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In this paper, we establish a generalization of the Galewski-Radulescu nonsmooth global implicit function theorem to locally
Lipschitz functions defined from infinite dimensional Banach spaces into Euclidean spaces. Moreover, we derive, under suitable
conditions, a series of results on the existence, uniqueness, and possible continuity of global implicit functions that parametrize
the set of zeros of locally Lipschitz functions. Our methods rely on a nonsmooth critical point theory based on a generalization

of the Ekeland variational principle.

1. Introduction

Many mathematical models involving real or vector-valued
functions stand as equations of the form

f(x)=0. (1)

For complex phenomena, the unknown x is often a
vector-variable x = (x,, x,, -+, x,,) belonging to R" or to an
abstract Banach space having a direct sum V,@V,®---®
V. It may even happen that equation (1) is just a state equa-
tion depending in fact on a parameter (or a control) h. In
this case, it takes the form

F(x,h) =0, (2)

and the most aspiring aim of mathematical analysis is to
know the local or global structure of the solution set F~*(0)
by finding out whether it is nonempty, discrete, a graph or a
manifold, etc.

The essence of the implicit function theorem in mathemat-
ical analysis is to ascertain if the solutions to an equation involv-
ing parameters exist and may be viewed locally as a function of
those parameters and to know a priori which properties this
function might inherit from those of the data. Geometrically,
implicit function theorems provide sufficient conditions under

which the solution set in some neighborhood of a given solution
is the graph of some function. The well-known implicit function
theorems deal with a continuous differentiability hypothesis
and in such cases are equivalent to inverse function theorems
(see [1]). It was originally conceived (in the complex variable
form in a pioneering work by Lagrange) over two centuries
ago to tackle celestial mechanics problems. Subsequently, it
attracted Cauchy who managed to provide its rigorous version
and became its discoverer. Later, the generalization of this
implicit function theorem to the case of finitely many real var-
iables was proved for the first time by Dini. In this way, the clas-
sical theory of implicit functions started with single variables
and have progressed through multiple real variables to equa-
tions in infinite dimensional spaces, e.g., functional equations
involving integral or differential operators. Nowadays, most cat-
egories of smooth functions have virtually their own version of
the implicit function theorem, and there are special versions
adapted to Banach spaces and algebraic geometry and to vari-
ous types of geometrically degenerate situations. Some of these
(such as Nash-Moser implicit function theorem) are quite
sophisticated and have been used in amazing ways to solve
important open problems (in Riemannian manifolds, partial
differential equations, functional analysis, ...) [1]. There are also
in the literature [2, 3] some implicit numerical schemes used to
approximate the solutions of certain differential equations and
that could be regarded as implicit functions in sequence spaces.
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Nevertheless, there are interesting phenomena governed
by parametric equations with nonsmooth data which need to
be stressed and are more and more attracting researchers.
Indeed, the implicit function theorems for nondifferentiable
functions are less known but are regaining interest in the liter-
ature due to their importance in applied sciences that deal with
functions having less regularity than smoothness. Few ver-
sions have been stated in Euclidean spaces for functions that
are continuous with respect to all their variables and (partially)
monotone with respect to some of their variables [4, 5].

Recently, Galewski and Radulescu [6] proved a generalized
global implicit function theorem for locally Lipschitz function
F : R" x R — R", by using a nonsmooth Palais-Smale con-
dition and a coercivity condition. Their proof is essentially
based on the fact that a locally Lipschitz function in a finite
dimension is almost everywhere differentiable with respect to
the Lebesgue measure according to Rademacher’s theorem
[7]. It is known that Rademacher’s theorem for locally Lipschitz
functions has no direct infinite dimensional extension. This jus-
tifies all difficulties to have conditions of existence of local or
global implicit function in the case of locally Lipschitz function
defined on infinite dimensional space (see [8]). Several works
have been done to overcome these difficulties. For example,
the papers [9, 10] provided conditions for surjectivity and inver-
sion of locally Lipschitz functions between Banach spaces under
assumptions formulated in terms of pseudo-Jacobian.

In this work, our aim is to establish under suitable con-
ditions a global implicit function theorem for locally
Lipschitz map F : X x Y — H, where X, Y are real Banach
spaces and H is a real Euclidean space, and to provide con-
ditions under which this implicit function is continuous.
This extends Theorem 30 of Galewski and Rédulescu to
the locally Lipschitz functions in infinite dimension with a
very relatively simple method compared to those used for
this purpose. Knowing that there exist noncoercive functions
satisfying the (h)-condition (see Definition 18 and Remark
19), we work in this paper under the (h)-condition using a
variational approach and applying a recent nonsmooth ver-
sion of Mountain Pass Theorem, namely, Theorem 27.

The contribution of this work is quadruple:

(i) An improvement of the classical Clarke’s implicit
function Theorem 24 for function F:R” xR’
—> R" by replacing R? by any Banach space Y
(Remark 26). Consequently, by considering the
approach used in [6] (Theorem 4) and Remark 26,
we prove our first main result (Theorem 31) on
the existence and uniqueness of global implicit
function theorem for equation F(x, y) =0, where F
:R"x Y — R" with Y a Banach space

(ii) The proof of the continuity of the implicit function
based on a simple additional hypothesis, Theorem 35

(iii) The weakening of the coercivity assumption used in
[6] by considering a compactness type condition
called (h)-condition in [11]

(iv) By our Lemmas 42 and 43, we obtain Theorem 38
on the existence and uniqueness of global implicit
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functions under the (h)-condition on the function
x> ||F(x, y)||* with 0 < a <2. This is a generaliza-
tion of the result (49) in the nonsmooth case. It also
generalizes the result [12] (Theorem 3.6) in the C!
case

This article is organized as follows. In Section 2, we recall
some preliminary and auxilliary results on Clarke’s general-
ized gradient, Clarke’s generalized Jacobian, and the (h)
-condition for locally Lipschitz functions. Section 3 is
devoted to our main results established under the (h)-con-
dition, on the existence and uniqueness of global implicit
function for equation F(x,y) =0, where F is defined from
R"x Y to R" and Y is a Banach space, namely, Theorems
31, 35, 38, 39, and 40. In Section 4, we give an example of
a function satisfying our conditions of existence of implicit
function but not the conditions of Theorem 1 of 6 which
we have extended. This is the energy functional defined in
(139), of a certain differential inclusion problem involving
the p-Laplacian [13].

2. Preliminaries and Auxilliary Results

Let U be a nonempty open subset of a Banach space X and
let f: U — R be a function. We recall that f is Lipschitz
if there exists some constant K > 0 such that for all y and z
in U, we have

fO) = f(2) <Ky -z (3)

For x € U, f is said to be locally Lipschitz at x if there
exists an open neighborhood V cU of x on which the
restriction of f is Lipschitz. We will say that f is locally
Lipschitz on U if f is locally Lipschitz at every point x € U.
We recall that any convex function has this property in
Euclidean spaces.

Definition 1. Let f : U ¢ X — R be a locally Lipschitz func-
tion. Let x € U and v € X \ {0}. The generalized directional

derivative of f at x in the direction v, denoted by f°(x;v),
is defined by

flw+tv) - f(w)

F2(x;v) = lim sup
w—sx t (4)
t—0*

Observe at once that f(x;v) is a (finite) number for all
ve X\ {0}.

Indeed, let x € V c U and let K > 0 be such that (3) holds
for all y,z € V, with V bounded (without loss of generality).
Let (w,,),,so € X be a sequence such that w,, — x and t,, a
sequence of (0;+00) such that ¢,, — 0. For v € X \ {0}, as
m — +00, the vectors w,, + t,,v will belong to V. Indeed,
by boundedness of V, there exists p >0 such that ||x - y||
< p=ye V. Then, for m large enough, we have

(1 + £9) = X[ < 0, = 3]] + [ 1¥]) < &+
2

N

=p. (5
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Thus, there exists m, >0 such that for all m > m,;, we
have

|f(wm + th) _f(wm)|

: <K]v]. (6)

m

It follows from (3) and (6) that for all v € X,
7 ()| <K]Jv]]. (7)

Remark 2. 1f f is locally Lipschitz and Gateaux differentiable
at x, then its Gateaux differential f(;(x) at x coincides with
its generalized gradient. That is,

FO(x;v) =fg(x) - vorallv e X. (8)

Proposition 3. The function v f°(x ; v) is positively homo-
geneous and subadditive.

Proof. The homogeneity is an immediate consequence of
Definition 1. We prove the subadditivity. Let v and z be in
X. Then,

flw+tv+tz) - f(w)

t

FO(x;v+z2) = limsup

w—x

t—0*

flw+tz+tv) - f(w+tz)
t

IN

limsup
w—x

t—0*

flw+tz) - f(w)

+ limsup ;

w—x
t—07"
flr+tv)-f(r)

t

IN

limsup
r—x

t—0*

fw+tz) - f(w)

+ limsup ;

w—Xx

t—0*

:fo(x;v) +f0(x;z).

,ri=w iz

©)

O

From the previous Proposition 3 and the Hahn-Banach
theorem [14] (p. 62), it follows that there exists at least one
linear function £* : X — R satisfying

fo(x;v)2<f*,v> (10)

for all v € X. From (10) and (7) also rewritten with (-v),
we obtain

(€%, v)| < K| (11)

for all veX. Thus, & € X* (as usual, X* denotes the
(continuous) dual of X and <..> is the duality pairing
between X and X*). Thus, we can give the following
definition.

Definition 4. Let f : UcX — R be locally Lipschitz at a
point x € U. Clarke’s generalized gradient of f at x, denoted
Of (x), is the (nonempty) set of all £* € X* satisfying (10), i.e.,

of (x)s={E" eX* :WeX,f(x;v) 2 (E,v)}.  (12)

We refer to [15-17] for some of the fundamental results
in the calculus of generalized gradients. In particular, we
shall need the following.

Proposition 5 (see [18], Chang). If f : U — R is a convex
function, then Clarke’s generalized gradient of f at x, defined
in (12), coincides with the subdifferential of f in the sense of
convex analysis.

Proposition 6 (see [11], Chen). Let X be a real Banach space
and f: X— R be a locally Lipschitz function. Then, the
function y : X — R defined by

u):= min ||x*||,foralluecX, 13
Y= min |1 f (13)

is well defined and lower semicontinuous.

Proposition 7 (see [15], Proposition 6). If x, is a minimizer

of f, then 0 € 0f (x,).

Remark 8. Let X be an infinite dimensional Banach space
and f : X — R? be a locally Lipschitz mapping. For any
finite dimensional subspace of X, it makes sense to talk
about Clarke’s generalized Jacobian of the function f; : Lax
— f(x) € R? at every point x € L.

Notation 9. . For a locally Lipschitz function f : R" — R?
and x € R", we consider the set Q;(x) defined by Q(x) =
{(x,,),, sequence in R" such that x,, — x and f is differen-
tiable at x,, }.

Let X, Z be two Banach spaces such that dim Z = n < co.
Let F : X — Z be a locally Lipschitz mapping and L a finite
dimensional subspace of X. For x € L, we denote by 0F, (x)
Clarke’s generalized Jacobian at a point x, of the restriction
of F to L, namely, the function

F :L—Z;xw— F(x). (14)

Let Y be a Banach space and consider a function F

: R" x Y — R? which is locally Lipschitz. For any (%, ) €

R"x Y, 0,F(%,7) denotes Clarke’s generalized Jacobian at
a point X of the function

F(-y): R" — RP,x — F(x,y). (15)

Let X, Y, Z be three Banach spaces with dim Z < co and



F:XxY —Z alocally Lipschitz function. For any finite
dimensional subspace L of X and for every (¥,y)€LxY,
0,F,((x,y) will denote Clarke’s generalized Jacobian of the
function F : Lax +— F(x) = F(x,y) € Z at a point X.

Theorem 10 (Rademacher). Let f : R" — R be a locally
Lipschitz function. Then, f is almost everywhere differentiable
with respect to Lebesgue measure.

According to Rademacher’s Theorem 10, we have the
following.

Proposition 11 (see [19], Clarke). Let f: R" — R be a
locally Lipschitz function and x € R". If 0f (x) denotes the
set defined by (12), then

of () =co{ m_f'(x,): (%) en €2(x) ). (16)

m—>+00

Note that, since f is almost everywhere differentiable
with respect to Lebesgue measure, there exists a sequence
(%) mene € R™ such that x,, — x, and for any m €N, f is
differentiable at x,,. So, Q/(x)+ . In addition for any

(%) men € ©24(x) and for any v € R", we have
[f (%) - v <Ko, (17)

where K is the Lipschitz constant of f. This means that
(f'(x,,)),, is bounded in Z(R",R) which has a finite
dimension. Then, there exists a subsequence (f '(xa(,n)))m

of (f'(x,,)),, that converges to some x* € Z(R", R). That is,

lim f' (xg(m) =x". (18)

m—>+00

Thus, the convex hull of such limits in (18) is 0f (x).

Even if the function f is defined from R” to R?, regard-
ing (17) and (18) component by component, we notice that
the set defined by (16) is nonempty, compact, and convex in
Z(R", RP) (see [20] (Definition 1)). Thus, this characteriza-
tion of 0f (x) stated in Proposition 11 is extended to locally
Lipschitz functions defined from R” to R?. In this case, df
(x) is called Clarke’s generalized Jacobian of the function f
at a point x.

Definition 12. Let f : R" — RR? be a locally Lipschitz map-
ping and x € R". Clarke’s generalized Jacobian of f at x also
denoted by df (x) is defined as follows:

0 (x) =co{ lim_f'(x,0): (%) e € Q(¥) }. (19)

m—>+00
The following notions will also be useful in the sequel.
Definition 13. Let f : R" — R” be a locally Lipschitz map-

ping and x € R" with n > p. We say that df (x) is of maximal
rank if for all x* € df (x), x* is surjective.
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Definition 14. Let X be a metric space. A function f : X
— R is said to be (sequentially) lower semicontinuous at
a point x € X, if for all sequence (x,,),, € X such that x,,
— x, we have the inequality

f(x) < liminf f(x,,). (20)
m—>+00
If for all sequence (x,,),, CX such that x,, — x, (20)

holds; we say that f is weakly sequentially lower semicontin-
uous at x.

Remark 15. Let X be a normed vector space and (x,,),, a
sequence of X. If x € X, then

X, — XX, — X. (21)

It follows that the weakly sequentially lower semiconti-
nuity implies the sequentially lower semicontinuity. But
the converse is not generally true. However, in the convex
case, these two notions are equivalents.

The following theorem is a generalization of Ekeland’s
variational principle [21].

Theorem 16 (see [21], J. Chen). Let h : [0,4+00) — [0,+00)
be a continuous nondecreasing function such that

s
L RS ol (22)

Let M be a complete metric space, x, € M fixed, f : M
—> RU{oco} a lower semicontinuous function, not identi-

cally +o00, and bounded from below. Then, for every &> 0,
and y € M such that

fly) < iﬁff +¢, (23)

and every A > 0, there exists some point z € M such that

f2)<fy),d(z,xy) <ty + T,

(24)
fx)=f(z) - Wd(x, z),Vx € M,
where r, = d(x,, y) and 7 is such that
Jro+r %;(S) >A. (25)

By Theorem 16, one has the following.

Theorem 17 (see [21], J. Chen). Let X be a Banach space,
h : [0,400) — [0,400) be a continuous nondecreasing func-
tion such that

©ds
JO TS o (26)

and f : X — R a locally Lipschitz function, bounded
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from below. Then, there exists a minimizing sequence (z,,)
of f such that

m

fo(zm V= Zm)(l + h(Hzm”)) 2 _em”V - Zm”,VV €X, (27)
where €,, — 0" as m — +00.

Proof. For each positive integer m, choose y, €Y be such
that

fO,) Si&ff+sm. (28)

O

Take x,=0,X=M, and A=1 in Theorem 16. Then,
there exists z,, € X such that

f@n) <fOm) 2l < Wl + 75

f(x)z2f(z,) - Sime—zmH,VxeX, (29)
[1+h(][z]])]

where 7 is such that

Jymw ds 0
— > 1.
bl LR

Consequently, for each x € X, one has

f(zm+w_t(x_zm)) —f(Zm+LU)

inf  sup
€20 [|w||<e t
0>0 0<t<§
=inf supf(zm +H(x—2,)) ~f(2n) > —&,|1% = 2,,]| -
o f T+ ()

(31)

Hence, f*(z,,3v = 2,)(1+h(||z,[1) = =&, [|v = 2, ]|, for
allveX.

Moreover, obviously, (z,,),, is a minimizing sequence of
f

Definition 18. Let X be a Banach space, f : X — R be
bounded from below, locally Lipschitz function, and & : [0,
+00) —> [0,400) be continuous nondecreasing function
such that

©ds
JO T (32)

We say that (u,,),.,CX is a (h)-sequence of f if
(F (1)), is bounded and £2(1n, 5 v — 14, (1-+ A1, ) > -
€,V —u,||, for all v € X, where ¢,, — 0*. We say that f sat-
isfies the (h)-condition if any (h)-sequence of f possesses a
convergent subsequence.

Remark 19. Sometimes, the following version of (h)-condi-
tion is also used: Any sequence (u,,), CX such that

5
(f(u,,)),, is bounded and
iy (uy, ) (1+h([|u,]])) =0 (33)

possesses a convergent subsequence, where y is defined
in Proposition 6. This condition is equivalent to that of Def-
inition 18.

Remark 20. A coercive function defined on R” satisfies the
(h)-condition regardless of h. But a function satisfying the
(h)-condition is not necessary coercive. Indeed, Section 4 is
devoted to the exposition of an example of a noncoercive
function satisfying the (h)-condition. It is the function
defined in (139).

The following is the Weierstrass theorem.

Lemma 21 (see [13], Lemma 2.1). Assume that f : X — R
is functional on a reflexive Banach space X which is weakly
lower semicontinuous and coercive. Then, there exists x* €
X such that f(x*) =min,f (x).

Better, by virtue of Theorem 17, we can prove the follow-
ing result.

Theorem 22. Let X be a Banach space, h : [0,+00) — [0,+
©0) a continuous nondecreasing function such that

©  ds
L T (34)

and f : X — R a locally Lipschitz function and bounded
from below. If f satisfies the (h)-condition, then f achieves its
minimum at some critical point z € X of f.

Proof. By virtue of Theorem 17, there exists a minimizing
sequence (z,,),, of f and

@3 v=2) (1 + h([[2]) 2~ [[v = 2, orall v e X
(35)

where ¢,, — 0%. Since f satisfies the (h)-condition,
(2,,),, has a convergent subsequence in X. We can assume
that z,, — z in X. Consequently, by the continuity of f,

f(z)= lim f(z,)=inff(x). (36)

m—>+00 X€

O

By Remark 19 and the lower continuity of y, we know
y(z) = 0.

Theorem 23 (see [22], Clarke). Let f: R"— R" be a
locally Lipschitz mapping such that the Clarke generalized
Jacobian 0f (x,) of f at a point x, € R" is of maximal rank.
Then, there exist neighborhoods U and V of x, and f(x,),
respectively, and a Lipschitz function g : V. — U such that
flg(w))=uforall ue U and g(f(u))=v forallveV.



The following result is Clarke’s implicit function theo-
rem which will be very useful.

Theorem 24 (see [6], Clarke]. Assume that F:R" xRF
—> R" is a locally Lipschitz mapping on a neighborhood of
a point (xy,y,) such that F(x,,y,) = 0. Assume further that
0,.F(xy, y,) is of maximal rank. Then there exists a neighbor-
hood V CR? of y, and a Lipschitz function G:V — R"
such that for every y in V, it holds

F(G(y),y) =0,

(37)
G(¥,) =%
Remark 25. It would be important to point out that the
Clarke implicit function Theorem 24 is a corollary of the
Clarke inverse function Theorem 23 that can be found in
the book [23]. Indeed, as it is done for example in [24] on
page 256, when we put

F:R"xR — R"x R?,
(38)
(% y) = (F(x%9),y)-

F is locally Lipschitz in a neighborhood of (x,y,).
Moreover, when the Jacobian matrix DF exists, it is of the

form
D.F DJF
S (39)
0 I

n P

and it follows that the Clarke generalized Jacobian 9F(
Xg»¥,) of F at the point (x,, y,) is of maximal rank. Then,
by Theorem 4 D.3 of [23], there exist U c R” X RP, V := F(
U) cR"x R’ and f : V— U which is inverse of Fon U.
Obviously, f has the form f(x,y)=(¢(x,y),y), where ¢
: R" x RP — R”. Therefore,

(%.y) €U, F(x,y)=0& f(0,y) = (¢(0,9),y) = (%, »)

ox=¢(0,y).
(40)

Thus, we can write G(y) = ¢(0, y).

If R? is replaced by any infinite dimensional Banach
space Y in Theorem 24, Clarke’s generalized Jacobian of
the function F above cannot be defined. In other words,
we will no longer be in finite dimension to be able to apply
Theorem 1 in Clarke’s work [22].

This remark is very important in the rest of the work.

Remark 26. Let Y be an infinite dimensional Banach space
and F : R" xY — R" be a locally Lipschitz mapping on a
neighborhood of a point (x,,y,) such that F(x,,y,)=0.
Assume that 9, F(xg, y,), Clarke’s generalized Jacobian is of
maximal rank. Then, there exists V C Y, subset containing
¥y» and a Lipschitz mapping ¢ : V— U ¢ R" such that
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for every y € V, we have
E(p():5) =0.9(y5) = %, (41)
Moreover, we have the following equivalence:
(x,9) eUxV,F(x,y) =0 x=9¢(y). (42)

Indeed, let M be a finite dimensional subspace of Y with
¥, € M and dimM = m(m<co). We consider the map

F:R"xM— R",
(43)
(%y) = F(x,y).

Obviously, F is locally Lipschitz mapping, and 9, F(x,,
¥o) = 0, F(xg,¥,) is of maximal rank. Then, by Theorem
24, there exist V ¢ M, open in M and containing y,, U C
R", open containing x, and a locally Lipschitz mapping ¢
: V — U such that conditions (41) and (42) hold.

Here is another result that will serve us in this work.

Theorem 27 (see [11], J. Chen). Let h : [0,400) — [0,+00)
be a continuous nondecreasing function such that

© ds
L TEY G (44)

X is a reflexive Banach space and ] : X — R is a locally
Lipschitz function. Assume that there exists u; € X, u; € X
and a bounded open neighborhood Q of u, such that u, ¢
Q and

inf J(x) > max {J (), (1)} (45)

Let M:={g € C([0,1],X): g(0) =uy, g(1) =u, } and c:=
inf ¢\ max 1)/ (g(s)). If J satisfies the (h)-condition, then
¢ is a critical value of J and ¢ > max {J(u), J(u;)}.

Lemma 28. Let X be a normed vector space and H be a Hil-
bert space equipped with the inner product (,). Let f: X

— H be a locally Lipschitz mapping. Then, the function ¢
: X — R defined by

o(x) = (f(x). f(x)) = | f @) 17 (46)
is locally Lipschitz.
Theorem 29 (see [16], Clarke). Let X be a normed vector

space, f : X — R” be locally Lipschitz function near x € X,
and h : R" — R be a given C' function. Then,

Ok e f)(x) < [Vh(f (x))]of (x)- (47)

Theorem 30 (see [6], Theorem 1). Assume that F : R" x
R? — R" is a locally Lipschitz mapping such that
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(ay) for any y € R the functional ¢, : R" — R given by

0,(x) = 3| I (48)

is coercive, i.e., limy,__.,¢,(x) = +00

(a,) for any (x,y) € R" x R?, the set 0, F(x, y) is of max-
imal rank

Then, there exists a unique locally Lipschitz function f
: RP — R" such that equation F(x,y) =0 and x = f(y) are
equivalent in the set R" x RP.

3. Main Results

The following is a generalization of the global implicit func-
tion theorem of [6] to the case of locally Lipschitz functions
from Banach spaces to Euclidean spaces.

Theorem 31. Let Y be a real Banach space and F : R" x Y
—> R" be a locally Lipschitz function. Suppose that

(1) for every y € Y, the function ¢, defined by

9,() = 3 IFE I (49)

satisfies the (h)-condition, where h : [0,4+00) — [0,4+00)
is a continuous nondecreasing function such that

J:o To0s +d;1(s) =+00 (50)

(2) for all (x,y) e R" x Y, 0,F(x,y) is of maximal rank

Then, there exists a unique function f:Y — R" such
that the equation “(x,y) € R" x Y and F(x, y) = 0” are equiv-
alent to x = f(y). Moreover, for any finite dimensional sub-
space L of Y, f is locally Lipschitz on L.

Proof. Let y € Y. We prove that there exists a unique element
x, € R" such that F(x,,y) = 0. Indeed, ¢, is locally Lipschitz

and satisfies the (h)-condition. Then, by Theorem 22, there
is x, € R" such that ming.¢, = ¢, (x,). Since ¢, = go F(-.y)
: R" — R and by assumption (1), the function F(-,y): R"
sx — F(x,y) € R" is a locally Lipschitz mapping and g : R"
sx > 172||x||* = 1/2(x, x) g» € R, it follows from Lemma 28
that ¢ is locally Lipschitz. Then, by Proposition 7, we have
0 € 0¢,(x,). Moreover, according to Theorem 29, we have
09, (x,) C Vg[F(-,y)x,] o OF(-,y)x, = Vg(F(x,,y)) ©0F
(x,,7) ={Vg(F(x),y)) o x* : x* €, F(x,,y)}. O

Thus, there exists x* € 0,F(x,, y) such that Vg(F(x,,y)
)ox* =0, ie.,

Vv eR"Vg(F(x,,y))[x"(v)] = (F(x,,9),x"(v)) =0. (51)

By assumption (2) x*(R") = R". It follows that F(x,, y)
=0.

About the uniqueness of x, € R" such that F(x,, y) =0,
we argue by contradiction supposing that there exists x; #
x, in R" with F(x,,y) = F(x,,y) =0. We use Remark 26.
Thus, we set e=x, —x,, and we define the mapping v,
:R" — R by
2

1ECe+xo0) [ (52)

N =

¥, ()=, (x+x,) =

We have y,(0) =y, (e) = 0. Consider v, on the bound-

ary 0B(0, p) of the ball B(0, p) c R" with some 0< p <||e]|.
By assumption (2) and Remark 26, we conclude that there
exist V C Y containing y (not necessary open in Y, but open
in some finite dimensional subspace L € Y), an open subset
U ¢ R” containing x,, and a function § : V — U such that

the following equivalence holds:
(x,y) eUxV,F(x,y) =0 x=§(y). (53)
v, is also a locally Lipschitz function (so continuous),

and 0B(0, p) is compact (by the fact that it is closed and
bounded). Then, 3x € 0B(0, p) such that

We claim that there exists at least one p > 0, p < ||e]| such
that min,_,y, > 0. Otherwise, we would have

V0 < p<|le||, miny,=0; (55)
Ixll=p"”

this means that for all nonnegative p < ||e||, there exists
x € R", [|x]| = p such that y,(x) = 0. Since U is open around
x,, there exists 0 <& < ||¢|| such that
|x-x| <e=xeU. (56)
Let x € R", ||x[| =& : y,(x) = 0. Then,

) i 1y
[Go) = = = (5 = 5 I+ 5
=06 F(X+x,y)=0.

57)

By (56) and (57), we have (x +x,) € U, (x +x,) # x, and
F(x +x,,y) = 0. It follows from (53) that x + x, = §(y). Thus,
X+x, and x, are two different elements of U with x + X, =



&(y) =x,, what is impossible. As conclusion,
3p< el inf w, >0=max {y,©).,()f. ()

The function v, is locally Lipschitz and satisfies the (h)
-condition (because ¢, satisfies this condition). Then, by
(58) and Theorem 24 applied to /=y, we note that y,

has a generalized critical point v which is different from 0
and e since the corresponding critical value %(V) holds

v, () > max {y,,(0),,(¢) } =0. (59)
We have also

O¢ a<py(xy +v)C Vg[F(~ 5% (xy + v)]an(' ) (xy +v)
=Vg(F(x, +v,y)) e 0,F(x, +v,y).
(60)

This implies that F(x, +v,y) =0 <y, (v) = 0. This con-
tradiction with (59) confirms that for every y €Y, there
exists a unique x, € R" such that F(x,, y) =0, and we can
set f(y) =X, Of course, according to Remark 26, we can
say that for any finite dimensional subspace L of Y, f is
locally Lipschitz on L.

An example of function satisfying the assumptions of
Theorem 31 for which Y is a Banach space is F: RxY
— R defined by

E(xy) =2+ [x[ + ||y (61)

Indeed, F defined in (61) is locally Lipschitz function
which is not differentiable and for any y € Y if we consider
the function ¢, : R — R defined by

y
|2

1 1
9,(%) = S|Fxp)[* = S (| + 2+ y)* (62)
then ¢, is coercive and consequently satisfies the (h)

-condition. Moreover, for any (x, y) € R x Y, the partial gen-
eralized gradient 0, F(x, y) defined as follows

{3}, ifx>0,
0. F(x,y)=1< {1}, ifx<0, (63)
1,3], ifx=0,

is of maximal rank. Namely, for any (x,y) e Rx Y, 0 ¢
0,F(x,y) cR. Indeed, a straightforward argument shows
that

F(x.y)=0ex=—|jy|. (64)
With the conclusion about the regularity of f in Theo-

rem 31, we cannot expect in general the continuity of f on
the whole Y. Here is a counterexample.
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Remark 32. Let us set Y = £,, where £, stands for the space of
real sequences (u,,), . such that Y |u, | < co, endowed
with the nonequivalent norms:

(o)
[tlly = D [t4ya]s
m=0

. 1/2
2
], = (Z |t ) :
m=0

Indeed, for m € N*, we define X" :=(1,1/2, 1/3,---,1/m,
0,---) € £;. We claim that (X™),, is a bounded sequence with
respect to the norm ||-||, which is unbounded with respect to
II-Il,- For m € N*, we have

m o 172
X", = (Z,;) :
k=1
e 1
X" = 2 %
k=1

Then,

k=1

+001 1/2
1 m = _— 67
Jm = (S) <@

+00

. - 1

lim || X™||, = ZE = +00. (68)
k=1

m—+00

Now, let us consider the canonical injection ¥ : (¢,
IIIl,) — (€1, |I]l,)- It is obvious by (67) that . is not con-
tinuous on ¢,. However, for any finite dimensional subspace
L of ¢, since the restriction of these norms on L are equiva-
lent on L, it follows that .7, : (L., |||l,) — (L, |I-ll;) is
Lipschitz.

We add some technical hypothesis to those of Theorem
31 in order to obtain the continuity of the implicit function

1.

Definition 33. Let X, Y be two normed vector spaces. We say
that a function F : X X Y — R is coercive with respect to x
(the first variable), locally uniformly with respect to y (the
second variable), if for any y € Y, there exists an open neigh-
borhood V of y in Y such that

lim infF(x,y) = +oo. (69)

||x||—00 yeV'

Lemma 34. Let E be a Euclidean space. Then, every bounded
sequence with a unique limit point is convergent.

Proof. Let (x,,),, be a sequence of E which has a unique
limit point X € E. This implies that any subsequence of
(%,,) s has a subsequence converging to X by the Bolzano
Weierstrass theorem. We argue by contradiction assuming
that (x,,),,.5 is not convergent. Then, there exists £ > 0 such
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that

forany k > 0, there exists m > k, with||x,, —x||>¢e. (70)

(x,,), must have a subsequence (xmk’)i such that
Xy, — %, (71)
which contradicts (70). O

Theorem 35. Let Y be a real Banach space and F : R" xY
—> R" be locally Lipschitz. Suppose that

(1) the function y : R" x Y — R defined by

1
x(xy) = S FC )P (72)
is coercive with respect to x, locally uniformly with respect to y

(2) for all (x,y) e R" x Y, 0,F(x,y) is of maximal rank

Then, there exists a unique function f:Y — R" such
that

(x,y) eR"x Y,

(73)
F(x,y)=0ex=f(y).

Moreover, f is continuous on the whole Y.

Proof. Let y € Y. We consider the function ¢, : R" — R
defined by

8,(x)= 3 |F I (74)
O

Since ¢, is coercive (because y is coercive with respect to
x, locally uniformly with respect to y), it follows that for any
continuous nondecreasing function 4 : [0,4+00) — [0,4+00)
such that

© ds
Jo T+h(s) (75)

¢, satisfies the (h)-condition. Moreover, F is locally

Lipschitz. So, by Theorem 31, we conclude that there exists
a unique global implicit function f : Y — RR" such that
xy)eR"xY,
(%) 76)
F(xy) =0 x=f(y).

It remains to show that f is continuous on the whole Y.
For this, let (y,,),.n C Y be sequence such that

y,—yeY. (77)

For all me N, F(f(y,,),¥,,) =0. This implies that the

sequence (x(xy 7)) = UE(F(0)sy) ),y s bounded.
Since y is coercive with respect to x, locally uniformly with
respect to y, there exists an open subset @ C Y containing y
such that

1
lim infy(x,y)= lim inf=|F(x,y)||*=+0o. (78)

||x||—00 ye@ ||x[|—00 ye@ 2

In addition, by the convergence of y,, to ¥, there exists
m, € IN such that

m>my=y, €Q. (79)

So,
for m > my, - |IF 2 inf P 2. (80)
orm>mgy, < X, 21l — X, .

0 2” (mym>H y€@2H (my)”

According to (78) and (80), we conclude that the
sequence (x,,),.n = (f(7,,)) is bounded in R". Let X be a
limit point of (x,,),,. Thus, there exists a convergent subse-
quence (x,, ), of (x,,) such that

X,y — XER. (81)

On the other hand, forall k € N, F(x,, , ,, ) = 0. Then, it

follows from (77), (81), and the continuity of the function F
that

0= lim F(xmk, ymk> = F(%,7). (82)

k—+00

Thus, we have
F(?C,)_/)=0<=>)_c=f()7). (83)

So, (x,,),, has a unique limit point X =f(¥). So, by
Lemma 34,

X, — X, (84)
that is,

fOm) —f0)- (85)

From (77) and (85), f is continuous on Y.
As a consequence of our Theorem 31, we have the fol-
lowing nonsmooth global inverse function theorem.

Theorem 36. Assume f : R" — R" is a locally Lipschitz
mapping such that

(1) for any y € R", there exists a continuous nondecreas-
ing function h : R, — R, such that
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J:O Toh0e +d;<s) = +00, (86)

and the functional ¢, : R" — R defined by

1
9,(0) = S 1f(x) = yII” (87)
satisfies the (h)-condition

(2) for any x € R", we have that 0f (x) is of maximal
rank

Then, f is a global homeomorphism on R" and f' is
locally Lipschitz.

Corollary 37 (see [25], Hadamard-Palais]. Let X, Y be finite
dimensional Banach spaces. Assume that f : X — Y is a C!
-mapping such that

(2) for any x € X, f'(x) is invertible

then f is a diffeomorphism.

Question. Is it still possible the conclusion of Theorem
31 under the assumption of the (k)-condition on the func-
tion 7, : x> || F(x, y)[|* where & is a positive constant dif-
ferent from 2?

In fact, according to our two Lemmas 42 and 43 and
Corollary 44, it is enough to assume that 7, is locally
Lipschitz in the case 0 < « < 2. Else, this additional hypothe-
sis is not need in the case a > 2.

Therefore, we have the following result from Theorem
31.

Theorem 38. Let Y be a real Banach space and F : R" xY
—> R" be a locally Lipschitz mapping. Suppose that

(1) for any y € Y, there exists 0 < a < 2, so that the func-
tion T, : R* — R

7,(x) = [F(x )l (88)

is locally Lipschitz and satisfies the (h)-condition, where

h: [0,400) — [0,+00) is a continuous nondecreasing func-
tion such that

J:O T +d;1(s) =+00 (89)

(2) for all (x,y) e R" x Y, 0,F(x,y) is of maximal rank

Then, there exists a unique function f : Y — R" such
that the equation "(x,y) € R" x Y and F(x,y) =0 are equiv-
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alent to x = f(y). Moreover, for any finite dimensional sub-
space L of Y, f is locally Lipschitz on L.

Proof. Let y € Y. We notice that 7, = [Z(py]‘xl ?, where ¢, is
defined by (49). Since 7, satisfies the (h)-condition, it fol-
lows from Lemma 43 and Corollary 44 that ¢, satisfies the

(h)-condition. Thus, we achieve the proof by using Theorem
31 O

But, what happens if we replace R" by any Banach space
X in the domain of the function F?

Theorem 39. Let X, Y be Banach spaces and Z be Euclidean
space such that dim Z=n<oco. Let F:XxY—Z be
locally Lipschitz function. Assume that

(1) for all y € Y, the function ¢, : X — R defined by

8,0 = SIFG I (50)

satisfies the (h)-condition, where h : [0,400) — [0,+00)
is a continuous nondecreasing function such that

©  ds
JO e (91)

(2) for any finite dimensional subspace L of X with dim
L=mn and for all (x,y) e Lx Y, 0,F,(x,y) is of max-
imal rank

Then,

x,y)EXXY,
(%) (92)
F(x,y)=0©x=0.

Proof. We use Theorem 31 in order to prove this result.
Firstly, we prove that there exists a unique global implicit
function f : Y — X such that (x,y) e X x Y and F(x,y) =
0 are equivalent from x = f(y). After that, we will claim that
f=0onY.

Let yeY. Since ¢, is bounded form below, locally

Lipschitz, and satisfies the (h)-condition, we see by Theorem
22 that ¢, has a minimum which is achieved at a critical

point x, € X. Let L be a finite dimensional subspace of X
such that x,€L and dimL = n. O

Consider functions F:LxY — Z and ¢, L—R
defined, respectively, by

|E )|
(93)

NS

Flx,y) = F(6.3),8,(0) = 9,() = 5 | F(w )| =
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By assumption (1), the function F is locally Lipschitz and
@, is then locally Lipschitz as composition of F by C! func-
tion g where

1 1
g:Z—Rixe = (ox), (94
Likewise, ¢, satisfies the (h)-condition. It follows that ¢,
has a minimum on L. Since x, € L, it is obvious that
min,; @, (x) = ¢(x,). Thus, by Theorem 29, we obtain

0€dg, (xy) =019, (xy) c Vg(F(xy,y)) ° axﬁ(xy’y)

(95)
=Vg(F(x,y)) °0:FL(x,).

This means that there exists x* € 9, F; (x,, y) such that
VheL, (F(x,y),x"(h))=0. (96)

Thus, we conclude by assumption (2) that F (x,,y) = F(
x,,y) = 0. It is clear by Theorem 31 that x, is the only solu-
tion of the equation F(x,, y) =0 in L. But the question is the

uniqueness of this solution in all X. Even though it is unpre-
dictable, we will answer yes to this question in the following.
About uniqueness of x, € X such that F(x,, y) =0, we argue

by contradiction.
Suppose that there exists x; # x, such that F(x;, y) = F(

x,,y) = 0. We choose then another finite dimensional sub-

space of X (that we note again L here to keep the same nota-
tion) which contains both x; and Xy such that dim L =n.

We consider the same functions defined in (93), but with
the subspace L that we choose here. We find that min,; ¢,

(x) =¢,(x,) and by [15] (Proposition 6), Theorem 29, and
assumption (2), we conclude that F (x,,y) = 0. Considering
the function y, defined as in (52) by

V() =9, (x+x,) =S [Fx+x.p) [ (97)

| =

and following the same approach in the proof of Theo-
rem 31, we come to the contradiction. Thus, there exists a
unique global implicit function f : Y — X such that F(f(
y),y)=0forall yeY.

It remains to be shown that f =0 on Y. Indeed, since X is
infinite dimensional Banach space, it is possible to find two n
-dimensional subspaces L, and L, of X such that L, N L, =
{0y}. Let F; : L;,xY—Z and F,: L, XY — Z be the
function defined by

(98)

By assumptions (1) and (2), both functions F, and F,
verify the assumptions of Theorem 31. Consequently, there
exist two functions ¢, : Y — L, and ¢, : Y — L, such
that VyeY, F(¢,(y),y) = F(¢,(y),y) =0. Then, according

11

to the uniqueness of x, € X such that F(x,, y) =0, we have
¢ (7)=f ) =, (y) €Ly N L. Thus, f(y) =0,Vy €Y.

In virtue of Lemma 43, the following theorem is a conse-
quence of Theorem 39.

Theorem 40. Let X, Y be Banach spaces and Z be Euclidean
space such that dimZ =n < oo. Let F : X x Y — Z be locally
Lipschitz function. Assume that

(1) for every y €Y, there exists 0 < a <2 such that the
function 7, : X — R defined by

7, (%) = | )" (99)

is locally Lipschitz and satisfies the (h)-condition, where
h: [0,400) — [0,400) is a continuous nondecreasing func-
tion such that

J:O Hd% - 400 (100)

(2) for any finite dimensional subspace L of X and for any
(x,y) € LxY, 0,F,(x,y) is of maximal rank

Then.

xV)EXXY,
(%) (01)
F(x,y)=0©x=0.

Remark 41. If « > 2, it is useless to add the locally Lipschitz
condition to the (h)-condition for the first assumption of
Theorems 38 and 40. Indeed, in Theorem 38, for example,
since ¢, is locally Lipschitz and a/2>1, it follows from

]06/2

Lemma 43 that 7, = [2¢ |"" is also locally Lipschitz. More-

over, ¢, satisfies the (h)-condition.

Lemma 42. Let g : R" — R, be a locally Lipschitz function.
Let a > 1. If g* is locally Lipschitz, then for any x,v € R" with
v# 0, we have

(9% (x3v) =+ [g(x)]* " g (x;3 v). (102)

Proof. Let (w,,),, be a sequence in R" and (t,,),, C (0;+00)
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another sequence such that

w, — X,
" (103)

t, — 0.

O

For fixed m, the function y : I,, — Rt — t* is differ-
entiable, where

I,,={09(a,)+(1-0)g(b,);0¢][0,1]},witha, =w,, +t,v,b, =w,,.
(104)

Now, it is known that there exists c,, €I,, such that

[9(a,)]" = [9(b,)]"* = ulg(a,)] - ulg(b)]
=4 (€)[9(a) — 9(b)]
=4'[0,,9(a,) + (1-6,)9(b,)] - [9(a,) - g
=a-[0,9(a,)+(1-06,)9(b,)]"" - [9(a,) = g(b,,)]
=Fp (9w + 1,v) = g(W,,))s

—~
S

3

=

where
H =0 [0,9(w,, +t,v) + (1-0,)g(w,,)]*",  (106)

with 6,, € [0, 1]. Then, we have

[g}a(wm + th) B [g]a(wm) =% . g(wm + th) B g(wm)
t " t '

m m

(107)

Since g is continuous, there exists a neighborhood 7" of
x and % > 0 such that
|g(2)| < H Nz eV (108)

It follows from the convergence of (w,,, t,,) to (x,0) and
the continuity of g and (108) that

lim 9, =a (g (109)
By (107), (109), and the fact that
limsup w =g'(x3v), (110)
t—0"
we conclude that
(97 (x5 v) = - [g(0)* g (x5 ). (111)

Lemma 43. Let g : R" — R, be a locally Lipschitz function.
Let a>1 and h: [0,400) — [0,4+00) a continuous nonde-
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creasing function such that

J‘X’ ds
=+00.

o 1+h(s) (112)

Then, g*(x):=[g(x)]* is locally Lipschitz function.
Moreover, g satisfies the (h)-condition if and only if g* sat-
isfies the (h)-condition.

Proof. Let X € X. There exist VX open subset of R” and k>0
such that

|9(x) = g()| < k||x = y|l,¥x, y € V. (113)

O

Let p>0 such that B,(x)={xeR": [x~x||<p}cV.
For x,y € Bp, as in the previous Lemma 42, there exists 0 €
[0, 1] such that we have

19%(x) = g* ()| =&~ |g(x) = g(y)| - [Bg(x) + (1 - B)g(»)]*".

(114)
g is continuous, and Bp is compact. Let
M= Zg?é)Ig(Z)L (115)
Then, we have
0g(x) + (1-0)g(y)|*" <M. (116)

It follows from (113), (114), and (116) that we have

19°(%) = 9" ()| <kM*[lx = y||.Vx, y € B, (%), (117)
where B, (x) = {x € R" : ||x —x[| < p} € V is open. Then, g
is locally Lipschitz.

For the second part of Lemma 43, just specify that
(thyy) mso 18 @ (h)-sequence of g if and only if (u,,),,., is a (
h)-sequence of g*.

Let (v,,) 50 CR" be a (h)-sequence of g. Then, there
exist >0, (1,,),, € (0,+00) with 7,, — 0%, such that

g(v,) <4, Vm=0, (118)
9" V3V =) L+ B([V]])) 2 =T, [V = V], V¥ €R".
(119)

It follows from (118) that [g(v,,)]" is bounded. From
Lemma 42 and inequality (119), we deduce that

[9° (Vw5 v = v) (L + (||,

n | 3 (120)
>-7,|lv-v,|VveR", T, =T1,a9" — 0.

Thus, (v,,) 0 is @ (h)-sequence of g*.
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Conversely, let (u,,),,., CR" be a (h)-sequence of g*.
Then, there exists p > 0 such that

[9(u,,)]* <p.Vm =0, (121)

(97" (5 v = 4 ) (14 B[4, [])) = =& |V = || ¥y € R", &, — 0.

(122)

It follows from (121) that there exists p > 0 such that

g(u,,) <p,ym=0. (123)
By Lemma 42, (122), and (123), we have
9 (U5 v =ty ) (14 h([[11,]])) 2
8, v, Wy e RS, = —m g, (124)
(xp(a_l)

Therefore, (u,,),,-, is also a (h)-sequence of g. Then, for
any a > 1, g satisfies the (h)-condition if and only if g* sat-
isfies the (h)-condition.

But what about 0 < ¢ < 17

Corollary 44. Let g : R" — R, be a function and 0 < a < 1
such that g is locally Lipschitz. Then, g is locally Lipschitz
and for any continuous nondecreasing function h: R, —
R, such that

(125)

g satisfies the (h)-condition if and only if g* satisfies the
(h)-condition.
Proof. We notice that g=(g*)""* and 1/a>1. Then, we
apply Lemma 43. O

4. Example of Noncoercive Function Satisfying
the (h)-Condition

To illustrate that the compactness condition allowing to

obtain the existence of a global implicit function in our main

results is weaker than that used in Theorem 30, we provide

in this section an example of a noncoercive and locally

Lipschitz function satisfying the (h)-condition. We follow

the idea used by Chen and Tang in [13] (Theorem 3.3).
Let 1 < p < co. Define

(0, T;RY) = {u eL'(0, T;RY): JT|u(t)|Pdt<oo},
(126)

with the norm

T 1/p
Jul, = (J0|u|f’dt) .

(127)

13

For ue L} (0,T;RY), u' is said to be the weak deriva-
tive of u, if u' € L., (0, T; RY) and

loc

T T
J u'¢dt:—J u¢'dt¥g € C (0, T; RY). (128)
0

0

Let

Wo? (0,75 RY) = {u e 1 (0, T3 RY): u(0) =u(T), ' € (0, T5 RV) }.

(129)

W(l)’P (0, T;RY) is a reflexive Banach space (see [13])
with the norm

T » lp
Hu”w(l)vP(O)T;]RN) = UO <|u|P + ’u” )dt:| .

Remark 45 (see [13]). We have the following direct decom-
position of W? (0, T; RN)

(130)

Wo? (0, T; RY) =R @ V, whereV = {v e Wy (0, T5 RY): J:v(t)dt = o}.
(131)
Consider now the following functional:
Tq X
I(u)=LI—)|u’|pdt,ue Wy (0, T5RY). (132)

We know that (see [26]) J € C'(W?(0, T; RY), R) and
. ne=2 r\r . ..
p-Laplacian operator u+— (Ju'|" "u')’ is the derivative oper-
ator of J in the weak sense. That is,

A=]" Wi (0, T;RY) — (W(l,’P(O,T;IRN))*, (133)

(A(u),v) = L (yu’(t)\"’zu’(t),v’(t)>wdt, wve Wy? (0, T;RY).

(134)
Proposition 46 (see [27], Fan and Zhao). ' is a mapping of
(S),, ie., if
U, —u,
limsup (1’(um)—1’(u),um—u) <0, (135)

then (u,,),, has a convergent subsequence in WP (0, T;RN).

For every u € W(l)"D(O, T;RY), set
(136)

ii(t) = u(t) - . (137)
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We have the following Poincare-Wirtinger inequality
(see [28]):

Ja > Osuch that ||u|| | <

o (0, T;RY).
(138)

We consider the functional ¢ : Wy (0, T;RY) — R
defined by

:J L \Pdt_J (8 wdt, u € WP (0, T3 RY),
(139)

where j(t,u): [0, T]x R¥ — R is the norm || on RN
defined by

12
=|u| = <Z|u,|> Jforu= (uy, uy,--uy) € RN,

(140)

Let h(s) =s. Following the same approach as done by
Chen and Tang in [13], we will show that the function ¢ sat-
isfies the (h)-condition and is noncoercive on all of Wy? (0
LTSRN )

We show that the function j satisfies the following
assumptions:

(1) For all u € RN, ¢+ j(t, u) is measurable

(2) For almost all
Lipschitz

tel0,T],ur j(t,u) is locally

(3) For every r > 0, there exists a, € L' ([0, T]) such that
for almost all t€[0, T],|u|<r and all we0j(t, u),
we have |w| < a,(t), where 0j(t, s) is Clarke’s gener-
alized gradient of j with respect to the variable s

(4) There exist 0 < y < p and M > 0 such that for almost
all t € [0, T] and all |u| > M, we have

jO(t,u;u) < uj(t, u) (141)

(5) j(t, u) — +00 uniformly for almost all ¢ € [0, T] as
|u| — 00

Obviously, the function j defined in (140) satisfies condi-
tions (1), (2), and (5). In addition, for (¢, u) € [0, T] x RY, we
have the following:

{ul|ul}
={weRN: |y

(1) fu+0,0j(t,u) =

(2) Ifu=0,0j(t,0)
RN} =B(0,1)

(w, y),foranyy e

Abstract and Applied Analysis

That is,

0j(£,0)=B(0,1) = {y e RY : |y| < 1}. (142)
Indeed, for ¢ € [0, T], the function j(t, ) is convex. Then,
Clarke’s generalized gradient 9j(t,u) of j(t,-) at a point u
coincides with the subdifferential of j(¢, ) in convex analysis
sense (see Proposition 5). We recall also that the norm in
Hibert space is Fréchet differentiable at any point u # 0.
Thus,
|w| <1, forallw € 0j(t, u). (143)
Consequently, according to (143), for every r >0, and
. (t) =1, then a, € L'([0, T]) and
|u] <r=|w| < a,Yw € 9j(t, u). (144)
Thus, the function j satisfies the assumption (3).
On other hand, since 1 < p, taking p =1+ p/2, we have

0<l<u<p. (145)
Moreover, for M > 0, we have
|u|>M = u#0, (146)
Hj(t, u) = plul. (147)
Then,
0 u
Jtusu)=(—,u)=|ul. (148)
|u|
It follows from (145), (146), and (148) that
lu|>M = j°(t, us u) < pj(t, u). (149)

Thus, the function j satisfies the assumption (4).
Under the previous assumptions, ¢ is locally Lipschitz
(see [13] (Theorem 3.3)).

(1) By (130), for any u € RN, we have

T
I =T”"|”|’J ~|u'"de=0,
0P

; (150)
()=~ fulde=-T]u.
0
Then,
lim ¢(u)= lim - T|u|=-oo0.
[[u]|—+00 ful—+co (151)
ueRY

Thus, ¢ is not coercive.
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(2) Let {u,,},,; be a (h)-sequence of ¢, i.e., there exists
M, >0 such that

|(P(um)| SM]; (152)
mll’l;l_oo(l + ||um||)}/(um) =0, (153)

where
Y(ty) = min ] (154)

Without loss of generality, we suppose that u,, # 0, Vm
>1.

According to Proposition 6, let u}, € 0¢(u,,) such that
o5l = ¥ (140)-

By definition (134) of operator A, we have

uy, =A(u,) —w,, (155)
with w,, € 0j(t, u,,).
From the second assertion of (152), we have
T T
(U t) = | o ()t = | (0 (0) (1)) 255, 0
0 0
(156)

Thus, it follows from Definition 4 and inequality (156)
that

L lu,(t)|Pdt - J (6w (t) s u,,(2)dt <e,.  (157)

0

Since u,, #0, according to (148), the inequality (157)
implies

T T
J |umr(t)|Pdt—J |u,,(¢)|dt <e,,. (158)
0 0
From the first assertion of (152), we have
u (" T
_I_’,[ ‘u:n(t)’pdt+‘[ plu,, (t)|dt < uM,. (159)
0 0

It follows from (158) and (159) that

u\ (7 T

(1 - —)J |14y, (£) ’pdt+J (= 1)|u,,(t)|dt <M,,, (160)
P/ Jo 0

with M,, =¢,, + uM,. By (160), we have

T
(1 — E)J |u:ﬂ(t)|P <M,,mx=1,M, — uM,. (161)
0

p

By (161), there exists M, > 0 such that for ¢ € [0, T| and
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|14y, (1) | < M. (162)

From (161) and the Poincare-Wirtinger inequality (138),
{i,} is bounded in W (0, T;RYN). By exploiting (152)
once again, we use (136) to have

1 T T
‘EL |£tmf|Pdt—J0 |u,, (t)|dt (163)

<M,,m=1.

Since {#,,} is bounded, it follows from (163) that there
exists M, >0 such that

T
J |, (t)|dt < M, Vm > 1. (164)

0

Thus, there exists M, > 0 such that for ¢ € [0, T] and m
>1

>

1t ()] < M. (165)

By (162) and (165), we infer that {u,},., C W (0, T;
RY) is bounded, and so by passing to a subsequence if nec-
essary, we may assume that

u, — uin W(l)’P(O,T;lRN),
(166)
u,, — uin Cy (0, T5 RY).

Next, we will prove that u,, — uin Wy (0, T; RN). By
Proposition 46, it suffices to prove that the following
inequality holds:

lim (A(u,,)-A(u),u,, —u) <0.

m
m—>00

(167)

In fact, from the choice of the sequence {u,},.,, we
have

[(up, u,,)| <€, 10. (168)
Then, by (155), we have
T
(A ).t =) = || () 10(0) = 0(0) o 5 £, ¥ 1.
(169)
By (3), {w,,} € L'[0, T] is bounded and
T
lim J (W (1), (1 () — ()t =0.  (170)
m—00 0
Then,
limsup (A(u,,), u,, — u) <0. (171)

m—00
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So, we have

limsup (A(u,,) — A(u), u,, —u) <0,¢, 0.

m—>00

(172)

5. An Application

Inspired by the example result of Galewski-Ridulescu [6]
(Theorem 7), we provide in this section an existence and
uniqueness result for the problem
Ax=F(x)+&, (173)
where & € R” is fixed; A is an #n X n matrix which does not

need to be positive definite, negative definite, or symmetric;
and F : R” — R" is a locally Lipschitz function.

Theorem 47. Let A be an n x n matrix. If F: R" — R" isa
locally Lipschitz mapping satisfying the following conditions:

(1) For any & € R", there exists a continuous nondecreas-
ing function h : R, — R, such that

oA, (174)
JO T+h(s)
and the functional ¢; : R" — R defined by
Pe(x) = [|[Ax = F(x) = &| (175)

satisfies the (h)-condition

(2) For any x € R" and for every T € 0F(x), (A—T) is
invertible

Then, problem (173) has a unique solution for fixed & €
R". Moreover, the map that assigns to each & eR", the
unique solution of problem (173) is locally Lipschitz.

Proof. Consider the function f(x)=Ax - F(x) from R" to
itself. By assumption (173) and Lemma 43, for any & € R”,
the functional ¢; : R" — R defined by

9elx) = 3 IF() - & = 3 () - Fx) ~EF (176)

satisfies the (h)-condition. In addition, according to
(173), of (x) = A — 0F(x) is of maximal rank for any x € R"
. Then, we achieve the proof applying Theorem 36. O

Example of matrix A and function F satisfying condi-

tions of Theorem 47.
Let us take a matrix

(177)
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and the function F defined from R? to R? by

F(u) = (£ +|y|, 2x + |x| + ), u = (x, ). (178)
Considering the Euclidean norm
|u|| = /%2 + y? forallu € R?, (179)

we have

1 2 1
)= (Gl ) =5+ = 3+

(180)
It follows that
1) = 5 il (181)
On the other hand, for u € R?,
[[Au] < [[A]] - [|uf]- (182)

From (181) and (182), we have

|F(u) - Au—-¢&|| = H(x3 +y]s 2x + |x| +y3) —Au—f,”
(| (% 7) | = 1100, 25) || = | (ly]s |x) | = | Au]| - [|€]
1
> = lull* = 2ful] = [l = (Al - [l = €]

> (310 -3 141 )l ).
(183)

Hence, for fixed & €R?, the function ¢ - R" — R
defined by

Pe(u) = [|F(u) ~ Au—§]| (184)

is coercive. Consequently, the function ¢, satisfies the (

h)-condition.
Let u=(x,y) € R%.

(1) If x#0 and y #0, then F is differentiable at u and
0F(u) — A=JF(u) — A is defined by

3x2+3
OF(u) - A= < (185)

sgn () -1 )
sgn (x)

37 +1
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Thus, 0F(u) — A will be one of the following matrices:
3430 3 +3 2 3 +3 2 3430
( 1 3y2+1>’( 1 3yz+1>’< -1 3y2+1))< -1 3y2+1)'
(186)

In all these cases, we have det (0F(u) — A) #0.

(2) If x< 0,4y =0, then 0F(u) is defined by

It follows that

3x*+3 s—1
BF(u)—A:{< ):—ISSSI}. (188)
-1 1

Then, for T € 0F(u), there exists s € [-1, 1] such that

det (T—A):(3x2+3)+(s—1):x2+s+22x2+1>0.
(189)

(3) If x>0,,4y=0, then 0F(u) is the following:

It follows that

3x°+3 s—1
BF(u)—A:{< ): —1Ss§1}. (191)
1 1

Then, for T € 0F(u), there exists s € [-1, 1] such that

det (T-A)=(3x"+3) = (s—1)= (3x"+1) + (3-5) 23x" +1>0.
(192)

(4) If x=0 and y <0, then 0F(u) is the following:

e G0 ) )
0F(u) = conv , = t1<SA<35.
3 3)° 1 3y? A 3

(193)
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It follows that

OF A= : 2 :1<A<3 194
(- _{<A—2 3y2+1>' T } (154

Then, for T € 0F(u), there exists A € [1, 3] such that

det (T-A)=3(3y"+1)+2(A-2)=9x"+21-1>0.
(195)

(5) If x=0,,4y > 0, then 0F(u) is the following:

O0F(u) = o1 o1 = o1 :1<A<3
s (5 ) (0 G )

(196)

It follows that

3 0
aF(u)—A={< , >:1s}ts3}. (197)
A-2 3P+l

Then, for T € 0F(u), there exists A € [1, 3] such that

det (T-A)=3(3y"+1)>0. (198)

(6) If u=(0,0), then 0F(u) is the following:

5 0 1 0 -1 0 -1 0 1
F(u) =conv , , >
(I [ A
07
={< ):(T,s)é[—l,l]x[l,?»]}.
s 0

It follows that

3 T-1
6F(0,0)—A={< ):(T,s)e[—l,l}x[l,.%]}.
s—2 1

(200)

(199)

Then, for T € 0F(u), there exists (7,s) € [-1,1] x [1, 3]
such that

det (T—-A)=3—(s=2)(t=1)=(s=1)(1-T)+T+22>7+2>0.
(201)
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6. Conclusion

We have provided a general nonsmooth global implicit func-
tion theorem that yields Galewski-Radulescu’s nonsmooth
global implicit function theorem and a series of results on
the existence, uniqueness, and possible continuity of global
implicit functions for the zeros of locally Lipschitz functions.
Our results deal with functions defined on infinite dimen-
sional Banach spaces and thus generalize also classical
Clarke’s implicit function theorem for functions F : R" x
R? — R" by replacing R? by any Banach space Y. We have
worked in this paper under the (h)-condition which is
weaker than the coercivity required in [6]. Our method is
based on a variational approach and a recent nonsmooth
version of Mountain Pass Theorem.

More precisely, firstly, we have proved our Theorem 31
on the existence and uniqueness of the global implicit func-
tion theorem for equations F(x,y)=0, where F:R"xY
—> R”" is a locally Lipschitz function with Y a Banach
space. Secondly, we observe that this extension to infinite
dimension may not guarantee the continuity of the global
implicit function. Thus, we provide an additional hypothesis
on Theorem 31 in order to obtain the continuity of the
implicit function f. Moreover, our Lemmas 42 and 43 allow
us to prove other more general results on the existence and
uniqueness of global implicit functions under the (h)-con-
dition on the function x — || F(x, y)||* with 0 < a < 2.
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