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Abstract

In eukaryotic cells, the one-dimensional DNA molecules need to be tightly packaged into the

spatially constraining nucleus. Folding is achieved on its lowest level by wrapping the DNA

around nucleosomes. Their arrangement regulates other nuclear processes, such as tran-

scription and DNA repair. Despite strong efforts to study nucleosome positioning using Next

Generation Sequencing (NGS) data, the mechanism of their collective arrangement along

the gene body remains poorly understood. Here, we classify nucleosome distributions of

protein-coding genes in Saccharomyces cerevisiae according to their profile similarity and

analyse their differences using functional Principal Component Analysis. By decomposing

the NGS signals into their main descriptive functions, we compared wild type and chromatin

remodeler-deficient strains, keeping position-specific details preserved whilst considering

the nucleosome arrangement as a whole. A correlation analysis with other genomic proper-

ties, such as gene size and length of the upstream Nucleosome Depleted Region (NDR),

identified key factors that influence the nucleosome distribution. We reveal that the RSC

chromatin remodeler—which is responsible for NDR maintenance—is indispensable for

decoupling nucleosome arrangement within the gene from positioning outside, which inter-

fere in rsc8-depleted conditions. Moreover, nucleosome profiles in chd1Δ strains displayed

a clear correlation with RNA polymerase II presence, whereas wild type cells did not indicate

a noticeable interdependence. We propose that RSC is pivotal for global nucleosome orga-

nisation, whilst Chd1 plays a key role for maintaining local arrangement.

Author summary

In baker’s yeast, as in other living organisms, the support of genetic information is tightly

packaged and separated from the rest of the cell. Folding is achieved on its lowest level by

wrapping the DNA around molecular complexes called nucleosomes. However, the sur-

vival of the baker’s yeast requires that essential cellular processes access the genetic infor-

mation protected by nucleosomes. Therefore, the nucleosome arrangement along the

genome should modulate the access and use of this information and ultimately the func-

tioning of the cell. Despite strong efforts to study nucleosome profiles, the mechanism of

their collective arrangement along the genome remains poorly understood. Here, we
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tackled this issue by comparing and classifying directly the nucleosome profiles along the

genes (genomic regions that are known to support the necessary informations for cell

functioning). This drives us to highlight that in baker’s yeast the spatial organisation of

nucleosomes in genes is different from other genomic regions and this difference is main-

tained actively by energy consuming factors. We show that the regulation and compart-

mentalisation of nucleosomal organisation require the concomitant actions of local and

global processes.

Introduction

The eukaryotic DNA must be tightly wrapped into the spatially constraining nucleus. This is

achieved in the form of chromatin, a DNA-protein complex within which the 1-dimensional

DNA is condensed around histone octamers and folded to a 3-dimensional structure. To be

more precise, these histone complexes are positively-charged multiprotein structures around

which the DNA molecule is locally coiled, forming a linear organisation resembling the string-

ing together of beads. This is why the primary structure of chromatin is commonly represented

by a so-called beads-on-a-string model. In yeast, a nucleosome refers to�147 base pairs (bp) of

DNA that are wrapped around four histone units. Nucleosomes are closely spaced, with an

averaged centre-to-centre distance of 165 bp, leaving roughly 15 bp of linker DNA between

two adjacent histone complexes. There is a consensus that phasing is highly regular within

coding regions, which is interrupted by Nucleosome Depleted Regions (NDRs) between two

neighbouring genes. This observation gave rise to the barrier model, which proposes that pro-

moter-dependent properties (e.g. bound proteins or sequence composition) pose a limit for

nucleosome assembly, and arrangement occurs with respect to this barrier [1, 2]. However, it

is widely accepted that various factors establish and influence the genome-wide positional

nucleosome landscape, including sequence composition, transcription, and chromatin remo-

delers [3–6]. Since the DNA molecule must bend to wrap around the histone octamer, the

local nucleotide sequence naturally affects positioning. Generally speaking, GC-rich sequences

are more flexible than AT-rich ones, and they are favorable to support the presence of a nucle-

osome [7, 8]. However, sequence-related properties might be dependent on specific motifs.

The condensed packaging also functions as regulator for various DNA-protein interactions.

Most of these processes rely on chromatin remodeler complexes, which can—by consuming

energy obtained from ATP hydrolysis—move, add, or evict the histone complexes to provide

or inhibit direct access to the DNA sequence [9]. In yeast, chromatin organisation is main-

tained by four protein families, SWI/SNF, INO80, ISW, and CHD. The RSC remodeler com-

plex of the SWI/SNF family is the only essential chromatin remodeler in Saccharomyces
cerevisiae, and it is recruited to promoter regions where it is responsible for the maintenance

of NDRs [10–12]. It has also been reported that the complex has an influence on nucleosome

organisation in coding regions as well as supporting RNA Polymerase II (Pol II) elongation

[13]. It is presumed to restore chromatin organisation after transcription [14]. However, RSC

does not exhibit an impact on regular nucleosome spacing within the gene [14, 15]. Chd1—the

only member of the CHD remodeler family in yeast—is associated with various transcription-

regulating functions, including initiation, elongation, and termination [16]. It has been sug-

gested that Chd1 stabilises perturbed nucleosomes during gene expression [17]. Isw1 and

Chd1 are supposed to antagonise for nucleosome spacing within the gene, with Isw1 dominat-

ing profiles along genes with larger spacing, whereas Chd1 seems to control shorter spacing

[12, 18]. It has been reported that deletion of Chd1 and Isw1 only disrupt inter-nucleosome
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distances and leave the +1 position unaffected [19]. Isw2 is similarly associated with regular

spacing [20], and it is particularly affecting nucleosomes close to the NDR, which is presumed

to regulate transcription [21]. However, the underlying mechanism for chromatin remodeling

is still under debate, and a scientific consensus is missing [22–25].

Several studies showed an interdependence between nucleosome distribution and gene

expression by using MNase-seq data, a Next Generation Sequencing (NGS) technique that

allows the measurement of nucleosome profiles by using MNase digestion of purified chroma-

tin [26, 27]. It has been suggested that high gene expression correlates with low nucleosome

regularity [28] as well as extreme spacing (both short and long) [18]. There are contradicting

results about the correlation between transcription and nucleosome phasing. Whilst [18, 29],

and [30] report that transcription increases random positioning and weakened phasing, [28]

show that nucleosome phasing of highly expressed genes is increased. The depletion of Pol II

exhibited increased array regularity [31]. This phenomenon seems to be conserved across spe-

cies, as indicated by studies using Drosophila [28] and mouse cell lines [32]. The outcomes

indicate that gene expression can be partially explained by nucleosome positioning over the

gene body. Nonetheless, the autocorrelation of MNase-seq profiles along genes revealed that

nucleosomal organisation accounts for only�25% of the observed transcriptional variability,

even though genes with similar regularity tend to have the same level of gene expression [33].

Surprisingly, many strains deficient for chromatin remodelers seem to show only a marginal

effect on transcription [18, 19]. The only exception is rsc8-depleted cells, which exhibit a global

decrease in gene expression [12]. A clear picture between nucleosome phasing and Pol II pres-

ence is still lacking.

Different approaches have been used to categorise collective nucleosome arrangement

within transcribed regions using NGS data. However, many of them rely predominantly on

measurements that describe only an average over the entire profile, such as autocorrelation

measurements [33] or Pearson correlation that was adapted to include coverage [34]. Pearson

correlation was also used to compare nucleosome positioning of genes before and after replica-

tion [35]. Another analysis that takes into account multiple nucleosomes upstream and down-

stream of the NDR was presented by [14]. However, the study focused on changes with respect

to the NDR, and many phenomenological descriptions are based on the application of differ-

ent analysis techniques. In order to provide comparability of nucleosome positioning changes

between various mutants, we aimed to use a single mathematical framework that can be

applied to all strains. To our knowledge, a unifying approach assessing location-specific phas-

ing properties along the entire nucleosome array over varying conditions has not been pro-

posed, and a direct comparison of the effects in different remodeler-deficient strains is

difficult.

In this work, we present a genome-wide analysis of collective nucleosome positioning along

the gene. We define nucleosome positioning and phasing to be the positions of the MNase-seq

signal peaks over an entire single nucleosome array. By clustering the MNase-seq signals of

coding regions along 6–7 histone complexes into two groups using linear Pearson cross-corre-

lation—which measures similarity of the entire nucleosome arrangement between each gene

pair—we can categorise coding regions according to their likely phasing similarity imposed by

chromatin remodelers. In order to interpret how profiles are classified into the two groups, we

combined the clustering with an alternative data representation via functional Principal Com-

ponent Analysis (fPCA). Whilst related to the conventional Principal Component Analysis

(PCA), it assumes a functional relationship between positions along the profile, whereas PCA

conjectures independence of every base pair along the gene. Therefore, fPCA implicitly con-

siders spatial dependency, which is a fundamental assumption in common nucleosome phas-

ing models like the barrier model, where nucleosomes phasing is coordinated with respect to a
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barrier and each other. FPCA is commonly used in time series and signal processing, and it

has been used in biology for analysing crop yield [36], identifying child growth patterns [37],

as well as studying genetic variation and the allelic spectrum [38]. However, it has never been

applied to the spatial interdependence of nucleosome phasing to our knowledge.

The established Pearson clusters can be visually separated by considering only two fPCs,

which are therefore sufficient to interpret the gene groups. Using our analysis, we can repeat-

edly investigate nucleosome distributions of different chromatin remodeler-mutant strains

using the same framework and interpret major differences along the entire nucleosome

arrangement. By relating Pearson correlation with spatial properties along the profiles, our

approach refines and complements other studies that focused either on a few individual nucle-

osomes close to the NDR or Transcription Starting Site (TSS); or which assessed only the aver-

age correlation of the entire array (e.g. via autocorrelation). Using MNase-seq data from yeast

strains deficient for different chromatin remodelers [12, 18], we reveal that Rsc8 strongly limits

coordinated nucleosome arrangement to the transcribed region. It might be therefore respon-

sible for gene-specific phasing. By measuring how the Pearson cluster separation changes

between mutants using a Support Vector Machine (SVM), we identified 5 combinations of

gene deletions or protein depletions which have a notable impact on phasing properties along

the entire nucleosome array compared to Wild Type (WT) conditions. Measuring correlation

with other nuclear processes disclosed that none of the commonly assumed factors can easily

explain long-reaching nucleosome arrangement in WT strains within the gene body. However,

gene deletions—in particularly mutants that contained chd1Δ—caused a strong correlation

with Pol II presence. Our results indicate a new mechanistic understanding of chromatin

remodelers, where Rsc8 is responsible for long-range coordination and Chd1 for local posi-

tioning of nucleosomes. All customised source code was made available on Zenodo (DOI 10.

5281/zenodo.8335111).

Results

Nucleosome profiles can be well distinguished based on their coordinated

positioning in WT

In order to compare nucleosome profiles over the gene body in WT conditions, we measured

the pairwise Pearson cross-correlation of the MNase-seq data produced by [12, 18] for all pro-

tein-coding regions [39] using Eq 1. The Pearson correlation index is positive when the

sequencing signals of both genes tend to change towards the same direction at the same posi-

tion; and it is negative when one profile is likely to increase whereas the other one decreases.

Therefore, it compares similarity of the distributional shape—i.e. whether genes are apt to con-

tain nucleosomes at similar positions—and it does not take the scaling of the sequencing data

into account. The entire arrangement for each gene is treated as an entity. For both replicates,

we considered 1000 bp after and 200 bp before the +1 position (= 1200 bp, approximately the

average size of a gene in Saccharomyces cerevisiae), containing 6–7 nucleosome dyads.

These Pearson coefficients were used as a distance metric to cluster nucleosome profiles

into distinct partitions using k-mean clustering. In a nutshell, the algorithm divides a data set

of m observations (the MNase-seq data) into k groups by minimising the variance within each

cluster based on a distance metric (here, the pairwise Pearson indices over all genes). There-

fore, genes within a group tend to have nucleosomes at comparable positions, whereas profiles

of different groups are likely to be less similar. Using a silhouette criterion measurement—

which compares the similarity of an object to its own cluster with the similarity to other clus-

ters—we determined that the Pearson coefficients are most distinctly divided when k = 2 (i.e.

when having two groups, Fig 1A). As the k-mean clustering algorithm aggregates profiles
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together with a large pairwise Pearson index, we expected that the distribution over all pairwise

Pearson correlations between nucleosome arrangements from different clusters is minimal (in

the following called inter-cluster correlation). We validated the significance of the obtained

Pearson gene groups by creating 500 random clusters and calculating their p-value using a

one-sided Kolmogorov–Smirnov (KS) test. We averaged the p-value over the KS test result

over all 500 repetitions to smooth out random fluctuations (average p-value 0.0009, S1 Fig).

Fig 1. Pearson clusters and fPCA considering all protein-coding genes. (A) The silhouette plot clearly indicates that

the data can be best divided into two clusters, and creating more groups would only decrease the difference between

each cluster. (B) and (C) display the profiles for each cluster. Large values are given in copper, low values are black, and

the colour gradient in between is uniformly scaled. It is therefore a perceptually uniform representation. Both

heatmaps are normalised independently, such that their respective largest value is displayed in the strongest copper

hue and their lowest value in black. Unfortunately, it is difficult to quantify visually why these clusters were established.

This is particularly true because the Pearson index measures only general trends in the profile, and it does not take the

scaling into account. Each row represents a gene, and the x-axis shows the position along the coding region, with the

+1 nucleosome defined to be at position 0 bp. The colour code represents MNase-seq amplitude, i.e. copper values

show large MNase-seq signal values, whereas dark areas indicate a low amplitude. (D) The cartoon presents the

hypothesised differences that could occur between the Pearson clusters. Due to the well-positioned nucleosomes and

the wave-like structure of MNase-seq data, we presume that the Pearson correlation measures coordinated nucleosome

positioning along the gene. If two profiles (orange and blue) are in two different clusters, this could indicate either a

shift in the exact nucleosome positions (left); or a general trend in the MNase-seq signal amplitude, i.e. either

increasing or decreasing (right). (E) Pearson clusters considering all genes are linearly separable with respect to their

fPC scores. This indicates that two fPCs are sufficient to interpret the gene groups. We use the symmetric Jensen-

Shannon (JS) distance to describe separability between the clusters along fPC1 and fPC2. The JS distance between the

cluster distributions is much larger for fPC 2 than for fPC 1. Orange and blue indicate each one group, the dashed line

symbolises the best linear separation using a SVM. The x-axis represents the score of the first fPC z1, the y-axis gives

the score for the second fPC z2. Both axes are scaled to the same range, points outside the range (29) were included in

the analysis but not plotted. (F) When analysing the effect of the major fPCs, they describe predominantly position-

dependent scaling (transparent black lines, fPC 1) and collective nucleosome phasing (transparent black arrows, fPC

2). The second fPC in WT indicates an increasing or decreasing signal magnitude as a function of distance from the

TSS, suggesting stronger or weaker presence (corresponding to panel D right). The mean is given as a dashed black

line, a positive contribution—i.e. adding the fPC to the mean—is displayed in magenta, and a negative contribution—

i.e. subtracting from the mean—is shown in green. Trends over the entire array are indicated by grey arrows. When

exact positions were seemingly not affected by the fPC, we marked the positions with a grey vertical bar. See Methods

for more information about how the plots were produced.

https://doi.org/10.1371/journal.pcbi.1011799.g001
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This shows that nucleosomal arrays can be significantly separated into two groups using linear

correlation of MNase-seq data between genes (Fig 1B and 1C).

It is difficult to straightforwardly determine how the k-mean clustering algorithm distin-

guishes between these two groups; yet the interpretation of the discriminating boundary could

reveal important insights about the nucleosome positioning that is presumably imposed by

chromatin remodelers. As the data by Ocampo et al. [12, 18] contains several mutants, we

want to identify this discriminator repeatedly with the same mathematical framework to make

the results comparable. Due to the nature of the Pearson correlation index, we can make the

following assumptions. As nucleosomes are commonly well positioned in budding yeast, the

MNase-seq data resembles a wave-like function with one peak approximately every 200 bp.

Moreover, single histone complexes cannot overlap in a single cell. The Pearson correlation

measures therefore the average phasing similarity of the entire nucleosome array of two genes.

Differences in similarity come either from shifts in exact positioning (i.e. well-defined peaks,

Fig 1D left) or from a change in the signal amplitude (i.e. increasing or decreasing MNase-seq

magnitude over the profile or at particular locations, Fig 1D right). The clusters must be sepa-

rated based on either of these two trends, or possibly a combination of them.

In the following, we refer with coordinated positioning to the configuration of the entire

nucleosome array, and consequently, to their behaviour with respect to the two separating

trends of the k-mean clustering. Unfortunately, the Pearson coefficient measures only the aver-

age linear pairwise correlation over the entire profile, rather than taking position-dependent

particularities into account. Therefore, simply extracting the boundary from the k-mean clus-

ters does not explain whether the groups were established with respect to a shift or a change in

amplitude (i.e. the previously determined discriminators). Instead, it is possible to investigate

how the clusters distribute with respect to the data itself; or, alternatively, with respect to a dif-

ferent description using dimensionality reduction methods. By evaluating the major differ-

ences between the two groups of genes, we can interpret the separating clustering boundary

and link it to particular properties along the nucleosome profile.

Conventional approaches apply dimensionality reductions like PCA to visually analyse

clustering distributions. However, using PCA would implicitly mean that we assume indepen-

dence between every position along the gene. By using the Pearson correlation measurement,

we treat every profile as a single entity, which would be violated by the independence conjec-

ture. This also contradicts the fundamental assumption of the barrier model where the posi-

tioning of earlier nucleosomes affect later phasing. Instead, we understand the arrangement as

the result of a coordinated process. We assume that the MNase-seq signal along each gene can

be described as a single (unknown) continuous function, which can be approximated by a mix-

ture of a finite number of known simpler functions (so-called basis functions). In this study,

we used 20 B-Splines to represent the MNase-seq data along each gene, which were subse-

quently averaged to a mean profile. This permitted the application of fPCA to determine the

two best-characterising functional Principal Components (fPCs) that describe each nucleo-

some arrangement. It incorporates specific assumptions about the spatial relationship in the

distribution through the basis functions, which is the crucial difference between conventional

PCA and fPCA. To be more precise, the establishment of the MNase-seq distribution is under-

stood as a stochastic process with a mean behaviour. Each considered nucleosome array can be

regarded as a realisation of this stochastic process with a deviance from the expected average

distribution. Instead of defining a data representation for every gene individually, fPCA deter-

mines how the mean profile needs to be transformed to approximate a particular gene. This

transformation is found by combining the basis functions over all coding regions to more

complex functions that are orthonormal to each other and describe the most variance along

the data (i.e. the fPCs, Eq 4). These functions transform the mean by adding them to the
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average profile with a gene-specific scaling factor (i.e. z
j
i for the j-th fPC of the i-th gene). Con-

sequently, every nucleosome array can be also described exclusively by the factors z
j
i together

with the respective fPCs, and we can evaluate how the two Pearson clusters distribute with

respect to these factors.

Interestingly, the two clusters—which were independently obtained by classical hierarchical

k-mean clustering of Pearson coefficients—are visually neatly separated by using only the first

two fPCs, indicating that they are sufficient to quantify the difference between the two sets of

genes (Fig 1E). In fact, the separating boundary is almost exclusively dependent on the second

fPC, whilst it is seemingly independent of the first. This is slightly less clear for the B replicate,

although still distinct (S2(B) Fig). Using our previous considerations about how the algorithm

establishes the two clusters, we intuited that the second fPC describes coordinated nucleosome

phasing along the gene body. By analysing the effect of the second fPC on the function shape,

we conclude that the clusters are determined based on the downstream presence of nucleo-

somes (corresponding to the right cartoon in Fig 1D). We found that the first fPC largely rep-

resents amplitude scaling at a given position, as it does not influence the location of the peak

(Fig 1F). The analysis shows that position-dependent amplitude scaling and coordinated

arrangement are the best two independent functional descriptors for the MNase-seq data. We

show and discuss the effect of the 10 major fPCs that describe most variance in S3 Fig. Despite

the fact that the ratio of explained variance is not high (21.4% and 11.5% for fPC1 and fPC2,

respectively), they are completely sufficient to distinguish between the Pearson correlation

groups and permit an interpretation of the linear separating boundary between the clusters.

FPCA reveals size-dependent Rsc8-mediated phasing of nucleosome

positions

Since the smallest genes are�300 bp long, the 1000 bp window after the +1 position can con-

tain much more than the actual length of the coding region. In order to analyse how nucleo-

some phasing is affected by the gene size, we repeated the fPCA considering exclusively small

(� 1000 bp,�26.7%) or large genes (>1000 bp,�73.3%). Consequently, the mean as well as

the two fPCs changed, whilst we kept their allocation to the previously determined Pearson

clusters the same (in the following also referred to as all-gene clusters). If coordinated position-

ing is substantially affected by the length of the transcribed region, we expected that the factors

z
j
i of the two major fPCs should exhibit a changed behaviour with respect to the linear separa-

bility. We can confirm that the linear separation is preserved for large genes, although the

boundary becomes slightly sloped (S2(C) and S2(D) Fig). The fPCs for only large genes are

almost identical to the all-gene fPCs (S5 Fig). We therefore presume that the clusters can be

still largely separated by the second fPC. We also considered a possible impact of the down-

stream NDR by analysing exclusively very large genes (� 3000 bp,�11.5%). Once again, the

boundary was clearly visible (S2(G) and S2(H) Fig). We concluded that the MNase-seq distri-

bution over the first 6–7 nucleosomes of all genes larger than 1000 bp can be best clustered by

the collective positioning, and it can be surmised that phasing within the gene body is only

negligibly affected by the downstream NDR or nucleosomes outside the 1000 bp window.

However, the neat separation between the two clusters fully vanished for small genes (Fig

2A, for replicate B S2(E) Fig). Almost all data points belong to the same group, although both

are present. We want to remind that clusters were established using all coding regions, whereas

the functional representation depends now exclusively on genes smaller than 1000 bp. The

newly determined fPCs include overlapping positioning inside and outside the gene body due

to their varying size (S4 Fig). The fact that the clusters are not separable indicates that coordi-

nated nucleosome phasing disappears after the Transcription Termination Site (TTS), and we
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hypothesised that the arrangement is strictly limited to the gene body. Indeed, the second

small-gene fPC indicates well-defined positioning only for up to the +2 nucleosome (�300

bp), and the function loses quickly its frequent wave-like shape thereafter (Fig 2D). The two

major fPCs for small genes are not sufficient anymore to separate the all-gene clusters, which

are discriminated by the presence of downstream nucleosomes. To verify our hypothesis of

gene-size dependent phasing, we divided the regions into small and large genes before per-

forming the Pearson clustering. When considering exclusively small genes, the two Pearson

groups become linearly separable again, which is—in accordance with our hypothesis—pre-

dominantly determined by the size (S6 Fig). This shows that the nucleosome arrangement is

strictly limited to the gene body.

The data produced by [12, 18] contain two replicates for chd1Δ, isw1Δ, and isw2Δ cells as

well as rsc8-depleted strains, together with their combinations as double, triple, and quadruple

Fig 2. Nucleosome phasing is strictly limited to the gene body, which is maintained by Rsc8 but antagonised by

Chd1. The cluster distribution plots in panels A-C show the distribution of both gene groups with respect to the small-

gene fPCs of WT, rsc8-depleted cells, and chd1Δ strains. Orange and blue indicate the two clusters, and the black

dashed line shows the separating boundary determined by a linear SVM. The histograms present the cluster

distribution with respect to each axis. Panels D-F display the transformation of the average small-gene nucleosome

profile by the two major fPCs for WT, rsc8 depletion, and chd1Δ, respectively. The dashed black line as well as the solid

lines in magenta and green display the mean, a positive contribution of the fPC, and a negative contribution.

Turquoise arrows indicate the effect on the +1, dark blue arrows on the +4, and orange arrows on the +6 position. (A)

When plotting the cluster distribution with respect to small-gene fCPs in WT, the linear separability is lost. (B) The

fPCs of the rsc8-depleted strain maintain the linear separability, despite the fact that the groups were established for all

genes. As we interpret the Pearson clusters as similarity in positioning between genes of 1000 bp mediated by

chromatin remodelers, it possibly suggests that positioning outside coding regions influences nucleosomes inside and

vice versa. (C) Whilst most mutants that were rsc8 depleted could discriminate between the all-gene clusters using

small-gene fPCs, this separability is lost again in rsc8-depleted chd1Δ, revealing partly antagonistic roles to maintain

gene-specific phasing for Rsc8 and Chd1. (D) The effect of two fPCs sheds light on why the Pearson groups are not

linearly separable in WT using small-gene fPCs. The distribution of the second fPC changes its regular wave-like form

to much broader peaks and valleys after the +2 nucleosome, which corresponds to approximately the size of the

smallest genes in budding yeast. (E) Nucleosome positioning in rsc8-depleted conditions is clearly visible along the

entire considered region, despite the included genes being smaller. This suggests that gene-specific nucleosome

arrangement cannot be maintained. It is of note that the phasing also changes for the +1 nucleosome, and the NDR can

be seemingly not conserved. (F) On the other hand, rsc8-depleted chd1Δ loses the regular wave-like shape of its second

fPC after the +2 nucleosome to form broader peaks, indicating the presence of gene-specific nucleosome profiles as in

WT conditions. All axes are scaled to the same size for each strain; shapes and amplitudes are therefore comparable

(see Methods for more details).

https://doi.org/10.1371/journal.pcbi.1011799.g002
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mutants. In order to analyse how gene-size dependent nucleosome phasing alters in varying

contexts, we compared the small-gene fPCs in mutant and WT conditions. Surprisingly, the

separation of the all-gene clusters was clearly visible for the fPCs of small coding regions in

rsc8-depleted strains (Fig 2B). Indeed, the average MNase-seq profile exhibits phased peaks

along the entire 1000 bp-window (Fig 2E), and nucleosome positioning continued outside the

gene boundaries (S4 Fig). The linear separability of the all-gene clusters using small-gene fPCs

can be found in almost all mutants which are depleted of Rsc8 (S7 Fig), with the sole exception

of Rsc8-depleted chd1Δ strains (Fig 2C, replicate B S8(B) Fig). Here, the groups cannot be visu-

ally separated by z1 and z2, and the determined fPCs resemble small-gene fPCs in WT condi-

tions (Fig 2F, replicate B S8(D) Fig). This indicates that the gene-specific boundaries for

nucleosome phasing can be re-established, and the second fPC loses its wave-like shape again

after the +2 position (S4 Fig). Consequently, we hypothesise that Chd1 and Rsc8 have partially

antagonistic roles for maintaining chromatin organisation that distinguishes transcribed from

non-transcribed regions. Taken together, this analysis exhibits strictly constrained and

Rsc8-mediated nucleosome organisation within coding regions.

Nucleosome phasing changes in remodeler mutants

We were particularly interested in how nucleosome remodeler complexes affect coordinated

phasing. To remove the gene size-dependent bias from the clustering and the established fPCs,

we applied the Pearson clustering to exclusively large genes (>1000 bp) for all strains and

determined their two major fPCs (S2C, S2D and S5 Figs). We can confirm that the created

groups for all mutants were again significant (i.e. average p-value of a KS test with 500 random

partitions was lower than 5%, see S9 Fig). Interestingly, the Pearson clusters were always visu-

ally separated by using solely the first two fPCs, although some strains exhibited a larger over-

lap between the groups than others (S10 and S11 Figs for replicate A and B, respectively). This

suggests that coordinated phasing in all mutants can be represented by considering only the

two fPCs that describe the most variance, and including more fPCs is not necessary in order to

interpret the discriminating function.

The respective contribution of the two major fPCs to separate the clusters varied between

the strains, suggesting that fPCA is sufficiently sensitive to capture strain-dependent conse-

quences (S10 and S11 Figs for replicate A and B, respectively). This caused the slope of the dis-

criminating boundary to tilt. Therefore, the transformations of the mean distribution (i.e. fPCs

and their factors z
j
i) changed for these strains. This indicates that they had not only a global

effect on the average MNase-seq profile, but also caused a gene-specific disruption of the

nucleosome positioning. We deemed those strains particularly important that altered the

gene-specific collective behaviour of the entire nucleosome array with respect to the WT. To

clarify this point, we provide an example for the impact of a fictional mutant that only affects

the mean but not the ensemble of nucleosomes as a whole in S12 Fig. We determined the slope

for all strains using a linear SVM. As aforementioned, the boundary is tilted when only consid-

ering large genes in WT conditions (Fig 3A), and the two available replicates differ slightly.

The observed deviation between replicates was used as a reference for the anticipated variabil-

ity in the data. By using Eq 7, we determined chromatin remodeler-deficient strains that had a

sufficiently different linear boundary with respect to the WT.

We provide three different perspectives on the data. Firstly, the cluster distribution with

respect to the factors z
j
i together with the slope highlight mutants that particularly disrupt

gene-specific collective nucleosome phasing. In the following, clusters are always indicated

using the colours orange and blue. Secondly, analysing the transformation of the two major

fPCs of the mean unlocks an additional understanding of the variance present in the data and
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allow quantifying the general impact of chromatin remodeler deficiency. Here, we plot a posi-

tive contribution to the mean in magenta and a negative contribution in green. Lastly, the loca-

tion-specific effect of the discriminator links spatial properties to the Pearson gene clusters,

which describe likely similarity of nucleosome positioning mediated by chromatin remodelers.

The impact of the discriminator is in the following given as a grey area around the mean, indi-

cating more important regions when the margin is larger. The median profile of each cluster

using the determined fCPs will be given again in orange and blue. This allows a comprehensive

analysis of the impact of gene deletions or rsc8 depletion with respect to the WT.

We can determine the importance of particular positions to separate the clusters as follows.

The slope of the SVM indicates the contribution of each fPC to separate the clusters. For exam-

ple, a 0˚ angle shows that the descriminator can be solely described by the second fPC; 45˚ sug-

gest an equal contribution of both fPCs to separate the clusters; and 90˚ indicate that collective

nucleosome phasing is exclusively dependent on the first fPC. Consequently, by linearly com-

bining both fPCs together as implied by the slope (Eq 9), we can evaluate which positions

along the profile are particularly important for the classification. Indeed, understanding the

separating boundary is not straightforward. Although the median profiles for each profile can

Fig 3. The fPCs, their gene specific scores, and the discriminating boundary explain collective phasing and how

this changes in chd1Δ with respect to WT conditions. The figure shows the cluster distribution with respect to z
j
i, the

impact of the determined fPCs, and the location-specific impact of the separating boundary for WT (i.e. panels A-C)

and chd1Δ conditions (i.e. panels D-F). Panels A and D show the fPC scores z
j
i of WT and chd1Δ strains, respectively.

For the latter, the boundary slope changed notably (black dashed line). As indicated by the fCPs in panels B and E for

WT and chd1Δ, respectively, the functional description of the data changes. Indeed, the second fPC of chd1Δ abates

quickly after the +1, with a strong effect on the effect of the +2 (grey arrows). The dashed black line as well as the solid

lines in magenta and green indicate the mean, a positive contribution of the fPC, and a negative contribution,

respectively. When exact positions were seemingly not affected by the fPC, we marked the positions with a grey vertical

bar. General trends are given in grey arrows along the gene. The location-specific impact of the separating boundary is

given in panel C for WT and panel F for chd1Δ strains. Interestingly, despite the median distributions of the clusters

(blue and orange) are clearly different with respect to the +1 and +2 in WT conditions, later positions are much more

important for allocating a profile to a particular group (grey areas, mean in black). Whilst this is also true for chd1Δ,

the importance of later nucleosomes is even more accentuated, whereas the influence of the +1 and +2 positions are

further decreased. All axes are scaled to the same size for each strain; shapes and amplitudes are therefore comparable

(see Methods for more details).

https://doi.org/10.1371/journal.pcbi.1011799.g003
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differ substantially at some positions, this variance might be less important for separating and

interpreting the clusters (e.g. the +2 nucleosome in WT conditions, Fig 3C). Reciprocally,

whilst the median profiles for both groups can be very similar, the variance over all considered

genes at this locus could be much larger and therefore play an important role for the classifica-

tion (e.g. the +3 position in WT strains Fig 3C).

We identified 5 mutants—namely chd1Δ, isw2Δchd1Δ, rsc8-depleted chd1Δ, isw1Δisw2Δ,

and rsc8-depleted isw2Δchd1Δ—that evoked notable changes considering the experimental

variability between replicates (Figs 3–5). For a correct interpretation of the results, it is crucial

to highlight that this does not imply that other mutants had no effect on the profile. Rather,

this suggests that the considered mutation caused a gene-specific change of nucleosome phas-

ing regulated by chromatin remodelers, which we assume is represented by the deviance of the

stochastic process (i.e. the variance to describe the MNase-seq profiles). Other gene deletions

can have other impacts that do not disrupt the gene-specific collective positioning. All mea-

surements are given in Table 1.

Most single mutants had only a small or negligible effect on the collective nucleosome phas-

ing along transcribed regions, with the exception of chd1Δ (Fig 3D–3F). Indeed, the boundary

was notably tilted with respect to WT conditions (Fig 3D). This suggests that the functional

composition of the MNase-seq signal changed. In fact, the amplitude of the second fPC

decreases more quickly along the gene body in chd1Δ mutants, and the variance of the peak at

the +2 position strongly diminished (Fig 3E). When interpreting the effect of the discriminat-

ing boundary, we observe that the +1 and +2 nucleosomes only exhibit a small importance for

establishing the clusters, whereas the impact of the NDR and later nucleosomes increased (Fig

3F). Consequently, the +1 position remains largely unaffected. As Chd1 is responsible for

nucleosome spacing along genes and is particularly involved in maintaining chromatin integ-

rity during Pol II elongation, it is intuitive that the chd1-deletion influences phasing within the

gene body. This outcome shows the clear effect of chromatin maintenance by Chd1 after the

+2 nucleosome, whilst leaving the +1 position well preserved.

The double mutant isw2Δchd1Δ exhibited also a noteworthy shift of the separating bound-

ary (Fig 4A), yet with different results to the chd1Δ single mutant. The second fPC seemingly

preserves its wave-like shape (Fig 4B). This indicates that nucleosome presence is less per-

turbed, and peaks are comparatively well positioned. Similar to the chd1Δ single mutant, both

of the fPCs strongly contribute to distinguish between the Pearson clusters. The discriminating

function exhibits similar local effects as the chd1Δ strain, but the positions after the +2 nucleo-

some clearly indicate an additional shift which contributes to the separation (Fig 4C).

Table 1. SVM boundary slopes for both replicates. The first two rows give the boundary slope for replicate A and B, respectively. Mean μ is the mean slope for both. The

s value represents our significance measurement defined in Eq 7. Noteworthy changes of the boundary slope are marked in green (bold), all others are red. The s-value in

WT is per definition equal 0.

WT chd1 isw1 isw2 rsc8 isw1/chd1 isw2/chd1 chd1/rsc8

A 0.299 0.834 0.117 0.133 0.377 0.213 1.406 0.031

B 0.055 0.48 0.329 0.038 0.08 0.283 0.538 0.074

Mean μ 0.177 0.657 0.223 0.0855 0.2285 0.248 0.972 0.0525

s 0 2.6674 0.0409 0.3612 0.0366 0.2951 2.9842 1.4773

isw1/isw2 isw1/rsc8 isw2/rsc8 isw1/isw2 chd1 isw1/chd1 rsc8 isw2/chd1 rsc8 isw1/isw2 rsc8 isw1/isw2 chd1/rsc8

A 1.452 0.347 0.153 0.112 0.216 0.057 0.466 0.066

B 1.074 0.072 0.567 0.295 0.207 0.068 0.245 0.174

Mean μ 1.263 0.2095 0.36 0.2035 0.2115 0.0625 0.3555 0.12

s 12.7873 0.0157 0.3315 0.0157 0.5420 4.8846 0.5909 0.1233

https://doi.org/10.1371/journal.pcbi.1011799.t001
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Interestingly, rsc8-depleted chd1Δ significantly decreases the slope tilting (instead of accentuat-

ing it), therefore making coordinated phasing almost exclusively dependent on the second fPC

(Fig 4D). This can be better understood when analysing their respective effects (Fig 4E). The

first fPC solely explains average signal amplitude (which is not measured by the Pearson

Fig 4. The fPCs, their gene specific scores, and the discriminating boundary explain changing collective phasing

in double mutants. The figure shows the cluster distribution with respect to z
j
i, the impact of the determined fPCs, and

the location-specific impact of the separating boundary for all double mutants, in particular isw2Δchd1Δ (i.e. panels

A-C), rsc8chd1Δ (i.e. panels D-F), and isw1Δisw2Δ (i.e. panels G-I). The linear separation of the cluster distribution

with respect to factors z
j
i indicate a notable gene-specific change for the three mutants in panels A, D, and G. The two

clusters are given in orange and blue, and the SVM boundary is depicted by the black dashed line. Whilst isw2Δchd1Δ
and isw1Δisw2Δ require both fPCs to linearly separate the Pearson clusters, rsc8chd1Δ is almost exclusively dependent

on the second fPC, which means this mutant decreased the slope tilt. This can be better understood when analysing the

two fPCs and their effect on the mean ((B) for isw2Δchd1Δ, (E) for rsc8chd1Δ, and (H) for isw1Δisw1Δ). The solid lines

in magenta and green in these plots indicate a positive contribution of the fPC and a negative contribution,

respectively, whereas the black dashed line depicts the mean. Grey arrows along the gene suggest general trends. Grey

vertical bars suggest positions that remain largely unperturbed by the fPC. Grey arrows pointing to a single peak

suggest remarkable properties. Interestingly, whilst the first fPC of the isw2Δchd1Δ and isw1Δisw2Δ strains shows a

similar transformation of the mean, the second fPC indicates a different behaviour, particularly with respect to the +2

nucleosome. As suggested by the fact that clusters in the rsc8chd1Δ mutant are exclusively dependent on the second

fPC, the first fPC explains only the average profile amplitude and does not contain any information about collective

phasing. The location-specific effect of the linear separator for each mutant is given in (C), (F), and (I). The grey areas

indicate the importance of each position to determine the clusters, whose median profile is shown as a blue and orange

dashed line. The mean is depicted in black. Although the impact on the grouping of the +1 and +2 position in

isw2Δchd1Δ conditions is similar to the isw1Δisw2Δ strain, the latter is seemingly particularly dependent on the +3 and

+4 nucleosome. Positions thereafter become less important, which keep having a strong impact on clustering in

isw2Δchd1Δ. As expected rsc8chd1Δ is exclusively dependent on the second fPC. Interestingly, the entire profile seems

to be influential for classifying genes, with the largest impact allocated to the first two nucleosomes. All axes are scaled

to the same size for each strain; shapes and amplitudes are therefore comparable (see Methods for more details).

https://doi.org/10.1371/journal.pcbi.1011799.g004
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correlation index) and hence contains almost no information about coordinated positioning.

As expected, the local effect of the discriminating boundary follows the trend described by

fPC2 (Fig 4F). The second fPC also indicates that the NDR before the +1 cannot be maintained

(see arrow in Fig 4E and the grey area in NDR and +1 position in Fig 4F), which is in line with

other studies [12, 40]. Remarkably, all nucleosome positions along the entire array seem to be

important for the classification—particularly the first two—which is not the case for the other

two double mutants. It should be noted that not all double mutants that include chd1Δ show a

similarly notable tilting of the slope as the single mutant. This could possibly mean that these

double mutants have opposing effects, although it is difficult to give a clear indication with the

variation between only two replicates. We found an interesting behaviour for isw1Δisw2Δ (Fig

4G). The effect of the second fPC hints that the positioning of the +2 is strongly impacted, and

following phasing becomes inharmonious (Fig 4E). The +1 is kept well positioned. The first

fPC, on the other hand, resembles the first fPC of the isw2Δchd1Δ mutant, with a minor differ-

ence at the +3 nucleosome (compare Fig 4E with Fig 4B). Indeed, when analysing the location-

specific properties of the separating function (Fig 4I), nucleosome profiles in the isw1Δisw2Δ
strain seem to be clustered particularly with respect to a shift at the +3 and +4 position. This

shift is apparently slightly corrected thereafter and becomes less important. Whilst seemingly

similar, a shift in the isw2Δchd1Δ strain after the +2 position remains important for the entire

arrangement to determine the gene groups (compare Fig 4I with Fig 4C). This indicates that

Chd1 and Isw1 contribute differently to nucleosome phasing in isw2Δ conditions, with the

effect of Isw1 being possibly more confined. Taken together, these results show that double

mutants can have varying and non-linear effects.

Among the triple and quadruple mutants, the only one that changed notably the clustering

boundary is isw2Δchd1Δrsc8 (Fig 5A). Once again, tilting is decreased. The effect of the fPCs

and the separating boundary is almost identical to the chd1Δrsc8 mutant, suggesting that

isw2Δ does not have a strong effect on the phenomenon (Fig 5B and 5C). However, it should

be mentioned that the variability between the two replicates is considerably large, as the two

clusters can be only neatly separated in replicate B, whereas replicate A exhibits a great overlap.

Whilst the result in the latter replicate could suggest that more fPCs are necessary to interpret

Fig 5. The fPCs, their gene specific scores, and the discriminating boundary explain changing collective phasing

in isw2Δrsc8chd1Δ. The two clusters are given in orange and blue. The figure shows the fPC scores z of the

isw2Δchd1Δrsc8 mutant and their separating boundary (black dashed line, A). The slope decreases with respect to the

WT, making the gene groups almost solely dependent on the second fPC. Both fPCs transform the mean in a similar

way as the double mutant rsc8chd1Δ (compare panel B with Fig 4E). The dashed black line as well as the solid lines in

magenta and green indicate the mean, a positive contribution of the fPC, and a negative contribution, respectively. As

expected, the separating boundary discriminate between the two clusters largely following the second fPC (C). The

grey areas show the importance of each position to determine the clusters, whose median profile is shown as a blue and

orange dashed line. The mean is depicted in black. All axes are scaled to the same size for each strain; shapes and

amplitudes are therefore comparable.

https://doi.org/10.1371/journal.pcbi.1011799.g005
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the gene groups, the results for replicate B indicate that sufficient information is preserved in

the first two fPCs. More replicates would be needed to provide an answer. We also want to

highlight that mutants with more than two gene deletions exhibited less clear nucleosome

peaks, and a straightforward interpretation of the Pearson correlation with respect to the two

discriminating trends (compare with cartoon in Fig 1D) could be difficult. The results for

these strains should be taken with a pinch of salt.

Taken together, these outcomes show that remodeler mutants have varying effects on nucle-

osome positioning. Whilst most mutations do not notably alter the gene-specific nucleosome

coordination with respect to the WT, we identified 5 mutants that exhibited a strong effect on

phasing. Interestingly, most of them include chd1Δ, which indicates an important role of Chd1

for local arrangement within the gene body. Using fPCA to visualise the Pearson clusters per-

mits the clear and position-specific quantification of the induced impact among varying strains.

Pol II presence correlates with nucleosome organisation in chd1Δ mutants

In order to assess an interdependence of nucleosome organisation with other genomic proper-

ties, we compared the two Pearson clusters to Pol II levels, Sth1 occupancy, AT ratio over the

entire gene, as well as upstream NDR length and orientation of the upstream NDR (i.e. tandem

or divergent). We also included Mediator presence as a large protein complex with transient

interactions predominantly at the NDR. All of these factors were clustered into two equally-

sized groups where possible. For example, Pol II presence along the gene was evenly separated

into transcribed regions with high and low Pol II occupancy. Interdependence was measured

by training a simple neural network with no hidden neurons using Hebbian learning [41].

Consequently, we assessed which nuclear groups (e.g. high or low Pol II presence) corre-

sponded to which Pearson clusters. We want to stress that we did not aim to find a predictive

model. Rather, this approach allowed us to measure a direct correlation between similarity of

nucleosome phasing and other genomics properties. The initial k-mean clustering did not

impose a constraint on the group size, and they could therefore differ in the number of genes

they contained. To remove any prediction bias, we forced the clusters to be of the same size.

Genes in the larger group with closest Pearson coefficient to all distributions in the smaller

group changed the cluster. We found the analysis for WT conditions non-conclusive, and cor-

relations varied between A and B replicate (S13 Fig top). Whilst A was slightly correlated with

the AT sequence content (Fig 6A and 6B), this trend disappeared for B, and it might in both

replicates rather correspond to the fPC orthogonal to the cluster boundary (S16 Fig). Overall,

we were surprised that none of the investigated properties could indicate a clear interdepen-

dence with nucleosome phasing in WT (Fig 6A).

The correlation between positioning and other nuclear properties changed among the

mutants (S13 Fig). The effect is particularly clear for chd1Δ (Fig 6C), as there is a strong inter-

dependence between phasing and Pol II (Fig 6D), Mediator presence, and NDR size (S13 Fig).

As aforementioned, Chd1 maintains, among others, chromatin integrity during Pol II elonga-

tion. The correlation is therefore in line with our previous conclusions and the function of

Chd1. The established link between Pol II presence and nucleosome organisation remains con-

served in all strains with a Chd1 gene deletion, except isw1Δchd1Δrsc8. This is similarly true

for the correlation with Mediator occupancy and NDR length. There was also a slight correla-

tion to Sth1 and AT ratio in cells containing chd1Δ, which were, despite being weak, still nota-

bly stronger than in WT. The results are in agreement with the effects of Chd1 on chromatin

maintenance during gene expression.

Due to the Rsc8-mediated nucleosome organisation within transcribed regions, we were

wondering whether there is an increased interdependence to NDR length or gene size. We can
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report that there is no correlation with NDR size in any rsc8-depleted strain (Fig 6E). This is in

line with our hypothesis that Rsc8 decouples processes at different genes. However, rsc8
mutant cells exhibited a slightly increased correlation with Sth1. By looking at the separation

with respect to the Pearson cluster boundary, we find that there is no noticeable impact (Fig

6F). The results indicate that any correlation with region-specific properties is lost, which is

likely due to the interference of nucleosome positioning of various regions.

isw1Δ single mutant did exhibit only a slightly increased correlation with Pol II, Sth1 and

Mediator presence as well as AT ratio. isw2Δ might as well show a weak correlation with Pol II

occupation. Each of the replicates of their double mutant indicates different correlations, and it

is therefore difficult to tell whether transcription-related factors influence nucleosome phasing

in the isw1Δisw2Δ strain. However, none of them indicate any strong interaction, suggesting

that—on a global scale—these effects might be negligible in comparison to the WT (S13 Fig).

Interestingly, the rsc8-depleted isw2Δ indicated a strong correlation with Sth1 and Mediator

presence as well as NDR length. The effect was observable in almost all strains that contained

Fig 6. Remodeler deletions have varying effects on the interdependence with other genomic properties. The

orange bars in panels A, C, and E show the ratio of correct predictions, and blue bars are wrong guesses. As we

distinguish between two clusters, the dashed black line at 0.5 indicates random guessing. The dashed grey line with

black edging in panels B, D, and F display the linear boundary for the Pearson clusters. Panels A and B: WT conditions

are seemingly correlated with the sequence composition. However, the results are different for the B replicate, and

therefore non-conclusive. All possible correlations are surprisingly low. Panels C and D: chd1Δ mutants increase

particularly their dependence on Pol II and other transcription-coupled properties, such as Mediator presence.

Surprisingly, the mutant showed also an increased interdependence on NDR length. Panels E and F: despite the

Rsc8-mediated gene limits, there is no correlation with coordinated nucleosome phasing and the size of transcribed

regions or NDR length. Although Sth1 indicates a slightly increased interdependence, this cannot be confirmed when

plotting the groups with respect to the Pearson clusters. This is in line with our hypothesis that positioning in different

regions interfere, and therefore, nucleosome localisation become increasingly independent from region-specific

factors.

https://doi.org/10.1371/journal.pcbi.1011799.g006
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the double mutation with the exception of the quadruple mutant (S13 Fig). Taken together,

this could indicate an impact along the gene body and the promoter region in strains that con-

tain rsc8-depleted isw2Δ.

Surprisingly, combining two factors together (e.g. Pol II presence and AT ratio) to predict

Pearson clustering did not increase accuracy. Instead, one factor dominated the correlation

measurement, e.g. Pol II presence for chd1Δ strains. This could possibly suggest that—despite

several factors showing increased interdependence—they can be reduced to a main influencing

factor (which is not necessarily one of the tested properties).

Taken together, the results indicate a strong interdependence between local genomic proper-

ties—such as presence of large protein complexes or NDR length—and strains containing chd1Δ.

This supports our hypothesis of Chd1 being responsible for local nucleosome coordination.

Discussion

In this work, we analysed the collective positioning of nucleosome arrangement within the

gene body in WT and chromatin remodeler-deficient strains by combining clustering of Pear-

son coefficients with fPCA, the latter being an analysis framework for functional data.

Although fPCA is well established in the assessment of time series, it has not been previously

used to understand location-specific nucleosome profiles on a global scale. As we argue that

the Pearson index measures similarity of nucleosome arrangement between genes, we inter-

preted the effect of chromatin remodelers on the positioning by visualising the distribution of

two established significant Pearson clusters using fPCA. Indeed, we can show that the sets of

genes for all mutants can be sensibly separated by the two fPCs that explain most variance in

the data, and more fPCs are not necessary to describe the clusters. This allowed the quantifica-

tion of the effect on coordinated phasing. The significant Pearson groups were compared with

other nuclear properties—such as Pol II presence and NDR maintenance—and sequence-

dependent characteristics. None of the commonly supposed influencing factors can easily

explain coordinated nucleosome positioning in WT conditions. However, correlation between

tested properties and phasing increases with some gene mutations. The analysis reveals the

impact of different gene deletions of chromatin remodelers on nucleosome arrangement

within the gene body. It shows Rsc8-defined boundaries for nucleosome positioning along the

gene, suggesting a global impact over the entire array for each gene. On the other hand, the

results for most strains that contained a Chd1 deletion indicated gene-specific local effects,

which correlate largely with Pol II presence. In the following, we critically discuss the results

and their significance.

We applied a pairwise Pearson cross-correlation index to measure profile similarity

between genes. The linear correlation measurements evaluate the overall trend of the signal

(i.e. increasing or decreasing distributions at similar positions), and it does not take signal scal-

ing into account. Therefore, it assesses whether genes are apt to contain nucleosomes at similar

positions. Indeed, similar nucleosome phasing could indicate similar but gene-specific chro-

matin remodeler dynamics, which justifies the rationale for measuring classical linear correla-

tion. It also follows previous analyses using comparable measurements [33–35].

We classified genes according to their Pearson similarity by applying a k-mean clustering

approach. k-mean was repeated over several random initialisations, therefore removing any

prior bias. We used a silhouette criterion value to determine the best number of clusters,

which was shown to be 2. It should be mentioned though that the cluster distribution accord-

ing to the fPCA did not show a clear separation of the data points themselves (i.e. there were

no distinct data accumulations). Thus, this clustering is imposed by our assumptions using the

Pearson index. Nonetheless, we argue that they reveal important information about
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nucleosome phasing linked to chromatin remodelers when compared with mutant strains.

Grouping of nucleosome profiles has been previously performed using different algorithms

[42], and it is necessary to show that a separation along the first two fPCs is similarly possible

when using other clustering approaches. We therefore compared the results of the Pearson k-

mean clusters with a WARD algorithm using the Euclidean distance metric. Once again, pro-

files can be best separated into two clusters (S14(A) Fig). Moreover, the gene groups tend to

separate along the first fPCs, despite the fact that the boundary is less neat (S14(B) Fig). It

should be mentioned though that clustering with an Euclidean distance measures different

properties of the profiles, and it is therefore expected that the separation border changes.

Indeed, the separation occurs now predominantly with respect to fPC1 (S14(B) Fig), which

indicates a strong influence of the signal scaling that was ignored by the Pearson correlation.

Therefore, the clustering does not express similarity of the overall nucleosome positioning

along the entire array. We want to emphasise that we were particularly interested in how the

entire nucleosome array tends to behave as a whole, which should be sensibly measured by

using the Pearson correlation. We decided to ignore the scaling of the sequencing amplitude,

as it conveys how many cells contain a single well-positioned nucleosome instead of how

nucleosomes tend to behave with respect to most cells. Nonetheless, the found gene sets based

on a fundamentally different clustering method tend to separate into different areas when

using the first two fPCs. We conclude that the observed separation using k-mean clustering

and the Pearson correlation as a distance metric captures genuine biological properties.

The determined gene groups were as different as possible using similarity measured by

Pearson correlation. The validation using the silhouette criterion together with the KS signifi-

cance test over the inter-cluster correlation between the found k-mean clusters and random

grouping showed their significance. This shows that the data could not be better categorised

using linear correlation. Significance tests are often prone to attributing a high importance to

small differences when sample sizes are large. Therefore, we randomly sub-sampled 500 inter-

cluster correlation indices for the determined and random grouping, respectively. It should be

mentioned that in a few single instances, the p-value was larger than 5%, as we randomly

selected 500 similarly low values for both inter-cluster correlations (i.e. for the k-mean and the

random clusters). We accounted for these fluctuations by averaging the p-value over 500 ran-

dom clusters from which each 500 random sub-samples were selected. Using this approach,

we found that the k-mean clusters were significant for large genes of all mutants (average p-

value <5%).

As the Pearson correlation index only indicates average similarity over the entire nucleo-

some array, we aimed to compare the clusters to the data itself in order to interpret their differ-

ences. Dimensionality reductions are often used to visualise clusters, such as for single-cell

sequencing analyses [43]. Common approaches include PCA, uniform manifold approxima-

tion and projection (UMAP) [44], and t-distributed stochastic neighborhood embedding (t-

SNE) [45]. Whilst the latter two are non-linear dimensionality reductions, PCA and fPCA find

a linear decomposition of the data into the axes (or functions) that explain most variance. It is

challenging to retrieve the exact meaning of the discriminating boundary using non-linear

approaches. Consequently, understanding the location-dependent differences in the profile

between two clusters and interpreting their separating function is more straightforward for

PCA or fPCA than for UMAP and t-SNE. Although PCA and fPCA are very similar, PCA

assumes that every position in the MNase-seq data is independent, whereas fPCA conjectures

that they were produced by a single stochastic process along the spatial axis. Therefore, posi-

tions are dependent on each other. This is in line with the barrier model for establishing nucle-

osome phasing, which makes fPCA preferrable over PCA. Moreover, as we treat each

nucleosome profile as one entity by using the Pearson correlation, the independence
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assumption would violate the fundamental understanding in our analysis. Nonetheless, when

comparing PCA and fPCA, we showed that the two clusters can be similarly separated (S15

Fig), although the two principal axes are slightly differently shaped due to the missing con-

straint of the spatial dependence.

FPCA assumes a stochastic process with a mean behaviour over the entire data set, and it

characterises each data point with respect to their deviance from that mean (see Methods).

The results therefore depend on the entire considered data set. Indeed, we find different results

when including all genes or exclusively transcribed regions >1000 bp. However, these differ-

ences are not strong. Moreover, any possible bias was excluded by removing genes smaller

than 1000 bp from a subsequent analysis. Due to the abundant and well-positioned nature of

nucleosomes within the gene body in Saccharomyces cerevisiae, we find it justified to presume

an average nucleosome distribution describing their wave-like profile. Nonetheless, we argue

that the variance between genes contains important information about nucleosome phasing

imposed by chromatin remodelers, which we roughly categorised into groups. We found that

the two Pearson correlation clusters could be neatly separated by the fPC scores z
j
i, j 2 {1, 2}.

This indicates firstly that the Pearson index measures a trend that is explained by the largest

variance in the data; and secondly, the two fPCs that describe most variance are sufficient to

interpret the clusters.

Whilst linear-correlation measurements are limited to quantifying the average similarity, a

combination with fPCA allows characterising location-specific differences and in which way

gene deletions affect phasing from an average. Evaluating the effect of the linear boundary

along positions within the gene body revealed detailed differences in the nucleosome profile

that are important for establishing the groups. As our approach is largely dependent on general

signal processing methods, we can repeatedly apply the same framework for all mutants and

compare there results. Therefore, the combination of linear correlation with fPCA extends pre-

vious ways of analysing nucleosome distributions using only correlation measurements that

average over the entire profile [33–35].

The analysis can clearly distinguish between mutant-specific effects on phasing. All mutants

preserved the information of coordinated nucleosome arrangement in their first two fPCs, and

the Pearson clusters could be separated by a neat line. Consequently, none of the chromatin

remodeler gene deletions caused random positioning. Some mutants, however, showed an

increased overlap between the two groups, which indicates increased independence between

individual nucleosome locations, and positioning might be more random. Including more

fPCs could help further separating the clusters. In all of those cases however, one of the two

replicates always permitted a clearer separation by using only the first two fPCs. Considering

the experimental variability in the data, it is not possible to draw direct conclusions without

further replicates. In order to simplify the comparison between mutants, we restrained from

including more fPCs.

Most strains did not alter notably their gene-specific collective arrangement (i.e. the slope),

and a linear separation of the Pearson clusters using the deviance from the mean did not

change with respect to WT strains. Although they can nevertheless have an impact on the

mean itself, coordination along the genes remains preserved in a similar way, at least as mea-

sured by the Pearson correlation index. Due to the focus of the study on coordinated nucleo-

some positioning along transcribed regions, we did not consider them as having notably

changed their coordinated phasing.

The length of an average yeast gene is approximately 1500 bp, which corresponds to 6–7

nucleosomes. To analyse the effect of nucleosome remodeler deletions or their depletion on

their arrangement, we examined a stretch of 1200 bp per gene, including 200 bp upstream of
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the +1 dyad. By considering an array of 6–7 nucleosomes at the same time, we were able to

assess their long-range impact on the gene body. During our analysis, we differentiated

between small and large genes (i.e. coding regions shorter than the considered 1000 bp after

the +1 dyad versus genes� 1000 bp). This revealed the effect of Rsc8 on limiting nucleosome

positioning to the gene body. It should be emphasised that we removed smaller genes from the

subsequent analysis, as it would be impossible to compare nucleosome arrangement further

down into the gene body. We also surmised that the influence of remodeler deletions on later

nucleosomes is more difficult to observe in smaller genes, since they could be located very

right at the TTS which could have an additional impact. Therefore, we based our analysis and

conclusions—particularly with respect to Chd1—only on genes larger than 1000 bp. It should

be noted that the results may not be easily transferable to small genes.

Gene mutations of chromatin remodelers have been analysed previously in detail, including

their influence on phasing [12–14, 18], NDR maintenance [46], and gene transcription [13].

RSC is the only essential chromatin remodeler complex in Saccharomyces cerevisiae [47], and

it has been particularly associated with positioning of the +1 and -1 nucleosomes [12, 46, 48].

This mechanism has been proposed to be conserved among various yeast species [11]. It has

also been reported that RSC regulates expression of Pol II and Pol III-transcribed genes [13,

49, 50]. Moreover, it has been found to impact Pol II elongation and termination [12]. All of

these results imply that RSC is to some extent involved in limiting the transcribed region.

However, this has been predominantly quantified with respect to changes at the core pro-

moter. To our knowledge, a potential role for Rsc8 to decouple nucleosome phasing in inde-

pendent genes has not been suggested. The presented functional analysis of MNase-seq

profiles in rsc8-depleted strains clearly indicates a coordinated nucleosome arrangement that

exceeds the limits of transcribed areas. This is further supported by our finding that correlation

with other nuclear and sequence-dependent factors decreases. Furthermore, mutants that

were rsc8 depleted decreased notably the boundary slope between the two clusters, indicating

that coordinated positioning becomes increasingly independent of other functional compo-

nents. The strictly limited and Rsc8-mediated phasing barrier could have further implications

for other processes—such as transcription—as nucleosome placing in one gene influences its

neighbouring regions. The notion of gene-interfering positioning has been also proposed by

[14]. The study shows that RSC could act as a bidirectional barrier, influencing upstream and

downstream regions. Interestingly, they found that interference also plays a crucial role in WT

strains, and that the same phenomenon remains preserved in rsc8-depleted cells. However,

our fPCA reveals that the limiting role of the RSC remodeler complex is crucial in WT condi-

tions, and that this behaviour is significantly altered when Rsc8 is depleted. Taking this into

account, Rsc8 should fulfill the role of disentangling gene-related processes in WT strains, and

it therefore allows for a flexible and uncorrelated transcriptional program. Indeed, rsc8-

depleted cells exhibit significantly altered Pol II profiles [10, 12], which is in accordance with

our hypothesis. We propose that the RSC chromatin remodeler globally disentangles nucleo-

some phasing, and it therefore plays a substantial role in long-range positioning.

Interestingly, our results indicate that positioning limited to the gene body can be re-estab-

lished in rsc8-depleted chd1Δ mutants. We hypothesise that they have antagonistic effects in

establishing gene size-dependent barriers for nucleosome arrangement. Indeed, it was

reported that Rsc8 and Chd1 have opposing effects for Pol II termination. rsc8-depleted cells

exhibit inhibition of Pol II dissociation at the TTS, whereas the double mutant isw1Δchd1Δ
increases release frequency, with seemingly chd1Δ dominating this effect [12]. The authors

propose that this is related to the close packaging of nucleosomes at the TTS. Our outcomes

suggest that they might have antagonistic effects in chromatin organisation that differs

between transcribed and non-transcribed regions.
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We found that chd1Δ mutants had a strong impact on coordinated positioning within the

gene body. Indeed, Chd1 has been, among others, characterised with respect to its role in

maintaining chromatin integrity during Pol II transcription [16, 51, 52], and it associates to

both promoters and transcribed regions [53]. This is in line with our finding that correlation

with Pol II presence and occupancy of Mediator increases in Chd1-deficient strains. With the

exception of isw1Δisw2Δ, all other noteworthy changes included deletion of chd, further

emphasising its role for chromatin organisation within the gene. However, not all chd1Δ-con-

taining mutants exhibit a notable effect. This can have various reasons, including experimental

variability. However, particularly the mutant chd1Δisw1Δisw2Δ could indicate an interacting

behaviour of the remodelers. Indeed, Chd1 has been reported to cooperate [16] as well as

antagonise Isw1 [18], and therefore could have different effects depending on the context.

With this being said, the behaviour of the triple mutant isw1Δisw2Δchd1Δ is particularly inter-

esting, as chd1Δ and isw1Δisw2Δ each individually affect coordinated phasing, but not their tri-

ple mutant. This could suggest an antagonistic behaviour on nucleosome coordination. As

Chd1 is highly conserved in all eukaryotes [54], this result could have consequences beyond

Saccharomyces cerevisiae.
It is worth noting that the Isw1 subunit is part of the two complexes Isw1a and Isw1b, and

consequently its deletion affects them both. Previous studies [55] have shown that these com-

plexes have different functions and enrichment profiles. The Ioc3 subunit of the Isw1a com-

plex is enriched at +1 nucleosome, while the (Isw1b) is enriched on +2, +3, and +4

nucleosomes. In addition, these two complexes can act on different sets of genes and promote

sliding in different directions. However, as we did not analyse the effect of specific subunits of

Isw1a or Isw1b complexes in this study, we cannot distinguish between the two complexes.

Therefore, it is possible that the effects observed from the +2 nucleosome onward may not be

due to one specific complex.

Analysing the MNase-seq data using fPCA allowed us to obtain a different view on the

functionality of various remodelers to maintain chromatin organisation. We propose the fol-

lowing mechanism (Fig 7). The RSC remodeler complex is essential for allowing independent

Fig 7. Chromatin remodelers maintain nucleosome organisation on a local and far-reaching scale. Top: RSC

(green ellipse) establishes independent nucleosome phasing on each gene (two vertical dashed lines) by maintaining

the NDR through positioning the +1 (cornered arrow) and -1 nucleosome. The ATP-dependent positioning is

symbolised by black arrows pointing away from RSC. The local remodeling effect of Chd1 (blue ellipse) allows

chromatin arrangement independent of Pol II transcription (yellow ellipse). Bottom: in rsc8 strains, the NDR cannot

be maintained anymore, and phasing in and outside a gene interfere with each other (single dashed line). We propose

that this should equally lead to an increased interdependence of other nuclear processes such as transcription. If chd1 is

deleted, nucleosome arrangement is more sensitive to the presence of other large complexes, such as Pol II. During

transcription, Pol II is affecting the local positioning (black arrows from Pol II).

https://doi.org/10.1371/journal.pcbi.1011799.g007
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phasing in each single gene. It plays therefore a pivotal role in maintaining the barrier with

respect to which nucleosome positioning is coordinated. This permits the decoupling of gene-

specific processes such as transcription. Depletion of Rsc8 leads to the interference of different

genomic regions, which therefore alters sequence accessibility on a global scale. Indeed, it has

been reported that gene expression is dramatically changed in rsc8 mutants [10, 50]. Chd1, on

the other hand, maintains chromatin integrity during transcription [16, 51, 52], and it influ-

ences nucleosome phasing locally to permit Pol II-mediated expression. chd1Δ strains make

positioning dependent on Pol II presence. Consequently, whilst RSC plays a global role, Chd1

is important for local nucleosome organisation.

Methods

Data treatment

MNase sequencing reads were taken from [18] and [12] (GEO accession numbers

GSE69400 and GSE73428, respectively) and treated as in our previous study [56]. To be pre-

cise, reads from Fastq files were trimmed with trim_galore (v0.6.5) [57] and

cutadapt (v3.1) [58]. Subsequently, they were mapped on the Saccharomyces cerevisiae
genome (University of California at Santa Cruz [UCSC] version sacCer3) using

bowtie2 (v2.3.4.3) [59]. Files were converted with samtools (v1.9) [60] and

deeptools (v3.5.0) [61]. Read counts were normalised in Reads Per Million (RPM) of

mapped reads. We used the option --MNase of bamCoverage so that only the mononu-

cleosome fragments were kept. This means that fragments shorter than 130 bp and longer

than 200 bp were removed from analysis. Mediator and Sth1 ChIP-seq were taken from [56]

(ArrayExpress accession number E-MTAB-12198). We used Pol II ChIP-seq from our pre-

vious study [62].

Following [12, 18], we retrieved positioning profiles along the coding regions 200 bp before

and 1000 bp after the +1 nucleosome. Genes on the Crick strand were inverted. Consequently,

all data is calibrated such that the +1 position is at 200 bp. The profile of genes for which the

+1 position is known were considered as in [18].

Measuring profile correlation and clustering

The pairwise Pearson correlation of MNase-seq distributions for each gene was determined

using equation

rxy ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyi � �yÞ2

q : ð1Þ

Here, x and y denote two genes, �x and �y symbolise their respective average MNase-seq value

along the coding region, and n = 1200 is the length of the considered region. Eq 1 ranges

between -1 and 1, and indicates whether the two gene profiles tend to change into the same

(positive Pearson correlation) or opposite directions (negative Pearson indices).

Genes were divided using the k-mean clustering implementation in MATLAB with the cor-

relation distance metric. To define the optimal number of k-mean clusters, we used the silhou-

ette criterion measurement [63, 64]. For all analysed strains, the highest silhouette value occurs

at 2 groups, suggesting that in order to divide the profiles into classes with respect to their

Pearson indices, the optimal number of clusters is 2 (Fig 1A). Therefore data were grouped in

two clusters (Fig 1B and 1C).

Cluster significance was validated by comparing the inter-cluster correlation (i.e. each pair-

wise Pearson index between a profile in cluster 1 and a profile in cluster 2) between the
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determined and random clusters. It is expected to be minimal for the gene groups found by

the k-mean clustering. Therefore, we applied the KS test implemented in scipy with the

hypothesis that the inter-cluster correlation of the found gene sets is significantly lower than

for random groups. It should be noted the number of all pairwise comparisons can be quite

large. It is a known problem that small differences are marked as being significant by the KS

significance test when sample sizes are too large. Therefore, we sub-sampled randomly 500

pairwise inter-cluster correlations for the determined and the random clusters, respectively. It

should be mentioned that this sometimes led to very similar sub-samples, and the p-value was

for some few runs fairly high. We therefore averaged the p-value over for the KS test over all

500 random clusters and used the conventional p-vale threshold of 0.05 (i.e. 5%) to reject the

null hypothesis. To be more precise, we required that the average probability of finding ran-

dom clusters that have a similarly low inter-cluster correlation was lower than 5%. This was

the case for all tested mutants.

Functional principal component analysis

Functional clustering in a Hilbert space H can be achieved by fPCA. It applies—similar to PCA

in Euclidean space—a functional dimensionality reduction in H to investigate the dominant

mode in functional data. Instead of relying on values in discrete dimensions, fPCA uses a

given number of basis functions (e.g. B-splines or Wavelet) to create the eigenfunction basis

that accounts for most functional variation. Despite the fact that MNase-seq data is stored in a

discrete array (i.e. one value per bp), we can nevertheless find a functional approximation over

a range using a given choice of basis functions. It should be noted that this implicitly smooths

out high frequencies in the signal. We presume that nearby values in MNase-seq data possess a

strong interdependence, therefore justifying a smoothed and continuous functional represen-

tation of the high dimensional data. In this study, we apply B-splines as a basis to represent the

nucleosome array (Fig 8). We use the Python library scikit-fda to determine the fPCs

and the corresponding weights explaining the distribution [65]. Here, we describe briefly the

underlying principles of the method.

FPCA presumes that the functional data represents a stochastic process X(t) with expected

value μ(t) = E[X(t)] and orthonormal eigenfunctions ϕi(t), i = 1, 2. . .. Intuitively, ϕi(t)
describes the most variation in X orthogonal to all ϕj, j< i. This allows the iterative determina-

tion of the eigenfunctions in the functional data. It should be emphasised that in this study the

process is defined in space rather than describing temporal data. We follow nevertheless the

convention by denoting the independent variable as t. By using the Kosambi–Karhunen–

Loève theorem, any stochastic process can be represented as an infinite linear combination

Fig 8. Representing the MNase data array as a composition of B-spline base functions in WT conditions. Left

shows the raw data, each colour depicting one profile over a gene. Center gives the smoothed profiles after

representing the data as B-splines. Right displays the average profile using the functional composition.

https://doi.org/10.1371/journal.pcbi.1011799.g008
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ϕi(t). Consequently, we can describe the stochasticity in X(t) via

XðtÞ � mðtÞ ¼
X

k

z
k
�

k
ðtÞ: ð2Þ

zk is the autocovariance operator

z
k
¼

Z

ðXðtÞ � mðtÞÞ�k
ðtÞdt: ð3Þ

To provide some intuition, it is presumed that the entire data set can be explained via an

average behaviour μ(t). Variability to μ(t) for each gene is expressed by ϕk(t) together with a

factor zk. zk can be loosely compared to a normal correlation measurement, i.e. zk increases

when ϕk(t) and
R

(X(t) − μ(t)) follow the same trend. If they describe opposing behaviours—

for example ϕk(t) decreases when
R

(X(t) − μ(t)) increases—zk becomes negative.

It is commonly justified to approximate Eq 2 as a finite sum

XðtÞ � XnðtÞ ¼ mðtÞ þ
Xn

k

z
k
�

k
ðtÞ: ð4Þ

It should be noted that ϕi(t), i = 1, 2, . . . is a basis of the functional space in H.

This understanding of the underlying process permits the application of fPCA. A smoothed

representation with the basis functions (e.g. B-splines) fulfilling Eq 4 can be obtained using L2

regularisation. To reduce the dimensionality to K, we keep only the first K components (i.e.

ϕi(t)) that represent the dominant mode of variation in X by setting the first component to

�
1
¼ arg max

k�k¼1

(

Varð
Z

T
ðXðtÞ � mðtÞÞ�ðtÞdtÞ

)

; ð5Þ

and the following K − 1 components to

�
k
¼ arg max
k�k¼1;h�;�ji¼0 for j¼1;...;k� 1

(

Varð
Z

T
ðXðtÞ � mðtÞÞ�ðtÞdtÞ

)

: ð6Þ

kϕk is the square norm, i.e. k � k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
R
�ðtÞ2Þ

q

. It should be emphasised that ϕk can differ by a

factor of -1 due to the square norm, and consequently, the operator zk (Eq 3) can be either

positiveor negative depending on ϕk. This means that the slope of the cluster-dividing bound-

ary can be pointing upwards or downwards and still describe the same functional

composition.

We exemplified the impact of the first two fPCs to analyse the consequences on nucleosome

phasing in chromatin remodeler-deficient cells (see for example Figs 1, 2 and 4). It should be

noted that the fPCs were amplified to highlight their functional contribution. We set the scal-

ing factor to z1 = z2 = 20 in all figures that demonstrate their effects (i.e. magenta shows the

effect of the fPC multiplied by 20 and added to the mean, and green depicts the fPC multiplied

by 20 and subtracted from the mean). The determined factors were predominantly distributed

in z1, 2 2 [−20, 20] for all strains and replicates, and most of them were in fact much lower.

Therefore, we limited the scaling of the axes for z1 and z2 to [−20, 20] for all plots that show

the cluster distribution with respect to the factors. Therefore, all figures and axes were directly

comparable. The few outliers that were outside this range were incorporated into the analysis

despite of being not shown in those plots. In most cases, only 1 or 2 genes were outside these

ranges. However, large genes for isw1Δ replicate A and isw2Δrsc8chd1Δ replicate B had 71 and
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72 outliers, respectively. Nonetheless, this value amounts to less than 2%/ of all considered pro-

tein-coding profiles for these setups.

In order to validate that nucleosome arrangements tend to separate along the first two fPCs

when using a different clustering method, we repeated grouping using WARD with an Euclid-

ean distance metric on the profiles. Clustering was implemented using the

AgglomerativeClustering class of the scikit-learn Python package. In contrast

to the Pearson correlation index, the Euclidean distance does not have an upper bound, and

clustering was more sensitive to outliers. We removed 29 genes who had an absolute fPC score

larger than 20 for either of the two fPCs. Despite the fact that the boundary is less neat than

when using the k-mean clustering, our results suggest that the WARD gene groups tend to sep-

arate along the first two fPCs as well (S14 Fig).

Quantifying the cluster boundary

Long genes were linearly separable with respect to the Pearson coefficient clusters in all WT

and mutant conditions. The boundary was determined using a linear SVM. We ignored the

prediction error and the intercept of the linear boundary, and instead considered only the

slope differences between the two replicates. As aforementioned, the sign of the slope m does

not matter, and we consider therefore only |m|. To quantify the variability in the two replicates,

we introduce the following measurement

sðiÞ ¼
ð �mi � �mWTÞ

2

ðjmA
i j � jmB

i jÞðjmA
WTj � jmB

WTjÞ
: ð7Þ

�m denotes the average over the absolute slopes of both replicates. We defined a change as nota-

ble when s(i)>1, which implies that the mean variability between WT and mutant is larger

than the variability within the replicates, i.e.

ð �mi � �mWTÞ
2
> ðjmA

i j � jm
B
i jÞðjm

A
WTj � jm

B
WTjÞ: ð8Þ

As we consider only two replicates, we restrain from using the word significant as much as

possible and use noteworthy or notable instead.

The slope of the boundary m indicates the contribution of each fPC to describe the discrim-

inator between the clusters. As m shows the change of z2 over one unit of z1, we can determine

the separating boundary by

�
=
¼

m�1
þ �

2

mþ 1
: ð9Þ

The impact of ϕ/ can be visualised by multiplying a scaling factor which is followed by addi-

tion to and subtraction from the mean. In this study, we used a factor of z/ = 5 to create the

grey bands in the plots that show the effect of the separating function.

Measuring interdependence between nucleosome phasing and other

nuclear properties

In order to analyse interdependence of nucleosome positioning with other nuclear properties,

we divided all factors into two equally sized cluster using the median wherever possible. For

example, the half with the smaller NDRs was assigned to group -1, whereas the larger half was

group 1. This split was performed after filtering for the size (i.e. large or small genes). The anal-

ysis aimed to find a correlation between nuclear factor group and Pearson cluster. To remove
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any bias with respect to the group size, we forced both Pearson clusters to contain the same

number of genes.

We used a simple feedforward network with no hidden neurons and a single output neuron

whose activation indicated the predicted Pearson cluster. The number of input neurons varied

between 1 and 2, depending on whether we considered a multivariate interdependence. The

group of the nuclear factor (i.e. -1 or 1) was set as input neuron activation. This was weighted

and summed together with all other input values. The activation function of the output was a

modified sign function, which returned 0 when negative and 1 when positive. Therefore, if the

weighted sum over the input was lower than or equal to 0, the output would be 0, and 1

otherwise.

Weights were trained using a Hebbian-like learning method [41]. In order to avoid any

confusion, we name Pearson cluster 0 and nuclear factor group -1 low cluster, whereas we

define group 1 in both cases to be the high cluster. The weight was defined to be the average

number of genes where the nuclear factor group and Pearson coefficient cluster where both

low or both high; minus the average number where one of them was low whilst the other high.

The implementation as a neural network allowed the straightforward extension to compare

interdependence with several factors at the same time using the same method.

Supporting information

S1 Fig. Cluster significance test for all genes in WT replicate A. We measure the inter-clus-

ter correlation for the found clusters and 500 random clusters. It is expected that the found

gene groups have a significantly lower inter-cluster correlation than a random separation (i.e.

the found clusters are most dissimilar based on the Pearson correlation). A KS test over 500

randomly sampled inter-cluster correlation indices for the k-mean and random grouping,

respectively, proved their significance. Magenta shows the distribution for the found clusters,

orange displays one example for random clustering. (A) The distribution over the absolute

pairwise inter-cluster correlations is significantly lower for the gene groups determined by the

k-mean clustering than for the random grouping. (B) The cumulative distribution function for

the found clusters raises much more quickly. A KS test verified that this trend is indeed signifi-

cant (average p-value over 500 repetitions 0.0009).

(TIFF)

S2 Fig. The WT fPC scores z coloured with respect to the Pearson clustering using all

genes. Blue and orange indicate each one group, the dashed line symbolises the best linear sep-

aration using a SVM. The x-axis represents the score of the first fPC z1, the y-axis gives the

score for the second fPC z2. All axes are scaled to the same size; shapes are therefore compara-

ble. (A) and (B) show all genes for replicate A and B. (C) and (D) display the fPC scores after

filtering for large genes (>1000 bp) for replicates A and B. (E) and (F) show small genes

((�1000 bp) for replicate A and B. We removed the separating boundary because it did not

reasonably divide the clusters. Nevertheless, we kept the estimated linear function in the legend

to allow a comparison with other boundaries. Of particular note is the bias, which can be even

order of magnitudes different from large-gene clusters. (G) and (H) display the fPC scores

after filtering for very large genes (>3000 bp) for replicates A and B.

(TIFF)

S3 Fig. First 10 fPCs for WT A all genes. FPCs are ordered with respect to how much vari-

ance they explain (i.e. fPC1 explains the most whereas fPC10 explains the least). The mean is

given as a black dashed line, a positive contribution is shown in magenta, whereas a negative

contribution is displayed in green. The first two fPCs are the ones that were presented in Fig 1
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(F) (21.3% and 11.5% explained variance, respectively). The fPCs that follow after the major

two ones become increasingly complex, and it is difficult to quantify their effect in a straight-

forward measurement. With the exception of fPC4 (7.8% explained variance), the plots suggest

that the effects of the fPCs that were not included would not have been captured by the linear

correlation index, as they describe changes specific to a single nucleosome (e.g. fPC6) or com-

plex changes (e.g. fPC7). We want to remind that the variance captured by the fPCs could

either moderately occur along the majority of genes; or alternatively, there is a strong effect on

a small subset of profiles. We interpret the results as follows. FPC1 and fPC2 show global

trends how nucleosome arrangements change along most protein-coding regions. This is

emphasised by the fact that they capture the most deviance from the mean and that their effects

are not specific to particular nucleosome positions. Many other fPCs (e.g fPCs 5, 6, and 7,

7.5%, 7%, and 6.1% explained variance, respectively) include strong position-specific effects.

Despite the large impact on the amplitude at precise positions (e.g. +3 or +4), the explained

variance by these fPCs is lower. We presume that this indicates a strong variance at these posi-

tions in a small subset of genes. Thus, they show a much lower variance. We focus on the first

two fPCs because they can separate the Pearson clusters, which in turn indicates that they cap-

ture global trends since they were determined over all genes.

(TIFF)

S4 Fig. Heatmaps for small-gene nucleosome profiles reveal antagonistic roles for Rsc8

and Chd1 to establish phasing boundaries. Cluster 1 and 2 for all genes in WT conditions

were plotted only including small genes on the left. Indeed, correct positioning is either

completely disrupted (Cluster 1), or clear phasing is lost after +3 or +4 position and individual

peaks do not stand out thereafter (Cluster 2). However, both Pearson clusters for rsc8-depleted

cells (centre) show clear phasing probabilities, despite all genes being smaller than the consid-

ered 1000 bp after the +1. The double mutant chd1Δrsc8 seems to re-establish the gene bound-

aries for nucleosome phasing, as positioning is either disrupted (Cluster 2, compare with

Cluster 1 in WT) or does not exhibit clearly distinguishable peaks after the +3 or +4 nucleo-

some (Cluster 1, compare with Cluster 2 in WT). Defining a group as being 1 or 2 was arbi-

trary and has no significance. Copper values show large MNase-seq signal values, whereas

dark segments indicate a low amplitude. Values in between are uniformly scaled.

(TIFF)

S5 Fig. The large-gene fPC effect in WT. Despite fact that the functions differ in the A and B

replicate ((A) and (B)), they both describe the same properties as when considering all genes

(Fig 1(F)). To be precise, the first fPC describes seemingly position-dependent scaling (grey

vertical bars), and the second explains coordinated phasing (grey arrows). The mean is dis-

played as a black dashed line, whereas a positive and a negative functional contribution are

given in magenta and green, respectively.

(TIFF)

S6 Fig. The Pearson coefficient clusters for exclusively small genes correspond to the gene

size. When we repeated the Pearson coefficient clustering considering exclusively small genes,

we can linearly separate again the two groups (orange and blue). However, this is predomi-

nantly explained by the size of the gene (short pink, long green). This in line with the hypothe-

sis that coordinated nucleosome phasing along the transcribed region is strictly limited within

the gene body. The phase separating line was determined on the Pearson clusters (dashed

black line) using an SVM. The same separating boundary was also plotted in right plot show-

ing grouping with respect to the size. We plotted the original SVM boundary from the Pearson

clusters with a dashed grey line to indicate that it was not determined using gene size. (A) and
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(B) give the Pearson clusters for replicate A and B. (C) and (D) show the size dependence of

replicate A and B.

(TIFF)

S7 Fig. Pearson clusters of small genes lose separability with respect to their fPC scores.

The figure shows the fPC scores z of small genes (<1000 bp) of all conditions coloured with

respect to the all-gene Pearson clustering. Blue and orange indicate each one group, the dashed

line symbolises the best linear separation using a SVM. We removed the linear boundary in

plots where it went through the periphery instead of dividing the data points. The x-axis repre-

sents the score of the first fPC z1, the y-axis gives the score for the second fPC z2. All axes are

scaled to the same size; shapes are therefore comparable.

(TIFF)

S8 Fig. The small-gene fPC effect in chd1Δrsc8 strains. The double mutant seemingly re-

establishes gene boundaries, and coordinated phasing is at least weakened after the +2 nucle-

osome (+1 in turquoise, +4 in blue, +6 in orange). This is true despite the fact that the A and

B replicate differ. Figs (A) and (B) show the clusters for replicate A and B, and Figs (C) and

(D) display their fPCs. We removed the separating boundaries in (A) and (B) because they

did not reasonably divide the clusters. Nevertheless, we kept the estimated linear function in

the legend to allow a comparison with other boundaries. Of particular note is the bias, which

differs largely from large-gene clusters. The dashed black lines, the solid purple, and the solid

green lines indicate the mean, a positive contribution, and a negative contribution, respec-

tively.

(TIFF)

S9 Fig. Cluster significance test for large genes. We compare the inter-cluster correlation

between the Pearson clusters (magenta) and random partitioning (orange). We define the

inter-cluster correlation as the distribution over all absolute pairwise Pearson indices between

two genes from different clusters. It is expected that the inter-cluster correlation for the group-

ing determined by the k-mean tends to be significantly lower than the random clustering. This

is verified by a KS test over 500 randomly sampled inter-cluster indices for the random and k-

mean grouping, respectively. As the sub-sampled Pearson indices for both approaches can be

sometimes fairly similar, we repeated the significance test over 500 random clusters and deter-

mined the average p-value. We show here the result for one example of the 500 random group-

ings. Left: The inter-cluster correlation distribution for the determined gene groups tends to

be lower than the random clustering for all strains. Right: This notion is confirmed by the

cumulative distribution function (CDF), where the Pearson CDF increases more quickly than

the one for random clustering.

(TIFF)

S10 Fig. Pearson clusters of large genes are linearly separable with respect to their fPC

scores (replicate A). The figure shows the fPC scores z of all conditions coloured with respect

to the Pearson clustering using only large genes (�1000 bp). Blue and orange indicate each

one group, the dashed line symbolises the best linear separation using a SVM. The x-axis rep-

resents the score of the first fPC z1, the y-axis gives the score for the second fPC z2. All axes are

scaled to the same size; shapes are therefore comparable. It should be emphasised that only the

absolute slope value matters and not the sign (i.e. pointing upwards or downwards).

(TIFF)

S11 Fig. Pearson clusters of large genes are linearly separable with respect to their fPC

scores (replicate B). The figure shows the fPC scores z of all conditions coloured with
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respect to the Pearson clustering using only large genes (�1000 bp). Blue and orange indi-

cate each one group, the dashed line symbolises the best linear separation using a SVM. The

x-axis represents the score of the first fPC z1, the y-axis gives the score for the second fPC z2.

All axes are scaled to the same size; shapes are therefore comparable. It should be empha-

sised that only the absolute slope value matters and not the sign (i.e. pointing upwards or

downwards).

(TIFF)

S12 Fig. Example of an arbitrary mutant that only influences the MNase-seq average but

not the collective behaviour of the nucleosome array. (A) We consider an arbitrary but fic-

tional chromatin remodeler mutant that causes the depletion of the +2 nucleosome. All other

nucleosomes remain unperturbed and keep their positioning. The MNase-seq profile at the +2

position consists only of random noise for all genes. (B) This has visibly a strong impact on the

average distribution, as the +2 position is depleted in the arbitrary mutant (blue) in compari-

son with the WT (bold red line). (C) Since the descriptive variance decreased in our arbitrary

mutant (i.e. variation that is not attributed to random noise), the fPC scores are slightly

affected. Overall, however, the boundary slope remains fairly similar to the real WT A from

which we constructed the arbitrary mutant. In fact, difference to WT A is smaller than the dif-

ference between the two biological replicates. In order to make sure we consider only mutants

that affect the entire nucleosome array, we selected only strains for which the boundary slope

notably changed with respect to the WT.

(TIFF)

S13 Fig. Interdependence of Pearson clusters of MNase-seq profiles and other nuclear fac-

tors. The orange bar shows the ratio of cases where the nuclear factor could predict clustering,

blue gives the wrongly classified ratio. Random guessing would be correct in 50% of the cases,

which is given by the dashed black line. Consequently, the orange bar must exceed the dashed

line to suggest interdependence.

(TIFF)

S14 Fig. Clustering using WARD and an Euclidean distance metric indicates also a separa-

tion along the first two fPCs. We repeated gene grouping (WT A, large genes) with WARD

as a fundamentally different clustering method on the nucleosome profiles using an Euclid-

ean distance metric. However, contrary to the Pearson correlation, the Euclidean distance

does not have an upper bound, and clustering was more sensitive to outliers. We removed 29

genes who had an absolute fPC score larger than 20 for either of the two fPCs. (A) The sil-

houette criterion indicates once again that when dividing genes into clusters, it is best to sep-

arate them into two groups. (B) Despite the fact that the Euclidean distance measures a

different property than the Pearson correlation and although WARD functions fundamen-

tally differently, the gene groups tend to separate into two groups along the first two fPCs.

The boundary is admittedly not as neat as for the k-mean clusters in WT A, but they are com-

parable to other mutants in the study. It is expected that the boundary itself changes, as the

Euclidean metric captures different properties. We can conclude that the separation of

nucleosome profiles into different gene groups along the major two fPCs is not merely an

artifact of our methodology.

(TIFF)

S15 Fig. Clustering distribution using PCA and their principal components. Indeed, con-

ventional PCA can separate the clusters for all genes in WT conditions ((A) and (B) for repli-

cate A and B) similarly to fPCA. The two clusters are given in blue and orange. However, the

two determined PCs ((C) and (D) for replicate A and B) differ slightly with respect to the fPCA
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due to the independence assumption. Here, light blue and light orange indicate PC1 and PC2,

respectively.

(TIFF)

S16 Fig. AT-ratio distribution with respect to the fPC scores. Whilst there is seemingly a

slight correlation between Pearson coefficient clusters and AT-ratio in the A replicate, this is

trend vanishes for the B replicate. In fact, both replicates might rather distribute AT-rich and

AT-poor genes orthogonal to the dividing boundary. We plotted the original SVM boundary

from the Pearson clusters with a dashed grey line to indicate that it was not determined using

the AT content.

(TIFF)
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