redundant information, thereby improving detection

performance.

3. This paper designs 12 meta-structures to obtain hidden information behind features. In

order to maximize accuracy and simplify the description of Android application behaviors,

we use a selection mechanism to aggregate hidden information. The result shows that the

hidden information provide strong support for the detection of Android applications.

Organization: Part 2 shows the literature survey for the study. Part 3 shows our proposed

malware detection methodology in detail and core techniques. The fourth section describes

the creation process of our dataset and uses visualization methods to provide readers with a

macro overview of the dataset. Part 5 presents the experimental results and conducted some

discussions on the results. In part 6, the work of this article is summarized and future work is

prospected.

2 Literature survey

The general idea of the Android malware detection method based on traditional feature engi-

neering is to first manually extract Android features, perform feature engineering on the

extracted Android features, and then classification. The extracted Android features are divided

into static Android features and dynamic Android features. Static Android features mainly

include permissions, API functions, and intent. These features completely record the behavior

of the application, such as calling device functions and accessing user information. William

Enck [24] et al. used a variant of security requirements engineering technology to conduct in-

depth security analysis on Android and generated 9 permission-based malware detection

rules, which were matched when installing applications to distinguish benign and malignant

applications. Seung-Hyun Seo [25] in their proposed analysis tool DroidAnalyzer, the most

commonly used risk APIs were used to identify Android malware, and official applications

were reviewed and screened using this tool. Ali Feizollah [26] evaluated the effectiveness of

Android intents as salient features for identifying malicious applications, and compared them

with methods that use permissions to identify malicious applications. The experimental results

showed that the richness of intents semantic relationships enable better encoding of malware.

Dynamic Android features mainly refer to the behavior of applications during running.

Vikas Sihag [27] used the behavioral characteristics of dynamic analysis of applications exe-

cuted in a simulated environment to detect 13,553 different types of applications, with a detec-

tion rate of 98.08%. Pengbin Feng [28] proposed an effective dynamic analysis framework,

called EnDroid, which obtains multiple types of dynamic behavior characteristics through sys-

tem-level behavior tracking, thereby achieving high-precision malware detection. Arvind

Mahindru [29] analyzed 11,000 Android application packages from various fields, extracted a
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set of 123 dynamic permissions, and used 5 machine learning classification algorithms for clas-

sification, and its detection achieved satisfactory results.

Static detection is faster, but is easily affected by code obfuscation, resulting in a high false

positive rate. Dynamic detection requires real-time monitoring, so the overhead is large and it

cannot capture all malicious behaviors.

In graph-based Android application detection, Marwan Omar [30] used his own graph

convolutional neural network as a baseline, combined with expert data science methods, and

finally achieved 99.183% accuracy in Android malware detection by continuously fine-tuning

the model. RecepSinan Arslan [31] also uses a graph convolutional neural network, but the

novelty is that it converts the data obtained in AndroidManifest.xml into image data and sends

it to the neural network for learning, and its final accuracy rate reaches 96.2%. Shanxi Li [32]

et al. first extracted API call sequences from malware code and generated directed cyclic

graphs, then used Markov chain and principal component analysis methods to extract feature

maps of the graphs and designed a classifier based on graph convolutional networks, and

finally achieved 98.32% accuracy. The graph data structure is able to depict and contain more

information about the application, providing a sufficient data base for the determination of the

nature of the application. Yujie Fan [33] studied how to describe malware and embedded fea-

tures into heterogeneous networks, and proposed to use metagraph2vector to represent het-

erogeneous graphs for the first time. The most difficult problem in Android malware detection

based on graph neural networks is how to use graph data structures to express Android mal-

ware. Although Yujie Fan use heterogeneous graph to express Android malware, there is still a

large feature redundancy, resulting in the inability to obtain the optimal feature information.

Commonly used datasets for Android malware detection include Genome dataset [34],

Drebin dataset, and AMD dataset [35]. The Genome dataset contains 1260 malware from 2011

to 2012, the Drebin dataset is an extension of the Genome dataset, which contains 5560 mal-

ware from 2011 to 2014, the AMD dataset contains 24553 samples from 2010 to 2016.

Although the above datasets are rich in information and highly reliable, they are relatively old,

emerging malware emerges in an endless stream, and attack methods vary.

The Z2F Android malware detection framework proposed in this article extracts the multi-

national Android features uses HIN to construct the relationship between different Android

features. It combines the graph attention mechanism and the LDA dimensionality reduction

algorithm to mine and display the high-order hidden information behind the Android fea-

tures, removing redundant features to obtain the optimal feature vector, it solves the problem

of feature redundancy. To solve the problem of relatively old public datasets, this article col-

lected 20,000 Android applications from 2017 to 2019, and examined a total of 14,429 Android

applications.

3 Proposed methodology

The macro workflow of Z2F is to extract multidimensional features from the original Android

application file, embedding them in heterogeneous graphs then mining the hidden informa-

tion based on meta-structures, combining the label (benign or malicious) as input to deter-

mine the others.

3.1 Main methods of Z2F

The key idea of this paper is to use graph neural networks to mine the hidden information

behind the features. Since Android applications have a variety of features and different rela-

tionships between them, this paper uses heterogeneous graph. The heterogeneous graph data

structure G = {V, E, R, T}, where V represents the node set, E represents the edge set, R
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represents the type set of the edge, and T represents the type set of the node, where [R] + [T]>

2. In this paper, the original features of text type convert to vector using one-hot encoding,

and then embedding in the heterogeneous graph, Android applications and their features are

nodes, and the associations between features are edges. As the final object of the detection task

is an Android application, it is necessary to update the homogeneous graph with only applica-

tion nodes based on the constructed heterogeneous graph.

3.2 Architecture overview

Fig 1 shows the overall architecture diagram. The feature extraction module decompiles

Android application installation packages and extracts features. The feature encoding module

using one-hot encoding, on this basis, using the linear discriminant analysis algorithm(LDA)

[36] to filter redundant feature information, making the subsequent detection process more

lightweight. Heterogeneous graph construction module integrates applications and their fea-

tures into a heterogram, which is used to initialize the Android application behavior. The

homogeneous graph generation module utilizes the heterogeneous graph as a foundation to

generate homogeneous subgraphs. This process serves as a precursor for subsequent feeding

into the graph neural network and is primarily achieved through the 12 meta-structures we

have designed.

Fig 1. Model architecture diagram.

https://doi.org/10.1371/journal.pone.0300975.g001
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Z2F consists of a graph representation learning model using a multi-layer graph attention

mechanism. Under the meta-structures we designed, the corresponding homogeneous sub-

graphs are generated, and the graph attention mechanism is used to perform multi-layer

aggregation of meta-structures and iteratively update the final Android application informa-

tion. Specifically, based on the derived homogeneous graphs, we first use the graph attention

mechanism for each of the 12 different meta-structures to fully aggregate the information of

neighboring nodes, thus enhancing the representation of the application nodes. In order to

make the representation accurate and sufficient, we again use the graph attention mechanism

among the selected meta-structures to fully aggregate node information at the semantic level.

After completing these two aggregations, the final node embeddings are obtained. Fedding to

the classifier module, which uses the final node embeddings information to learn a classifica-

tion model that detecting malware. The test data is then applied to the classification model to

test the performance. The classification model selected in this paper is K-Nearest Neighbor

algorithm (KNN).

3.3 Data pre-processing

3.3.1 Feature extraction. The Android application is packaged into an .apk file and

installed on the Android system, decompiled apk file contains the AndroidManifest.xml,

META-INF, classes.dex, res, resources.arsc, smali folder, lib folder and assets folder. The

AndroidManifest.xml file stores a large amount of configuration information about the

Android application, including the component configuration of the application. The class.dex

contains the executable code of the Android application, which is the target when analyzing

the application. In this paper, we first use Apktool to decompile the .apk file and generate the

disassembly code. By reading the .smali file, we can understand the running mechanism of the

Android application and find a breakthrough. After extensive research and domain experts

advice, the following seven types of features were extracted for the initial description of

Android applications.

Permission: Android applications request permissions from the user when accessing

restricted data and actions. For example, ACCESS_FINE_LOCATION indicates that the applica-

tion requests permission to obtain the user’s precise location, and ACCESS_COARSE_LOCA-

TION indicates that the application requests permission to obtain the user’s approximate

location. We extract the application’s permission information from the AndroidManifest.xml file.

Permission group: Google officially assigns permission groups to all permissions in

Android development to ensure that when an application requests multiple closely related per-

missions from the user, it reduces the number of system dialog prompts. For example,

ACCESS_FINE_LOCATION and ACCESS_COARSE_LOCATION all belong to the LOCA-

TION group, and permissions in the same permission group largely reflect related behavior.

API: Google officially provides a large number of APIs for the development of Android

applications, making it easier to develop Android applications. The API called by the applica-

tion can directly reflect the behavior of the application. We extract the API calls from the .

smali file.

External package: Android applications are developed using the Java language, and the

function required by the application to achieve a certain behavior can be obtained through .

class instruction. At the beginning of the .smali file, the .class instruction specifies the full sig-

nature of the class information, and we get the external package from it.

Parent class: In the Java language, child classes inherit attributes and methods from their

parents, so the two are inextricably linked. At the beginning of the .smali file, the .super

instruction specifies the full parent class information.
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Interface: The interface can clearly reflect a series of methods and functions, allowing the

reaearchers to quickly understand what the interface implements and based on this, analyze

the behavior of the application. We extract the interface information from the .smali file.

so file: The .so file is a dynamic link library file that is used to get the CPU information. The

decompiled lib folder holds .so files corresponding to different processor architectures, with

the aim of increasing the device compatibility of the application.

3.3.2 Construction of the HIN. We use seven types of features introduced above to ini-

tially characterize the application behaviors. The relationship between nodes and edges in a

heterogeneous graph will be defined as in Fig 2.

APP-API: The APP-API describes which APIs are called by an Android application, and

the fact that different Android applications call the same APIs indicates that different applica-

tions have similar behavior.

APP-Permission: Android applications need to apply for permissions from users when

they access sensitive data or behaviors. The APP-PERMISSION investigates which permissions

Android applications apply for.

Fig 2. Android application description based on heterogeneous graph.

https://doi.org/10.1371/journal.pone.0300975.g002
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Permission-Permission Group: Each permission of an Android application belongs to a

permission group, different permissions in the same group are highly correlated. Such as

READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE belong to the STOR-

AGE group. Table 1 lists the specific information about permissions and their groups. If group

A includes permission 1, permission 2, and permission 3, then when an APP has applied for

permission 1, it does not prompt the user while this app wants to apply the other permissions

in the same group. If one application configuration file contains group 1, and another applica-

tion configuration file also contains group 1, of course they are closely related. Based on this,

the potential connection between the two applications was discovered.

APP-Package: This relationship indicates external package information called by the

Android application during runtime. Many malicious applications call specific packages to

achieve malicious behavior.

APP-Interface: This describes the use of a specific interface by an application to achieve a

specific behavior.

APP-Super: This relationship indicates the parent class called by the application to achieve

a specific behavior, which is completely recorded in the .smali file.

APP-.SO: This indicates the processor information required by the different applications to

interact with the hardware device.

To explore the hidden relationships behind the features, 12 different meta-structures are

designed as in Fig 3, where nodes represent different types of features and edges represent the

association relationships between features. The features are embedded according to the prede-

fined meta-structures; based on these 12 meta-structures, we explore the connections between

different features and fully exploit the high-order semantic information.

Fig 4 illustrates the relationship between two applications. We have extracted the

ACCESS_FINE_LOCATION permission from application1 and the ACCESS_COARSE_LO-

CATION permission from application2, which are different but belong to the LOCATION

group. Both application1 and application2 contain the “com//google//android//gms//

dynamic” external package and both require an x86-64 processor. Two seemingly unrelated

applications have been mined lots of contacts.

To generate homogeneous graphs from heterogeneous graphs, the most critical problem is

how to link the feature information contained in a single application with other applications.

We address this through meta-structures, which are designed to uncover the co-features con-

tained in different applications, and then a homogeneous graph is generated that contains only

the different application nodes. At the same time, it reflects the similarity between the different

applications.

Unlike homogeneous graph, heterogeneous graph has a variety of node types and edge

types, so we use metapaths and metagraphs for mining hidden information on heterogeneous

Table 1. Permission group.

Permission Group Permission

CALENDAR READ_CALENDAR, WRITE_CALENDAR

CAMERA CAMERA

CONTACTS READ_CONTACTS, WRITE_CONTACTS, GET_ACCOUNTS

LOCATION ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE READ_PHONE_STATE, CALL_PHONE, READ_CALL_LOG

SENSORS WRITE_CALL_LOG, ADD_VOICEMAIL, USE_SIP

SMS PROCESS_OUTGOING_CALLS

https://doi.org/10.1371/journal.pone.0300975.t001
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graphs. Metapath connects different types of nodes, and the hidden information of a particular

node’s neighboring nodes based on it will be mined. Metagraph are undirected graph that con-

nect different metapaths and contain richer information. Both metapaths and metagraphs can

be considered sub-graphs of heterogeneous graphs.

Fig 3. 12 kinds of meta-structers.

https://doi.org/10.1371/journal.pone.0300975.g003

Fig 4. Extracted entity relationships between any two applications.

https://doi.org/10.1371/journal.pone.0300975.g004
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Meta-structure: A metapath represents connections between different features. A metagraph

is similar to a metapath, which is a connection of different metapaths, but is more narrowed at

the semantic level, and the similar behavior of different applications is more rigorously

explored. For example, the metapath APP-PERMISSION-APP retrieves the same permissions

that any two applications request, and the metapath APP-PACKAGE-APP indicates that any

two applications call the same development package. For example, metagraph1 requires retriev-

ing two applications that both apply the same permissions and call the same APIs.

With the help of metapaths and metagraphs, we derive the corresponding homogeneous

graphs from the heterogeneous graph. We use formula (1) to calculate the homogeneous

graph matrix for a given metapath as follows:

Pmetapath¼Mf 1f 2
�Mf 2f 3

�Mf 3f 4
� � � �Mfn� 1 f n

ð1Þ

where fn represents the feature,Mfn� 1f n
represents the relationship between features. Specifi-

cally, for the metapath APP-PACKAGE-APP, we use the matrixMapp-permission to derive the

permission information contained in different applications, and then calculateMpermission-app

to indicate which permissions exist in which applications. After derivingMapp-permission and

Mpermission-app, the formula (1) can be used to calculate co-permissions in any two apps and the

number of co-permissions, by observing,Mapp-permission is a transpose matrix ofMapp-permission.

In the Pmetapath matrix, any two app nodes are neighbors based on the specific metapath. We

can intuitively obtain the similarity of any two apps according to the values in the Pmetapath.
Similarly, for a given metagraph, it is formed by connecting two or more metapaths. There-

fore, its matrix is given by formula (2) as follows:

Gmetagraph ¼ pmetapath1�pmetapath2�pmetapath3 � � � �pmetapathn ð2Þ

where� represents the Hadamard product. It can be seen that a metagraph is obtained by

multiplying metapaths by Hadamard product. Compared to metapath, metagraph can uncover

more hidden information. For example, metagraph1 contains two metapaths, APP-PERMIS-

SION-PERMISSIONGRUOP-PERMISSION-APP and APP-API-APP, which require the

same permission request and API call information between any two applications. Its calcula-

tion formula is Gmetagraph1 ¼ pmetapath1�pmetapath2 . According formula (1) and formula (2), we

can derive 12 matrices that correspond to each 12 meta-structures.

3.4 Node embedding model

The node embedding model proposed in this paper is divided into two parts, as shown in

Fig 5. In order to fully and comprehensively mine the effective information of neighbor nodes

based on the meta-structure, first use the attention mechanism for node aggregation at the spe-

cific meta-structure level. Since different meta-structures mean different semantic spaces, we

propose a second major part: node aggregation is again performed between different meta-

structures using the attention mechanism, which aims to make the information expressed by

each node semantically rich and descriptively concise.

Aggregation within a meta-structure is done for a particular meta-structure by first construct-

ing an adjacency matrix of the meta-structure using formula (1) and formula (2). Using the

LDA algorithm to reduce the dimensionality of all extracted features, as shown in formula (3).

Featuredi ¼ LDAðEncoderðapiÞ; EncoderðpermissionÞ;

EncoderðpermissiontypeÞ;EncoderðpackageÞ;

ðsuperÞ;EncoderðsoÞ; Encoderðinterf aceÞÞ

ð3Þ

PLOS ONE android malware detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0300975 March 28, 2024 10 / 21

https://doi.org/10.1371/journal.pone.0300975


Featuredi each row represents one application. The graph attention mechanism(GAT) in the

meta-structure focuses on node feature descriptions within the specific semantic space, as

shown in formula (4) and formula (5).

Lmetapathj ¼ GAT Featuredi; p
metapathj

� �
ð4Þ

Lmetagraphj ¼ GAT Featuredi;G
metagraphj

� �
ð5Þ

where i 2 [1,2,3,4,5,6,7], j 2 [1,2,3,4,5,6,7].

After this stage, we derived the low-dimensional embeddings of all samples. Then feed

them into a support vector machine(SVM) [37] to obtain the contribution rate of different

meta-structures. The meta-structures with a low rate will be eliminated, and the selected meta-

structures will be aggregated again using the attention mechanism, which aims at updating the

node at the semantic level to obtain an accurate and simplified Android behavior description.

The final embedding matrix gives the precise description of each sample in each row.

For selection, the specific operation is as follows: We first use the SVM to learn different

meta-structures and obtain the contribution rate, as shown in formula (6).

βmetapath1 ; � � � ; βmetagraph5
� �

¼ sof tmax SVM Lmetapath1
� �

; � � � ; SVM Lmetagraph5
� �� �

ð6Þ

We select the meta-structures with a higher rate and perform secondary aggregation. The

secondary update matrix of nodes is obtained as formula (7). On this basis, we use GAT again

to update node information, getting a fuller description of Android behavior.

S ¼
X7

i¼1

βiLi ð7Þ

Fig 5. Node embedding model in Z2F.

https://doi.org/10.1371/journal.pone.0300975.g005

PLOS ONE android malware detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0300975 March 28, 2024 11 / 21

https://doi.org/10.1371/journal.pone.0300975.g005
https://doi.org/10.1371/journal.pone.0300975


4 Description of datasets

We used AndroZoo to collect 20,000 Android applications with a size of 10M-20M, including

10,000 benign applications and 10,000 malicious applications. First, use the 360 tool to dedu-

plicate all samples, and perform secondary testing on benign samples to ensure that the benign

samples are not infected. Secondly, we use the Apktool to decompile all samples. It should be

emphasized that some malicious samples are hardened and their real executable files are hid-

den. These samples are removed from our dataset. After this step, a total of 14,429 samples

remained, including 7,239 benign samples and 7,190 malignant samples.

For each decompiled Android application, the Android features permission, permission

groups, api, external package, parent class, Interface, .so are extracted. This article makes statis-

tics on the dimensions of each feature, uses one-hot to encode the original text type features.

Due to the existence of redundant features, the one-hot encoded features are dimensionally

reduced using the LDA dimensionality reduction algorithm. The dimension statistics of

Android key features before and after dimensionality reduction are shown in Table 2. In order

to better understand our data, we calculated the correlation and covariance of the features

after dimensionality reduction and visualized them, as shown in Figs 6 and 7. Through the cor-

relation matrix and covariance matrix, we can observe that LDA has a significant dimensional-

ity reduction effect, which plays a strong supporting role in subsequent Android malware

detection. The covariance matrix reflects the dispersion phenomenon among malignant sam-

ples. We analyzed this and concluded that it is due to the different types of malware in the

samples.

5 Results and discussion

5.1 Experimental environment

Firstly, under the 11th Gen Intel(R) Core(TM) i5-12400 16GB RAM Windows 10, the col-

lected benign samples were scanned and detected using 360 Antivirus to ensure purity, and all

samples were de-duplicated using 360 Security Guard. The Android application was decom-

piled using Apktool 2.0 and JDK 1.8. The proposed model was trained using Ubuntu 18.04

with a Linux kernel, tensorflow-gpu framework and a GPU configuration of an RTX 3080. In

Table 3, our model’s all hyperparameters are listed.

5.2 Datasets

In this paper, a total of 20,000 Android applications were collected with the help of AndroZoo,

all benign samples were from the Google App Store, and all malicious samples were from Vir-

usShare. Since the size of the collected samples is 10M-20M, through sample distribution

Table 2. Comparison of dimensions before and after LDA reduction.

dimension

features

after one-hot after LDA

Api 765794 10

Interface 91278 10

Package 49167 10

Permission 341 10

Permissiongroup 10 10

So 28949 10

Super 103856 10

https://doi.org/10.1371/journal.pone.0300975.t002
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experiment, we use stratified sampling method to divide the 14429 samples into 7 sub-datasets

named DB1-DB7 respectively. In each sub-dataset, 10%, 20%, 30%, and 40%. 50%, 60%, 70%,

and 80% of the samples are applied to train the model, and the remaining samples are used for

testing.

5.3 Metrics

Based on confusion matrix for two-class classification as Table 4, we use the accuracy as for-

mula (8) and F1 score as formula (11) to evaluate the model’s effectiveness, “accuracy” refers

Fig 6. Android feature correlation matrix after dimensionality reduction by LDA.

https://doi.org/10.1371/journal.pone.0300975.g006
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to the ratio of the number of samples predicted correctly by the model to the total number of

samples. The F1 score as formula (11) is an indicator that comprehensively considers recall see

formula(9) and precision see formula (10). It is the harmonic average of these two indicators.

Fig 7. Android feature covariance matrix after dimensionality reduction by LDA.

https://doi.org/10.1371/journal.pone.0300975.g007
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It can consider the accuracy and coverage of the model at the same time. The average accuracy

using 10-fold cross-validation to evaluate our classifier.

accuracy ¼
TPþ TN

TPþ FN þ FPþ TN
ð8Þ

recall ¼
TP

TP þ FN
ð9Þ

precision ¼
TP

TP þ FP
ð10Þ

F1 ¼
2� precision� recall
precisionþ recall

ð11Þ

5.4 Baseline

In order to evaluate the performance of Z2F, this article uses 3 representative methods as base-

lines for comparison. Daniel Arp used extensive static analysis to embed features in a joint vec-

tor space and used the machine learning method SVM. Cagatay Catal [38]used an application

programming interface (API) call graph obtained from malware and benign Android apk files

to solve the Android malware detection problem using a graph attention network model. Han

Gao [39] proposed a new method for detecting Android malware based on the graph convolu-

tional neural network model.

5.5 Results and discussion

The accuracy and F1 scores of the different methods are shown in Tables 5 and 6. We can see

that our proposed Z2F model achieves a significant improvement in classification accuracy.

Compared to other methods, which relies too much on the Android features but ignores the

connection behind them, Z2F explore the hidden information behind Android features at

Table 3. Our model’s hyperparameters.

Component Parameter Value

GAT hidden layers 8

heads 16

output length 64

Training learning rate 0.005

batch size 1

weight decay 0.001

activation function elu

https://doi.org/10.1371/journal.pone.0300975.t003

Table 4. Confusion matrix for two-class classification.

Actual/Predicted as Positive Negative

Positive TP FN

Negative FP TN

https://doi.org/10.1371/journal.pone.0300975.t004
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semantic level, the meta-structures and multilayer attention mechanism of our proposed Z2F

model provides powerful support.

We evaluated the contribution of 12 meta-structures, and the results are shown in Table 7.

The experimental results show that the metapath7 has little contribution to detection. Finally,

according to contribution rate, we select 4 metapaths and 3 metagraphs to analyze heteroge-

neous graphs.

Although our proposed approach has achieved satisfactory results in solving the Android mal-

ware problem, it still not completely solves it. We analyze the reasons as follows: in order to resist

malicious elements, the developers have used obfuscation and reinforcement protection during

the development of the application. After Apktool decompiles, a small part of the Android fea-

ture information is difficult to restore to the original field, which makes the training data noisy.

5.6 Ablation study

In order to determine the performance of the different components, different modules are

evaluated separately, and the following ablation experiments are identified:

I: The first attention mechanism was removed, namely the attention mechanism inside the

meta-structures is removed. The evaluation results are shown in Table 8.

Table 5. The F1 value of sample apps detection.

dataset Model 10% 20% 30% 40% 50% 60% 70% 80%

F1 DB1 Daniel [3] 0.8832 0.8886 0.8928 0.9075 0.9389 0.9300 0.9466 0.9500

Cagatay [38] 0.8323 0.8368 0.8394 0.8445 0.8507 0.8660 0.8693 0.8725

Han [39] 0.8154 0.8269 0.8393 0.8332 0.8324 0.8349 0.8383 0.8455

Z2F 0.9971 0.9971 0.9974 0.9976 0.9973 0.9977 0.9974 0.9979

DB2 Daniel [3] 0.8696 0.9055 0.9200 0.9400 0.9418 0.9474 0.9283 0.9449

Cagatay [38] 0.8356 0.8377 0.8391 0.8598 0.8631 0.8695 0.8718 0.8738

Han [39] 0.8088 0.8122 0.8189 0.8444 0.8463 0.8409 0.8501 0.8501

Z2F 0.9970 0.9974 0.9979 0.9969 0.9977 0.9979 0.9976 0.9975

DB3 Daniel [3] 0.8672 0.8911 0.9135 0.9200 0.9250 0.9250 0.9280 0.9174

Cagatay [38] 0.8306 0.8331 0.8485 0.8501 0.8516 0.8549 0.8579 0.8611

Han [39] 0.8284 0.8251 0.8287 0.8284 0.8382 0.8372 0.8414 0.8586

Z2F 0.9935 0.9934 0.9931 0.9945 0.9950 0.9934 0.9940 0.9953

DB4 Daniel [3] 0.9093 0.9231 0.9250 0.9340 0.9450 0.9411 0.9515 0.9499

Cagatay [38] 0.8348 0.8393 0.8429 0.8450 0.8669 0.8760 0.8732 0.8691

Han [39] 0.8020 0.8217 0.8228 0.8399 0.8500 0.8592 0.8428 0.8500

Z2F 0.9984 0.9987 0.9984 0.9983 0.9981 0.9982 0.9988 0.9996

DB5 Daniel [3] 0.8496 0.8837 0.9043 0.9317 0.9360 0.9335 0.9350 0.9575

Cagatay [38] 0.8339 0.8443 0.8431 0.8408 0.8583 0.8482 0.8582 0.8535

Han [39] 0.8001 0.8338 0.8349 0.8356 0.8477 0.8404 0.8673 0.8578

Z2F 0.9979 0.9981 0.9978 0.9975 0.9970 0.9968 0.9962 0.9986

DB6 Daniel [3] 0.8754 0.9162 0.9393 0.9342 0.9380 0.9487 0.9400 0.9525

Cagatay [38] 0.8234 0.8383 0.8327 0.8481 0.8440 0.8420 0.8400 0.8394

Han [39] 0.8153 0.8223 0.8310 0.8303 0.8420 0.8552 0.8523 0.8540

Z2F 0.9966 0.9968 0.9974 0.9968 0.9971 0.9979 0.9976 0.9996

DB7 Daniel [3] 0.8772 0.8831 0.8843 0.9175 0.9130 0.9267 0.9380 0.9475

Cagatay [38] 0.8330 0.8518 0.8491 0.8452 0.8411 0.8381 0.8372 0.8397

Han [39] 0.8111 0.8174 0.8209 0.8385 0.8419 0.8461 0.8525 0.8634

Z2F 0.9907 0.9919 0.9945 0.9924 0.9943 0.9959 0.9974 0.9971

https://doi.org/10.1371/journal.pone.0300975.t005
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II: Removing the second attention mechanism, namely the attention mechanism between

selected meta-structures was removed. The evaluation results are shown in Table 8.

Table 6. The accuracy value of sample apps detection.

dataset Model 10% 20% 30% 40% 50% 60% 70% 80%

acc DB1 Daniel [3] 0.8833 0.8888 0.8929 0.9075 0.9390 0.9300 0.9467 0.9500

Cagatay [38] 0.8324 0.8367 0.8395 0.8446 0.8508 0.8661 0.8694 0.8725

Han [39] 0.8155 0.8269 0.8393 0.8333 0.8325 0.8348 0.8384 0.8456

Z2F 0.9971 0.9971 0.9974 0.9976 0.9973 0.9977 0.9974 0.9979

DB2 Daniel [3] 0.8700 0.9056 0.9200 0.9400 0.9420 0.9475 0.9283 0.9450

Cagatay [38] 0.8356 0.8376 0.8390 0.8598 0.8630 0.8695 0.8712 0.8733

Han [39] 0.8082 0.8129 0.8184 0.8447 0.8463 0.8408 0.8501 0.8500

Z2F 0.9970 0.9974 0.9979 0.9969 0.9977 0.9979 0.9976 0.9975

DB3 Daniel [3] 0.8672 0.8911 0.9136 0.9200 0.9250 0.9250 0.9283 0.9175

Cagatay [38] 0.8307 0.8332 0.8480 0.8502 0.8511 0.8546 0.8578 0.8610

Han [39] 0.8281 0.8252 0.8286 0.8286 0.8383 0.8373 0.8415 0.8587

Z2F 0.9935 0.9934 0.9931 0.9945 0.9950 0.9934 0.9940 0.9954

DB4 Daniel [3] 0.9094 0.9231 0.9250 0.9342 0.9450 0.9413 0.9517 0.9500

Cagatay [38] 0.8347 0.8393 0.8428 0.8451 0.8668 0.8761 0.8731 0.8692

Han [39] 0.8021 0.8216 0.8227 0.8398 0.8503 0.8591 0.8427 0.8501

Z2F 0.9984 0.9987 0.9984 0.9983 0.9981 0.9982 0.9988 0.9996

DB5 Daniel [3] 0.8500 0.8838 0.9043 0.9317 0.9360 0.9337 0.9350 0.9575

Cagatay [38] 0.8338 0.8442 0.8432 0.8407 0.8582 0.8481 0.8581 0.8534

Han [39] 0.8001 0.8337 0.8348 0.8355 0.8478 0.8405 0.8673 0.8579

Z2F 0.9979 0.9981 0.9978 0.9975 0.9970 0.9968 0.9962 0.9986

DB6 Daniel [3] 0.8756 0.9162 0.9393 0.9342 0.9380 0.9487 0.9400 0.9525

Cagatay [38] 0.8233 0.8382 0.8326 0.8481 0.8447 0.8421 0.8400 0.8391

Han [39] 0.8154 0.8222 0.8311 0.8301 0.8421 0.8557 0.8523 0.8541

Z2F 0.9966 0.9968 0.9974 0.9968 0.9971 0.9979 0.9976 0.9996

DB7 Daniel [3] 0.8772 0.8831 0.8843 0.9175 0.9130 0.9267 0.9380 0.9475

Cagatay [38] 0.8329 0.8517 0.8490 0.8453 0.8412 0.8380 0.8372 0.8398

Han [39] 0.8110 0.8173 0.8208 0.8384 0.8418 0.8460 0.8524 0.8633

Z2F 0.9907 0.9919 0.9945 0.9924 0.9943 0.9959 0.9974 0.9971

https://doi.org/10.1371/journal.pone.0300975.t006

Table 7. The average contribution rate of different meta structures.

metastructer contribution rate reorder

metapath1 0.9409 ④
metapath2 0.8917 -

metapath3 0.9401 ⑤
metapath4 0.9562 ②
metapath5 0.8839 -

metapath6 0.9481 ③
metapath7 0.5323 -

metagraph1 0.9724 ①
metagraph2 0.7424 -

metagraph3 0.9202 ⑦
metagraph4 0.8743 -

metagraph5 0.9341 ⑥

https://doi.org/10.1371/journal.pone.0300975.t007
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6 Conclusions and future work

Expressibility: The Z2F model extracts a large amount of Android features data from the orig-

inal Android application files, embedding them into heterogeneous graphs, mining the hidden

information based on the 12 meta-structures, and uses a multi-layer graph attention network

Table 8. The F1 and accuracy value of sample apps detection.

dataset Model 10% 20% 30% 40% 50% 60% 70% 80%

F1 DB1 Z2F-I 0.9285 0.9285 0.9286 0.9285 0.9285 0.9287 0.9283 0.9293

Z2F-II 0.9623 0.9655 0.9666 0.9687 0.9689 0.9695 0.9679 0.9686

Z2F 0.9971 0.9971 0.9974 0.9976 0.9973 0.9977 0.9974 0.9979

DB2 Z2F-I 0.9223 0.9228 0.9232 0.9264 0.9258 0.9266 0.9284 0.9284

Z2F-II 0.9696 0.9699 0.9695 0.9695 0.9697 0.9696 0.9695 0.9693

Z2F 0.9970 0.9974 0.9979 0.9969 0.9977 0.9979 0.9976 0.9975

DB3 Z2F-I 0.9292 0.9292 0.9292 0.9295 0.9297 0.9295 0.9290 0.9290

Z2F-II 0.9617 0.9653 0.9647 0.9652 0.9660 0.9648 0.9652 0.9661

Z2F 0.9935 0.9934 0.9931 0.9945 0.9950 0.9934 0.9940 0.9953

DB4 Z2F-I 0.9275 0.9275 0.9200 0.9200 0.9250 0.9200 0.9275 0.9225

Z2F-II 0.9629 0.9621 0.9632 0.9644 0.9654 0.9652 0.9671 0.9964

Z2F 0.9984 0.9987 0.9984 0.9983 0.9981 0.9982 0.9988 0.9996

DB5 Z2F-I 0.9200 0.9200 0.9225 0.9200 0.9250 0.9200 0.9225 0.9225

Z2F-II 0.9570 0.9640 0.9629 0.9698 0.9644 0.9662 0.9691 0.9624

Z2F 0.9979 0.9981 0.9978 0.9975 0.9970 0.9968 0.9962 0.9986

DB6 Z2F-I 0.9292 0.9292 0.9290 0.9289 0.9280 0.9279 0.9264 0.9271

Z2F-II 0.9694 0.9695 0.9698 0.9698 0.9693 0.9696 0.9696 0.9696

Z2F 0.9966 0.9968 0.9974 0.9968 0.9971 0.9979 0.9976 0.9996

DB7 Z2F-I 0.9249 0.9222 0.9299 0.9274 0.9247 0.9224 0.9299 0.9223

Z2F-II 0.9692 0.9696 0.9692 0.9693 0.9691 0.9693 0.9698 0.9689

Z2F 0.9907 0.9919 0.9945 0.9924 0.9943 0.9959 0.9974 0.9971

acc DB1 Z2F-I 0.9285 0.9285 0.9285 0.9285 0.9283 0.9288 0.9283 0.9293

Z2F-II 0.9623 0.9655 0.9666 0.9687 0.9689 0.9695 0.9679 0.9686

Z2F 0.9971 0.9971 0.9974 0.9976 0.9973 0.9977 0.9974 0.9979

DB2 Z2F-I 0.9223 0.9228 0.9232 0.9232 0.9258 0.9266 0.9284 0.9284

Z2F-II 0.9696 0.9699 0.9695 0.9695 0.9697 0.9696 0.9695 0.9693

Z2F 0.9970 0.9974 0.9979 0.9969 0.9977 0.9979 0.9976 0.9975

DB3 Z2F-I 0.9292 0.9292 0.9292 0.9295 0.9297 0.9295 0.9290 0.9296

Z2F-II 0.9617 0.9653 0.9647 0.9652 0.9660 0.9648 0.9652 0.9661

Z2F 0.9935 0.9934 0.9931 0.9945 0.9950 0.9934 0.9940 0.9953

DB4 Z2F-I 0.9250 0.9225 0.9275 0.9200 0.9225 0.9250 0.9225 0.9275

Z2F-II 0.9629 0.9621 0.9632 0.9644 0.9654 0.9652 0.9671 0.9664

Z2F 0.9984 0.9987 0.9984 0.9983 0.9981 0.9982 0.9988 0.9996

DB5 Z2F-I 0.9200 0.9225 0.9225 0.9275 0.9200 0.9200 0.9225 0.9250

Z2F-II 0.9570 0.9640 0.9630 0.9698 0.9644 0.9662 0.9691 0.9625

Z2F 0.9979 0.9981 0.9978 0.9975 0.9970 0.9968 0.9962 0.9986

DB6 Z2F-I 0.9292 0.9292 0.9290 0.9289 0.9280 0.9279 0.9264 0.9271

Z2F-II 0.9694 0.9695 0.9698 0.9698 0.9693 0.9696 0.9696 0.9696

Z2F 0.9966 0.9968 0.9974 0.9968 0.9971 0.9979 0.9976 0.9996

DB7 Z2F-I 0.9274 0.9224 0.9249 0.9224 0.9299 0.9224 0.9223 0.9248

Z2F-II 0.9692 0.9696 0.9692 0.9693 0.9691 0.9693 0.9698 0.9689

Z2F 0.9907 0.9919 0.9945 0.9924 0.9943 0.9959 0.9974 0.9971

https://doi.org/10.1371/journal.pone.0300975.t008
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to iteratively update the node information, which is semantically rich and concise after aggre-

gation by the multi-layer graph attention network. Based on the information mining of graph

neural networks, the Z2F model is significantly more accurate for malware detection.

Scalability: The Z2F model is based on heterogeneous graphs and meta-structures of

Android applications that are designed for cross-temporal by decompiling, extracting, and

constructing heterogeneous graphs according to the method we proposed, we can detect

Android maware from benign. It is important to note that the official Android API provided

by Google is constantly being upgraded, so the compatible version of Apktool needs to be

selected when decompiling Android applications. In summary, the model proposed in this

paper has excellent scalability, time-detectable.

With the increasing popularity and integration of smart devices, malware is becoming

more common, causing data leakage and financial loss to users. Malware detection is an urgent

task to reduce the damage at the source. The proposed method in this paper combines

Android features with deep learning graph neural networks.

In future work, we will consider the quick detection of new samples (outside the datasets)

and develop it as a mobile application for the majority of Android users to install on their

mobile devices, so that they can detect the installed applications in the first time and prevent

malicious programs from causing losses.
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