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We examine a family of nonlinear g — difference-differential Cauchy problems obtained as a coupling of linear Cauchy problems
containing dilation g — difference operators, recently investigated by the author, and quasilinear Kowalevski type problems that
involve contraction g — difference operators. We build up local holomorphic solutions to these problems. Two aspects of these
solutions are explored. One facet deals with asymptotic expansions in the complex time variable for which a mixed type
Gevrey and g — Gevrey structure are exhibited. The other feature concerns the problem of confluence of these solutions as g > 1

tends to 1.

1. Introduction

In this paper, we study a particular family of nonlinear q —
difference-differential Cauchy problems displayed as follows

P(tk“at) 3v(t,2) =6 (t, 2 (@)@ )}, b),
(1)

for prescribed Cauchy data
(a;'v)(t, 0)=9,(1),0<j<8-1, )

where S, k> 1 are integers, g > 1 is a real number and where
the symbol P(T) from the leading term of the equation (1)
stands for a nonconstant element of C[T], and $ represents
some well-chosen finite subset of N? x Z. The right part &

(t, z, {Vl}reg) of (1) is a polynomial of degree at most 2 in
the variables V, for r € H, holomorphic relatively to z on

some disc in C centered at the origin and which depends
polynomially on ¢ along with the data (2). The detailed shape
of (1), (2) is stated in Corollary 17 in Subsection 3.3.

The present work is the sequel of the investigation
initiated in [1] that focused on some linear g — difference-
differential Cauchy problems outlined as

p(tk“a,) Bu(t,z) = 9’(1‘, 2,0, 119, az) u(t,z),  (3)
for given Cauchy data
(a{;u) (1,0)=g;(1),0<j<S-1, (4)

where S>1 is a suitable natural number, the piece P(T)
from the leading term of (3) is the polynomial appearing
in (1), k>1 is the integer stemming from (1), o, stands
for the dilation operator acting on functions through o,
f(t,z)=f(qt,z) for qg>1 arising in (1) and the right
handside P(t,z,V,,V,, V;) together with the data (4)
represent fittingly selected polynomials. As summed up in
Theorem 3 of this work, under strong restrictions on the
shape of (3) (not discussed in this paper but listed in [1]), a

finite set {u,(t,2)} 0pec 1’ for some integer ¢>2, of holo-

morphic solutions to (3) and (4) could be modeled on prod-
ucts 7 p X D, where D stands for some small disc centered at 0

in C and where 7 = {7 ,} is a suitable set of bounded
0<p<¢-1
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sectors whose union covers some neighborhood of 0 in C*,
see Definition 1. These solutions were expressed through
Laplace transforms of order k,

u, (1, 2) =kJ w,(u,2) exp (—(?)k> d_u”, (5)

Lyp

along half lines Lyp = [0,+00)e¥™™» in convenient directions
¥, € R where the Borel map w,(u,z) is holomorphic rela-

tively to z on D and is compelled to bear g — exponential
growth rate (17) w.r.t u on some unbounded sector %p. In

[1], we addressed two important features of these solutions

(i) Asymptotic behaviour w.r.t the time variable ¢ as ¢
N 0

(ii) Confluence property as q > 1 tends to 1

Regarding the first point, a fine structure of mixed
Gevrey and g - Gevrey type was disclosed. Namely, as
expounded in Theorem 3 and 19, all the partial maps t —

u,(t, z) share a common formal power series %(t,z) =},

u,(z)t", where u,(z) is bounded holomorphic on D, as so-
called Gevrey asymptotic expansion of mixed order (1/k;

(¢:1)) on T ,, meaning that two constants C, M >0 can be

pinpointed with

sup < CMN+1F<¥) q<N+1)2/2|t|N+l,

zeD

u,(t,z) - 2 u,(z)t"

n=0

(6)

whenever ¢ € 7, for all integers N > 0.

Concerning the second item, discussed in Subsections
5.1 and 5.5, we have shown that for any prescribed sector
T from the covering 7, the corresponding solution u,(t, z)
(whose reliance on the parameter q is flagged by an index ;q)
to (3), (4) merges uniformly on 7 x D, as g € (1, g,| tends to
1 for some fixed g, > 0, to a holomorphic map u,(t,z) on I
x D which itself solves some linear PDE Cauchy problem
given by (177), (178). More precisely, some constant K >0
(unrelated to g) could be singled out with

sp [u,(62) —uy(62)| <K(g-1),  (7)

teJ ,zeD

provided that g € (1, q,].

The problem (1), (2) examined in this work is actually
obtained by means of a procedure (described in Subsection
2.2) which consists in coupling the singular linear Cauchy
problem (3), (4) with a quasilinear Kowalevski type problem

which involves the contraction operator o ., acting on

functions by means of a1, f(t,2) = f(q't, z), framed as

vt z) = P, (t, 20,1419, az) v(t, 2) @

+a(t, 2)V(t,2) + u(t, 2),
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for assigned Cauchy data
(afz‘v)(t, 0)=¢,(1),0<j<k-1, 9)

where x > 1 is an appropriate integer, a(t, z) is some polyno-
mial in t with holomorphic coefficients on D, the linear piece
P, (t,z,V,, V,, V) as well as the data (9) stand for properly
chosen polynomials and where the forcing term u(t,z) is
required to solve the linear problem (3), (4). Notice that
the appearance of the g — difference operator o, is manda-
tory when some time derivative 0, occurs in equation (8),
according to the constraints (21).

Our objectives remain similar to those in [1] and
concern

(i) The construction of local holomorphic solutions to

(1), (2)

(ii) Asymptotic expansions of these solutions as time ¢
borders the origin

(iii) Confluence aspects as g — 1

The first item is completed in Subsection 3.3 (Theorem

16 and its Corollary 17) where a finite set {,(t, z)}()spsq_1

of holomorphic solutions to (1), (2) is built up on domains
T , x D, provided that the radii of 7, and D are taken small
enough. Furthermore, the solutions can be represented as
Laplace transforms of order k,

v, (t,2) = kJL‘ O, (1,2) exp (- (;)k> d_; (10)

along the same halflines LYP as in (5) where the Borel map

©,(u, z) remains holomorphic w.r.t z on D but suffers now
(at most) exponential growth rate (91) of order k relatively
to u on %, (and not in general q — exponential increase as
it was the case for wp).

The second item is achieved in Subsection 4.5 (Theorem
30) where the existence of a formal power series (¢, z) =
Y sohi(2)t, with holomorphic coefficients h;(z) on D, is
established which stands for the common Gevrey asymptotic
expansion of mixed order (1/k; (g, 1)) on 7, of the partial
maps t - v,(t,z), 0<p<¢—1, satisfying therefore similar
estimates to (6).

The last item is explained in Subsection 5.7 (Theorem
44). For any given sector I from the covering 7, the related
solution v, (,z) (whose dependence on g is marked by the
index ;q) to (1), (2) converges uniformly on  x D, as g
— 1, to a holomorphic map v,(t,z) on I x D which is
the solution of some nonlinear PDE Cauchy problem, stated
in (182), (183). Factually, comparable bounds to (7) hold, see
(289).

We draw attention to the fact that the proofs of our three
main statements Theorems 16, 30, and 44 lean on statements
established in [1]. In essence, the features of the solutions
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v,(t, 2) of (1), (2) reached in this paper are identical to those
of the solutions up(t, z) of (3), (4) achieved in [1]. However,

their proofs differ fundamentally. Indeed, the construction
of the sectorial local holomorphic solutions v,(t,z) to (1),

(2) is performed by means of a fixed point argument in suit-
ably selected Banach spaces (Subsections 3.1 and 3.2) when a
mere induction principle and elementary estimates were
only required to reach the local solutions u,(t,z) of (3),

(4). The asymptotic features relatively to time ¢ of the solu-
tions u,(t,z) were obtained by dint of a version the so-
called Ramis-Sibuya theorem which banks on sharp esti-
mates of the difference u,,, — u,. This approach fails to be

applied in our nonlinear context. We use instead a majorant
series method that reduces the problem to the construction
of formal power series solutions to a related Cauchy problem
in appropriate Banach spaces (Section 4). Regarding the
confluence properties, both works hinge on an auxiliary
result which studies the action of g — difference operators
on the Borel maps of the limit maps u,(t,z) and v, (¢, z)
(see Propositions 36 and 37) but the proofs of the present
work are again based on functional analytic arguments and
the use of accurate bounds in Banach spaces, while induction
principle was favored in [1].

Observe that, by construction, the nonlinear g — differ-
ence differential equation (1) involves both dilations and
contractions w.r.t the time variable ¢ by means of the pres-
ence of operators qu;t for both I>0 and /<0. The same

property arises in the framework of nonlinear g - differ-
ence equation in the study of the so-called g— Painlevé
equations. Indeed, the g — discrete versions of the first and
second Painlevé equations are expressed through the next
two equations

9(ax)g (g) @9 +x) gg(x) b

for x = xyq" with n € Z for some x, € C, g€ C\{0,1}, and «
some parameter, see for instance [2, 3]. For an excellent
comprehensive and introductive book to g-Painlevé equa-
tions and more generally to integrable discrete dynamical
systems, we mention [4].

Regarding the existence of local holomorphic solutions
to nonlinear g — difference equations, we may refer to some
recent works. Indeed, for meromorphic or holomorphic
solutions around the origin for special type of nonlinear g
— difference equations such as the g — Painlevé equations,
we can mention [5, 6]. Some category of nonlinear g — dif-
ference equations of the form

xy(qx) = y(x) + by(x), x), (12)

where b is some polynomial has been investigated by
Menous in the paper [7] who gave assumptions under which
such equations can be analytically conjugated to well-studied

models of linear q - difference equations with so-called
irregular singularity at the origin, xz(gx) =z(x) or xz(gx)
=z(x) + x. In the recent work [8], Gontsov et al. provide
sufficient conditions for the convergence of so-called gener-
alized power series

9(2) = chz)‘f, (13)

>0

with complex coefficients ¢; € C and complex exponents A;
€ C that are solutions of algebraic g — difference equations

F(z,9(2), ¢(q2), - 9(q"2)) =0, (14)

where F stands for some polynomial, providing in particular
local sectorial holomorphic solutions to these equations.

In the context of nonlinear g - difference-differential
equations, the literature concerning local existence of solu-
tions is less profuse. Nevertheless, the important result by
Yamazawa [9] ought to be quoted in that trend. The author
constructs holomorphic and singular solutions of logarith-
mic type near the origin to equations of the form

u(qt,x) = u(t, x) + F(t, X, {afﬁu}\a\gm>’ (15)

for teC, xeC", n>1, g>1, and where F is some well-
prepared analytic function in its arguments.

On the subject of confluence for linear q — difference
equations, some recent references have been pointed out
on our latest contribution [1]. The confluence in the frame-
work of nonlinear g — difference equations has been much
less examined and represents a propitious direction for
upcoming research. For instance, some aspects of confluence
for the so-called g — Painlevé VI equation have been recently
undertaken by Dreyfus and Heu in [10]. They construct
some well-prepared g — analog Hamiltonian system

0,,y=0 ,H(y,Z,t)+O(q—1),
{ q,ty Q.7 ()’ ) (q ) (16)

044L=-0,,H(y,Z, 1)+ 0O(q - 1),

where 0, =0, —1/qx — x and show that its discreet solu-

tion given in the form of two sequences y, =y(¢'t,), Z,=Z
(q't,) for given t,€C* and (y,, Z,) € (C\{0,1,£,})xC
encodes the Taylor series coefficients of the holomorphic
solution (y(t), Z(t)) to the (formal limit as g > 1 tends to
1) nonautonomous Hamiltonian system

, _0H
¥ ()= 55 nZ.1)

o0H
Z'(t)=—— (1, Z, 1),
(t) ay<y t)

(17)

with initial condition y(ty)=y, and Z(t,)=Z, which
defines the sixth Painlevé equation for some prescribed
rational map H € C(y, Z, t).



2. The Main Problem Outlined

2.1. A Finite Set of Holomorphic Solutions to a Singular
Linear Cauchy Problem. In this subsection, we remind the
reader parts of the results obtained in our previous work
[1] that will be used within the present Section 2. We first
describe the linear Cauchy problem we have considered in
that study.

Let k,S>1 be integers and g > 1 be a real number. We
set P(1) € C[r] a polynomial with complex coefficients such
that

P(0) #0. (18)

Let </ be a finite subset of N*. For all [ € & and all 0 <
j<S-1, we fix polynomials ¢;(z) and ¢,(t) with complex
coeflicients.

We focus on the next singular linear Cauchy problem
with polynomial coefficients in time,

¢ (2)t <(tk“at)l‘ 9t u)

P(tkﬂat) 3u(t,z) =

I=(lp 1yl L ) ed

(1),

(19)

for given Cauchy data
(afz‘u)(t, 0)=p,(f) , 0<j<S-1. (20)

In order to describe a set of solutions to (11), (12), we
need to recall the definitions of good coverings and admissi-
ble sets of sectors introduced in Section 6 of [1].

Definition 1. Let ¢ > 2 be an integer. For all 0 <p<¢—1, we
select open sectors I » centered at 0 (and do not contain 0)

with given radius rg that fulfill the next three features:

(i) The intersection of any two consecutive sectors of
C e (o .
the family 7 = {J p}ogpgi1 is nonempty, namely

TN Tyt #0, (21)

for all 0 <p <¢ -1, with the convention that 7 =
T
0
(ii) The intersection of any three elements in J is
empty
o

(iii) The union of the sectors »

neighborhood % of the origin in C*

covers some punctured

Ui T, = % = %\{0}. (22)

The family I is then named a good covering in C*.
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The notion of admissible set of sectors is depicted in the
next.
Definition 2. We set ¢>2 as an integer and set J =
o I .
T} 0<pz 38 2 good covering in C*. We consider a set

% = {%P}nggc—l
endorse the next two properties:

of unbounded sectors %P centered at 0 that

(1) Each sector %, does not contain any of the roots of

the polynomial u +— P(ku), for 0<p<c¢ -1

(2) For all 0<p<¢—1, there exists a constant Ap >0
such that for all # € 7, one can single out a direction
¥, € R (that may depend on #) such that both condi-
tions

L, = [0,+00) exp (\/:yp) cu,u{0},

(23)
cos (k(yp —arg (t))) > A,

hold.

We say that the set of sectors @ = { T, %} represents an
admissible set of sectors.

In Section 6 of the paper [1], we have obtained the fol-
lowing result.

Theorem 3. Let us assume that all the requirements asked in
Section 2.1 of [1] hold true. Fix a good covering I =
‘G]P}nggc—z in C* and a set U = {%P}OSpSC—I of unbounded

sectors chosen in a way that the data @ ={J , %} forms an
admissible set of sectors.

Then, for all 0<p<g¢—1, one can construct a solution
u,(t,z) to the Cauchy problem (11), (12) that is bounded
and holomorphic on T, x Dy, and that can be expressed

through a Laplace transform of order k,

uy(t,2) = kJ w,(u, z) exp <— (%) k) d_uu’ (24)

L,
for (t,z) € T, X Dyjpc, where D )yc, stands for the disc cen-
tered at 0 with radius 1/2C, for some well-chosen constant
Cy>0. The Borel map w,(u,z) represents a holomorphic

function on the domain %, x Dy, whose Taylor expansion

B
wp(u, z)= pr’ﬁ(u)ﬁ’ (25)

B=0

is subjected to the next bounds

|wpp(u)| < C5(Co)PBlju exp (k; log?(|u + up)

(26)
+alog (|u| +uy)),
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or all 3>0, all ue,, for suitably chosen constants C,, k
P Y 3 K
>0and uy,>1, a>0.

Example 1. A concrete example of a simple equation (19)
that fulfills all the conditions required in Section 2.1 of [1]
is given by

(£°0, = 1)0,u(t, 2) = zt>u(qt, 2). (27)

2.2. Setup of the Main Nonlinear Cauchy Problem. Let x > 1
be an integer and k, q as defined in the previous subsection.
Let € be a finite subset of IN*. For all h €&, we fix a
bounded and analytic function d;,(z) on a disc Dy centered

at 0 with some radius R > 0. Furthermore, we define a poly-
nomial

a(t,z) = Z a,(2)t", (28)

for some integer A >0, where the coefficients a,(z) are
bounded and holomorphic on Dy and for all 0<j<x-1,

we denote ¢;(t) polynomials with complex coefficients writ-
ten in the form

=Y Ej,hr(Z) £, (29)

heTj

where 71. stands for a finite subset of N\{0}.
The finite set € is compelled to fulfill to the next list of

requirements:
(A1) There exists a real number b > 1 for which

k> bh, + hy, k> hy, (30)

for all k= (hy, hy, hy, hy) € B.
(A2) The next inequalities

1
KZ(E+1>h1+h2’K>hz’h32h1’ (31)

hold provided that h = (hy, hy, hy, hy) € 6.
We consider the next nonlinear nonhomogeneous Cau-
chy problem

h
3%, (t,2) = d ()t ((tk“a,) a’;wp)
h=(hohy b by )€€

: (q_h3t, z) +a(t, z)v;(t, z) +u,(t, z),

(32)

for given Cauchy data

(afz'vp)(t,O):aj(t),OSjsK—1, (33)

where the forcing term u,(t, z) is the holomorphic solution

of the linear Cauchy problem (11), (12) disclosed in Theo-
rem 3 of the former subsection.

Example 2. An explicit illustration of a plain equation (32)
that is subjected to the requirements (20) and (21) is pro-
vided by

aﬁvp(t, z) = (tSBtvp) (q_lt, z) + v;(t, z)+uy(tz),  (34)

where the forcing term u,(t, z) is one genuine solution to the
equation (27) built up in Theorem 3.

We now unveil our main roadmap that will lead later on
to the construction of suitable sets of solutions to our prob-
lem. We search for solutions to (22) and (23) in the form of a
Laplace transform of order k, namely,

v,(t,2) =kJL ©,(u,2) exp (—G)k> d_;’, (35)

along the halfline L, = [0,+00)e" " appearing in the repre-
sentation (15). So far, the so-called Borel map ©,(u,z) is
supposed to be holomorphic with respect to u on the
unbounded sector %, and analytic w.r.t z on some small disc
D, centered at 0 with radius r > 0. For the Laplace transform
to be well defined, we make the further assumption that
©,(u, z) has at most exponential growth of order k w.r.t u
on %,, uniformly in z on D,, meaning the existence of two
constants C, K > 0 with

O, (u,z)|<C K|ul*), 36
sup|© (1 2)| < Cl exp (KJul') (36)

for all u € %,,. Once we assume that such solutions exists, we
will derive some functional equations that the Borel map
O, (u,z) will be asked to solve at a formal level only. Such
equations will be described in the next subsection. Later
on, in Subsection 3.2, these convolution equations will be
solved in some Banach space of holomorphic functions, see
Proposition 15, producing a genuine holomorphic map ©,
(u, z) satisfying the above requirements.

2.3. An Auxiliary Cauchy Problem Satisfied by the Borel Map
©®,. We first need to remind the reader the next proposition
wflich is a slightly modified version of Proposition 4 of [1].

Proposition 4. We set (E, ||.||;) as a complex Banach space.
Let k=1 be an integer and let w:S;5— E be a holo-
morphic function on the open unbounded sector S;5={u €
C* :|d—arg (u)| <8}, continuous on S;5U{0}. The exis-
tence of two constants C > 0 and K > 0 such that

[w(w)|| < Clule<", (37)



is assumed for all u€S;5. Then, the Laplace transform of
order k of w in the direction d is defined by

o
bl

w(u)e (38)

L,

(w0 =k|
along a half-line L, = R, e" C S, 5U {0}, where y depends on
t and is chosen in such a way that cos (k(y —arg (t))) >,

>0, for some fixed 8,. The function L (w(u))(t) is well
defined, holomorphic, and bounded in any sector

Sont = {t €C* : |t|<R"™, |d - arg ()| < 9/2}, (39)

where mt/k <0 < m/k + 28 and 0 <R < §,/K.

(a) The action of the Laplace transform on entire func-
tions is described as follows: if w is an entire function
on C, with growth estimates (26) and with Taylor
expansion  w(u)=Y,.,b,u", then L(w(u))(t)
defines an analytic function near the origin w.r.t t
with convergent Taylor expansion )., ,I'(n/k)b,t"

(b) The actions of the irregular operator t*19, and the
monomial t™ on the Laplace transform are expressed
through the next formulas

7 (kifww)) (1) = 413, (Zw(w)(1)), "Lw(w)(¢)
= L (" sw(w)) (1),
(40)

for every integers m > 1, and for all t € S g pux with 0
<R<§,/K. Here, u"x w(u) stands for the convolu-
tion product

(c) Let w), w, : S; 5 — E be holomorphic maps with the
same feature (26) as w above. Assume moreover, that
E is equipped with a product * in a way that (E, %)
becomes a Banach algebra. Then, the next multiplica-
tive formula

L (wy (u))(t) X L (wo(u))(t)

(42)
= L (wy (), (1)) (1),

holds for all t€S;qpu with 0<R<§,/K, where
w, (u)*,w,(u) represents the convolution product

Abstract and Applied Analysis

k

wy (1) %y, (u) = “kL wy ((“k -) Uk) (43)

* W, (s”k) ﬁd&

(d) The action of the dilation q° commutes with the
Laplace transform, for any integer & > 1, namely

Flw(w) (¢'1) =2{(w(e') )@, (44

holds for all t € S, g for 0 <R; < 8,/(Kq").

The point (A) allows the Cauchy data (23) to be expressed
through Laplace transforms of order k,

p=k| Pwen (<)% 69

y

of polynomials given by ﬁ](u) = Zhe7 jv)jhuh,for 0<j<x-1
L
Owing to the above identities (28), (29), and (30), we

observe that the Laplace representation (25) solves the Cauchy
problem (22), (23) if the Borel map ®,(u, z) is subjected to the

next nonlinear and nonhomogeneous convolution Cauchy
problem

8;@1,(14, 2)

sy ) ahZ(B)

uk

&) otk

_ (k
h=(hyh, hz h)€B5hy=0

' (q hju,z) +h (hohyshyhs)€Gihy=1
INGE . (K(a ")) "(e,)
, (q RIS )_ +ao(z)ukL ®p((u"—s)”k, Z)

(46)
for prescribed Cauchy data

(afz'@p)(u, 0)=P;(u),0<j<x- L. (47)
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3. Solving the Main Nonlinear Cauchy Problem

Within this section, we construct actual holomorphic solu-
tions to our main problem (22), (23) as Laplace transforms
which boils down to build up actual holomorphic solutions
to the Cauchy problem (32), (33) in suitable Banach spaces.

3.1. Some Banach Spaces of Analytic Functions. In this sub-
section, we disclose the definition and properties of the
Banach spaces in which we search for solutions to the Cau-
chy problem (32), (33).

Definition 5.

(a) Let b> 1 be a real number. We set

for all integers 3> 0. We fix 0 > 0 a real number. We
denote E}{ﬁ) o) the vector space of all functions ®()
that are holomorphic on the unbounded sector %,
(determined in Theorem 3) for which the norm

1+ 7%
Ot = su
1O o) = 329 T

exp (-ory(B)[7[)©(7)]
(49)

is finite.

(b) Let Z, > 0 be a real number. We set G](CG,ZO,%) as the

vector space of all holomorphic functions

)= O4(1) (50)
=0

near z = 0 with holomorphic coeflicients on %, such
that the norm

7P
182 2)l| (42, ZW%!MW ; (51)

. . k
is finite. The normed space (G(U’ZO’%), -l o.z,,))
turns out to be a Banach space.

It is worth noticing that these Banach spaces are slight
modifications of the Banach spaces introduced by Malek
and Stenger in the work [11] and by Costin and Tanveer
in [12].

In the next list of propositions, we analyze the continuity
of linear and nonlinear maps acting on these Banach spaces
that will show to be useful in the next subsection.

Proposition 6. Let h,, h,, h; > 0 be integers such that
h, > bh,. (52)

Then, one can find a constant M, > 0 (relying on k, g, h,
,hy, h3,0,b) such that

[ @) (a2

020> p)

h,
<M ZGIF(E2) o)

(53)

forall f(1,2) € G’{UZ ) , where 3" stands for the h,-times
iteration of the integration map 9,'f(z) = [3f(s)

Proof. Let f(7,2) = ¥ poof (T 7)ZP1p! with f4(7) € for

all >0. We check that

BG‘ZM
B
_ _ h\ Z
7 (az’“f) (q har, Z) = ﬁzh ™ fg (q h3r) s
In the next lemma, we provide bounds for the coeffi-

cients of this last series. O

Lemma 7. The next bounds

HTkhlfﬁ’hz (qith) H(ﬁ 2,)

h
< g2k-Dhy (1
=1 (ahz)

hold for all 5> h,.

M B+ D)™

(7) H (B0,
(55)

Proof. We observe from (35) that

Hrkhlf Ph, (q_hsT) H (Bo,)

1+ |7
= sup

up i exp (ony (B[t ) [P, (477)|
Tep

{ 1+ ‘q‘h»*r * L
lsupq —r——r— T >
€%, ’q 3T|

]m%(SQ@waﬁ»

exp <—orh(ﬁ —hy)|q



where

‘q h3r’ 1+ |7 o

|7 1+| *hrr’

exp (<on Bl +or(B-t)|q e

(||, B) =

)

(57)
for all 5> h,. Besides, we notice that
k
1+ |T‘2k 1+q2kh3{q*h3—[|2 - 1+ qzh k 2h3k
= S sup =9
Lt fgtse™ 1 g w0 1Hx

(58)
for all €%, since the function h(x)=1+ s x/1 + x is

increasing on [0, +00) provided that g > 1. We deduce that

(|t} B) < w([7], B), (59)

where

y([r B) =a® ™ exp (<o (ry(B) = ry(B~ho))Iel!),

(60)

for all T € %, all > h,. In the next step, we supply bounds
for the map y. We check that

£ h
(B -r(B-h) = ) e (o))
Vlﬁh2+l n+1 (ﬁ+1)b
for all f>h, and in a row with the classical estimates
m\ "™
supx™e ™ = (L) e, 62
ng (mz) (©2)

>0, m, > 1, we deduce that

oh, -
w+w”'

h
< (2k=1)hs su xh1 €X] - lie! X (63)
q p p B+ l)b

x>0

hy
_ (2k-1)h
() <

forall T € %P’ all B> h,.
At last, collecting (40), (41), and (42) gives rise to the
forecast bounds (39).

for any given integers m,

(|7l B) < g Ve exp (—

"B+ 1)™

Abstract and Applied Analysis

Owing to the above lemma, we deduce the next bounds

[ (52"r) (a72)
B

V4
< Z T () | )
ﬁ;Z ph, ( BoU, ) !

b \M
<q (L) e Y
oh, i,

fzh,

(U,ZO,%I,)

‘f‘B n ( H ﬁ‘”)bhl%?

Zﬁ‘hz
(B=hy)!"

W@l
(64)

Furthermore, we see that

(B-m) ()™,
O R (S By S TR
(B+ D™

h N
Sy

(65)

for some constant ]\V/I1 (relying on b, hy, h,), for all B>h,
under the constraint (37). Finally, gathering (43) and (44)
yields the expected bounds (38). O

Proposition 8. There exists a constant M, > 0 (depending on
k) such that

Tkj :f < (+9)" Z) 9(+"2) & - 95 %

(U,ZO,‘ZJP)
<M (52 020,195 D) 202, )
(66)
for all f, QEGaz )"
Proof. Let
)= 2 f(7) )= 2.95(7) (67)

p=0 p=0

where f4(7), g4(7) € E(ﬁa"?l for all > 0. By construction,
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one can check that

O

In the next lemma, estimates for the coefficients of the
latter series are disclosed.

0 () "o () g
0 ( )

(Bo,)

1/k

TkJ: {W exp (arb(ﬁl) (‘T" - sw()k)fﬁl ((Tk 75) Uk) } x

Lemma 9. There exists a constant By, > 0 depending on k such
that

Tkj:kfﬁ' ((Tk - S) Uk) 9e, (Sl/k) (c* 1— s)s ds

<asy o,

(/3 ’U’%P)
9,

() H (Booz,)

Br,)
(69)

forall >0, all B,, B, =0 such that B, + f3,= .

Proof. Departing from the very definition of the norms, we
can factorize the upper bounds as follows

1+ ‘s”k|2k < o[k |1k —s|
—— 1 exp [ —or,(B,)|s" >g s) b x
{ [s7%| b2 ‘ ’ /32( ) 1+‘(1k—s)l/k

<B(BrB,)

75,0

95,(7)]

A ’”*%) (’32 ’0’%1’)

where

| |2k

1+t
B(By> B,) = sup
re‘le |T|

k 1/k
l7f (|T|" —u 1/k
k u
[P’

5 S exp
0 1+(|‘r\k—u) I+u (71)

(ory(B) (I - u))

x exp (o7,(B,)u) ﬁ d,

for all B,,,>0 with 8, +f3,=p. Since S r,(f) is an
increasing sequence, we observe that r,(f3;) < r,(f8) together
with 7,(8,) <r,(B), and we get

exp (~ory(B)lrl")

ory(B) (Il = u) +ory(Buzon Bl (72)
for all 0 < u < |z|*. We deduce that

B(B1> B,) < Beo (73)

= +}/k,l{k xexp (%(ﬁl) (|#- s\”k)k> e (on8)s" ) et S)S} ds

with

From now on, we perform computations based on the
ones already done in our previous work [13]. We first
assume that k > 2.

We make the change of variable u = |7|*x, 0 < x < 1 in the
above integral part

. f 1/k-1
J\r\ (\T\ - u) WV dy,
2 2
0 1+(|T|k—u) Ltu

1 1 1 1 1
= dx x || 2.
Jo 1+ |T|2k(1 - x)2 1+ |‘r|2kx2 (1- x)l‘“k x1-1/k 7

(75)
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Besides, using a partial fraction decomposition, we can
split the next integral along [0, 1] as

1 1 1 1 1
2% 2 2%k TE R
oL+ |7["(1—x)" 1+ |7]™x% (1 -x) x

1 ! 3-2x 1 1
= 2k 2k 2 1-1/k 1-1/k dx
4+ 7| ol+ 7] (1-x)"(1-x) X

+J1 2x+1 1 1 p
X >
ol + |T|2kx2 (1 _ x)l—l/k xl—l/k

(76)

for all T € %,,. Furthermore, the change of variable x, = |T|kx,
for 0 <x <1 enables us to reach the bounds

Jl 2x+ 1 1 1
X
ol + |T|2kx2 (1 _x)l—l/k xl—l/k
1 1 1 1
< 3J0 1+ |T|2k.x2 (1 _x)l—llk xl—l/k dx
N 1 1 By,
il

2 Tk ok 4 = >
o 1Hx (1 —x1/|T|k> X 7]
(77)

for some constant By, > 0 provided that T € %, with |7 | >1.
In a similar way, one can find a constant By, > 0 for which

! 3-2x 1 1 B
dx < ﬁ, 78
JO 1+ |T|2k(1 _x)Z (1 _x)lfl/k xl*l/k |T | ( )
as long as 7 € %, with |7|> 1.
Gathering (51), (52), (53), and (54) yields that
B, is a finite quantity, (79)

provided that k > 2.
It remains to check the case k= 1. In that situation, the
quantity B, can be computed explicitly

1
du
ITI—u)Z)(l +u?)

log (1 +x%) +x arctan (x)
_ 2
_i:§(1+x )2 x(x? +4)

7]
B, = 1+ ZJ
AU

(80)

>

and turns out to be a finite positive real number.
Finally, collecting the intermediate upper estimates (48),
(50), (55), and (56) gives rise to Lemma 9.

Abstract and Applied Analysis

From the expansion (46) along with the lemma 9, we
obtain the next bounds

k

SRS

s g 198Ol 2
D T

from which Proposition 8 follows. O

Proposition 10. Let h,>1 and h, h,, h; > 0 natural num-
bers such that

h, > bh,. (82)

Then, there exists a constant M; > 0 (depending upon k,
@ by, hyy hy, by, 0,b) such that

TkJTk (Tk - s) hO/k_Ishl_l (a;hzf) (q_h3s”k, z) ds
0

h
<M;Zy||f (7 2) H(a,z(,,?zp)’

(0Z02y)

forall f e G}{U’ZO’%).

Proof. We check that Proposition 10 is a direct consequence
of Proposition 6 and Proposition 8. Indeed, we set

3.2 =7 (3711 (7. 2), (84
for a given f € G](<0,Z()>%)' According to Proposition 6, we
observe that g(z, z) belongs to Gl{a,zo,%) and that

130 0,) SMZ N @D (o) (85)

for some constant M, > 0 provided that (58) holds. Further-
more, we set f(7, z) = 7. By construction, we notice that f

(1,2) € G’{azo)%). Then, we get that

TkJrk (Tk B s) Pk gy (8;h2f) (q—h351/k) z) ds
0

k (86)

_ ok j ;((Tk )" ) 3+ ) ﬁd
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Owing to Proposition 8, we get the next bounds

e o
f(z.2)

<MMZ2

(020%,)

<M,

19(7 )l (5,2,2,)

1l (o)

(020%,)
h

(020,

(87)

for some constant M, (relying on k). At last, we set M; =

M,M, ||| (0202,) which yields the result. 0
Proposition 11. Let a(z) :Zﬁzoaﬁzﬁ/ﬁ! be a holomorphic

function on a disc Dy with radius R> Z,. Then, the next
bounds

1a@f (0.2 (0.2,2,) <181 Zo I (72l (5,2,02,)>  (88)

hold for all f € G}((a,zo,%)’ where

7P
|a|(Zo):Z|aﬁ|F?~ (89)
B=0 :
Proof. Let
)= X fplr (90)
=0

with f(7) €
uct

E’(Cﬁ o) for all 3>0. We first expand the prod-
T %p

a2 (7,7) = z( »

a )\ 2P
Bz0 \B,+B,=p

Bt B ) B
which allows to control its norm

@@ (1) (o)

fﬁz (T) ‘ (Bo, ) Zﬁ (92)

a
ﬁl o
< ﬂ" ) | 2o
/szzo ﬁ% B! Byt P

Besides, since r,,(3,) < r,(B) for B, < 3, we notice that

Hfﬁz(T)H(ﬁ,g,%) = Hfﬁz (T)”(ﬁz,a,%P)’ (93)

11
for 0 < 3, < 3. Hence,
la(2)f (7 2) (0,2,2,)
I ) 2
ﬂ[;l ‘ /32 ﬁza% Z
D I N i
B0\ Bi+B,=p (94)
sl
(sl g (5 Moy ]
f=o P g0 P
which confirms the statement of Proposition 11. O

In the next proposition, we show that the Cauchy data
(33) belong to the Banach spaces considered in Definition 5.

Proposition 12. We set
_ _ g
¥(r,z)= ) Py 3> (95)

where the polynomials ﬁj(r) are given by the Cauchy data
(33). Then,

(a) For all integers h;, h; >0, 0< h, <k — 1, the maps

(ahZ‘I’) (q 5T, z) (96)

belong to G’(‘U)ZO’%), forall o,Z,> 0.

(1.2)

(b) For all integers hy>1, h;,h;>0, 0<h,<x—1, the
maps

(1,2) — TkJ;k (Tk - s) W gt (822‘?) (q‘hSSW‘, z) ds, (97)

appertain to Gt (0.20%,) , forall 0, Z,> 0.

Proof. We first make the Taylor expansion

ol gMr,z) =
(7) (a™2)

explicit provided that 0 < h, <x - 1.
We focus on (a). By the very definition of the norm, we

get
NGO

)

k—1-h

S P15 o9

j=0

(0:Z0:2,)

Zj
PPy (747) | T
(j"”%p) J:

2
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and we can find a constant Zj (relying on j, hy, hy, hsy, k) for
which

kh, o ~h
P (477)
H jeha\1 (io:2,)

1 +|T 2k . k = _
S ey o) B (7))
Te?lp |T|
1+x% 1= B -
ssup Py | () p (o) =4,
(100)
since r;,(j) > 1, for all j> 1, where
‘P]Jrh x)= ) ‘p]+h h|x (101)
he])+h2
and 7]-+h2 c IN\{0}. As a consequence,
k=1-hy _ 7
H (ahzl}f)( ‘T,Z) < Y A% (0
(o20%) i3

which is a finite quantity.
We turn our attention to (b). The definition of the norm
yields

T holk-1 -
Tkj (Tk - s) sht (6’;2 ‘P) (q’h3s”k, z) ds
0

(a,ZO,%P)
x-1-h, Tt hylk-1 - 7
= Z TkJ (Tk - s) ! shl’lPM,z <q’h3s”k) ds .—'0.
ol o (o) T
(103)

We need bounds for the coefficients of this latter polyno-
mial in Z. Indeed,

™7k Rkl h-1% by 1k
€= TJ (T —s) s Pj+h2(q s )ds
’ (o2,
+[o* A
< sup exp (—arb(])m )’T ‘
€U,

, 7l

'Jrlk(hlk—h)h/k " I’Pﬁ—h
0

(q—h3h1/k) dh,

(104)

where IPJ o, | (x) is defined in (65). We make the change of
variable h =|7|*x, for 0<x<1 in the above integral and

observe that r,(j) > 1, j > 1. This gives rise to a constant V;
(depending on j, kg, h;, h,, hy, k) such that

Abstract and Applied Analysis

2k
@, <sup 2 exp (—Gy")y’“’*kh (q y)
y20 1 Y (105)
. (J (1 —x)h"/k_lxhlldx) = \6]"
0
Finally,
G hylk-1 _
TkJ (Tk —s) st (82’“1’) (q higlk 2 ds
0 (0202,
k—-1-h
2 Z{)
< Z Vigr
o T
(106)
which represents a positive real number. O

In the following proposition, we claim that the forcing
term w, of the Cauchy problem (22), (23) belong to the
Banach space described in Definition 5.

Proposition 13. For all 0<p <¢ -1, the map (7,z) = w,(t
,z) belongs to the space G'(‘U)ZO,%), for all 0 > 0, provided that
Zy<1/2C,.

Proof. According to the Taylor expansion (16), the very def-
inition of the norm yields

Zﬁ
HwP(T’Z)H (0.20%, ZH pp(7 H (Bo,) B (107)

Then, we need to control the coeflicients of this latter
series. Namely, one can find a constant C; >0 (relying on
Cs, ki, a, u, given in (17) and on k, o) with

[wp5(7) H(/s)a,%) - ffczz |7l

exp (~or,(B)lrl") [w,p(x)|

< C3(C4)ﬁ[3!sup (1 + ka) exp (—oxk)

x>0

- exp (ky log’(x + up) + alog (x +14y))

= 63(C4)ﬁﬁ!’
(108)
since r,(f8) = 1 for all §> 0. Consequently,
[0 ) SOF ) 520 (19
2
whenever Z;, < 1/2C, and Proposition 13 ensues. O

3.2. Solving the Main Nonlinear Convolution Cauchy
Problem. In the following, we search for a solution to the
nonlinear convolution Cauchy problem (32), (33) expressed
by means of the next shape
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6,(1,2) =

) 0,"Z,(u, z)+‘f’(u z),

(110)

where the map 'I’(u, z) is defined in (63), for some expres-
sion E,(u, z).
We check that ®p(u, z) solves the problem (32), (33) if

the quantity =, (1, z) fulfills the next fixed point equation
Ep(u, z)=

AN
-h
dh(z)<k(q 3u) >
h=(hg:hy:hy,h3)€G3hy=0 N

() () (29) ()

k k

" 2 4(2) r(;:o/k) L (”k - S) o

h=(hghy b, )e%h0>1

+ i a,(2) 1"(1;11;k)J: (uk - s) !

(111)

Our next task will be to seek for a solution of this last
equation (111) in the Banach space we have discussed in
the previous subsection 3.1. We introduce the nonlinear
map

B(E(1,2))

= Y 40 (k(qh%)k) §

h=(hgshy by hs ) €63ho=0

X [(a;("’hﬁE) (q’hﬁ', z) + (62’“?’) (q’h31, z)}
T

+ Z d,(2)
h=(hohy by by ) €Gshy21

. (Tk _ s) holk=1 (k (q—h3sl/k
% [(a;(x—hz)g) (q—h351/k, z

~—
=+ =
N—
=
- E
o
= (
N—
/N
®I
&
=
N—
=

13

+¢(@hﬂ)“ﬂ)}xpyg@w ) +(s,2)]
( ds+ Zah h/k Jrk (Tk_s> e
X {SJ {6;“5((5—51)”", z) +‘?((5—51)”k,z)}

x@%(%g+w@w4h;%ﬁk}§

+wp('r,z .

~—~—

(112)

In the next proposition, we give sufficient conditions
under which B represents a shrinking map on some small
: k
ball centered at 0 in the space G 0 Zo,)"

Proposition 14. Under the assumption (20), there exists some
small real number y > 0 such that if 0 < Z, < x, one can select
a radius v > 0 such that B satisfies the next two properties.
Let B, be the ball centered at 0 in G’(‘UZ a,) With radius v.
Zo,

(1) B maps B, into B,, meaning that

B(B,) C B (113)

b
(2) Forall £,, 2, € B,, we have

IB(E) =B o) < 511~ Foll (o (114)

Proof. We discuss the first point 1. Let E(,
k . —
G(U)Zn,%) with ||E(, Z)”(mZo,%) <v.

Under the constraint (20) and owing to Propositions 6,
11, and 12, we get a constant M, > 0 such that

Hdh(z)rkh' [(a;<"'h2)5> (q'h31, z) + (822‘?) (q'h31, z)]

<[] ) (25120, 1)

P )

z) belong to

(020%,)

(115)

Condition (30) and Propositions 10, 11, and 12 allow us
to reach a constant M, > 0 for which
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7k

. <q—h351/k,z) " <ai’2‘?’) <q’h35”k,z>]ds
<[aycz0) (M 2B o)

g Bkl 4 o (o,
TkL (Tk —s) sh 1<8£’ ‘I’) <q s gk, z) ds

dy (Z)TkJO (Tk - S) hO/kilshf] X [(a;('f*hz)

:

(0.20%

)

(”’ZO’%)> |

(116)

According to Propositions 6, 8, 11, and 12, we obtain

constants M, M, >0 with

<[ag|(Zo)M, | (02E) (7. 2) + ¥/

2
7, 2)

ds

(o,Z

(J,ZO,‘ZJI,)

< el Z0) 00 (10725, ) + 152

< el Z0)s (MZ51E(7, ) ) + 7052

ey os((#-9)" ) oo ((#-9)"2))
 [orra(s) 4 B (2]

(th=s)s

0y)

)

)

(117)

Propositions 6, 8, 10, 11, and 12 grant the existence of

constants M;, M,, M > 0 such

ah(z)TkJ: (Tk - s) e X {SJ; [8

+‘¥’(s%/k, z)} ﬁdﬁ}?

k

" \P((Tk —51>1/k, )} [z
+ ‘ff(s}’k, z)} ﬁdsl

<lan|(Zo)MsM

< o (ZopMss (122" (5,2l o 0+ 152

< oz, (M, 25502

L E(1,2) + V(1. 2)

that

;KE((S_SI)I/I(’ Z)

+‘?’((s—sl)”k,z)} X [a (s}/k,z)

(s1%.2

(020%,)

0Z0%,)

(0:20%,)

(-

)

(U,Z(V%P)
(a,zl),%))
+ Hl?/(r, z) (a)zo,czzp)> '
(118)

Abstract and Applied Analysis

We first choose the radius v > 0 in a way that

—h, hy
=gt iy ) €Gilg=0 (kq ' k) ‘dh‘(zo)
(H M (ahz'{/)< hs T, z) (a,zo,%)>

g Iy
+ % ‘dh‘ Z,

B=(hoslty Jip iy €G3hy 1
k
TkJT (Tk - s) W g (a’;z‘¥’> (q_h3sl/k, z) ds
0
_ 2
+|ay|(Z,) M H‘P 7,2
ol (|2 )

+Z\ a,|(Z h/kMM(H‘PTz

+ pr nZz H(o,zo,wl,) <v

(“’ZO ’%P) )

)

(119)

for some fixed Z, > 0. Then, we select x > 0 sufficiently small
with 0 < Z;, < y in a way that the next inequality holds,

,h k hl
()" b
h=(ho:hyshyshs) €65k =0
k—h kh, ((3hy gy ~h
Mz, +H '(B“}’)( 3T,z)
< 140 "VH|T z q (0.207,)

A
o

he(ho )iz L (Holk)
(U’ZO’%P))

+

k
TkJT (Tk - s) W g (522‘?’) (q%s“k, z) ds
0

Z) (a,zo,czzl,) ) 2

+[ay| (Zo)M, (Mlzgu +||P

A 1 ) _ 2
+ h;|ah|(zo)—r W MM, (M1Z0v+ H'f’(‘r, 2) (U’ZO’%))
+ pr(‘r, Z)H(a,zo, ) <v.

(120)

This last inequality can be achieved since the quantities

nghz and Z§ tend to zero as Z; > 0 becomes close to the ori-
gin, accordingly to the assumption (20).

Collecting all the above estimates (74), (75), (76), and
(77), under the latter constraint (78), sires the awaited prop-
erty (72).

We now turn to the second feature 2. Let Z(7,z) €

Gl((a,zo,%) with [|Z;(z, 2) | <v, forj=1,2.

(U’ZO’%p)
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Under the condition (30), Propositions 6 and 11 yield a e
constant M, > 0 for which <lao|(Zy)M, |:|az (E1-E)(m Z)H(U,Zn,?lp)
x |05, (1, 2) + ¥(1. 2
Je(eret (0273, - 22)) (a5 2) AR [P
n (J,ZU,%P) (121) e —
+ Haz 2,(1,2) +¥(1,2)
0.Zy,)’ (0:20:%,)
<1 = 225y |

< Jd| (20)M,257" (8, - 2) (. )|

and Propositions 10 and 11 breed a constant M; >0
such that _
< ol Z0)8, | M 25151 (,9) | .1,
dyet | (o) + M Z315,(5.2) | (o, + 2| P (2 2)
_ 1 (T, 2 T,2Z
W (29)T L (T s) s 140(1=2 (0.20,2,) (020%,)
X My Z§|1E,(1,2) ~ 5(5,2)| (g1
. (a’("’hz)(gl _ 52)) (q—hgsl/k’ z) ds 0 (#20%,)
: (124)
(020%,)
Furthermore, according to Proposition 10, we get a con-

k=hy || = -
< |dn|(2) (MsZ5 15,1, 2) = 5(5.2) | (0,
(122)  stant M3 >0 with

Tk—S

“h(z)TkJ: ( )h/k_l x {SJ; [a;K51 ((S =)™ Z)
)| 052, (s 2) + B (1, 2)]
k )h/k—l

o =

In order to deal with the nonlinear terms, we use the
next identity ab — c¢d = (a — ¢)b + ¢(b — d) which helps to fac-

+ ¥ ((s -85

k

torize the next difference
0,"E < - s) l/k, z> + ‘?’((T" - s) I/k, z)} o _151)51 ds, } ? - “h(Z)TkJ; (T -5
x {a;ffgl (Sl/k) z) + ‘I’(sl/k) z)] o {SJS [aZKSZ ((S ), z) . ‘?’((s T z)]
- {a;"Ez ((Tk - s) llk, z) +¥ ( (rk - s) Uk, z)] ’ 1 ds
-k [ Ik 1/k
x |08, (Sllk, Z) " l?,(sl/k,z)} x [az w2 (Sl ’Z) ! lP(sl ’Z)} (s—s1)s; 1} (02,
Tk
< |ay|(Zg)M; Tk,[o { {6;"51 ((Tk - sl) llk, z)

o (s”k, z) + ‘?’(s”k,z)}
5 (s}/k, z) + ‘P(s%/k,z)}

") o

x074(5, - &) ("5 2).
(123)

(020:%,)
(125)

which leads, by means of Proposition 6, 8, 11, and 12, to
constants M;, M, > 0 for which

a5, ((#-5) " 2) 4 7 ((#-0) ")

Using the factorization (81), Propositions 6, 8, 11, and 12
grant the existence of constants M,, M, >0 such that

U,Zo,%P)

o < o (Zo)M 0275, - 2:) (5 2]

0.%E (1,2 + T,2
Rl

) (9" |

+ HB;"EZ(T, z)+ ‘P(T, z)

(G’ZU’%)
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S o (Zo)MM, M54 (59,

+ M Z5)|8(r.2)]|

ozy,) t ZHYJ(T’ z)

o)
XM, Zg||E (7, 2) = Ey(T, Z)H(azo %)

(126)
From now on, we select the radius v > 0 and y > 0 small

enough with 0 < Z; < y such that 0 < Z; < y in order that the
next condition holds,

()’

h=(ho,hy by hs)€65hy=0
(kq—h k) hy
Ty |4/

I'(hy/k

k—h,
dh ’ (ZO)MIZO

+ Zo)M;Zy b,

=g,y oy hty ) €GBy 21

+[ay| (Zo)M, {lezgv +2|#(r,2) }Mlzg

(0.20%,)

+ Z| a,|(Z h/k) — MM, [2M Zkv

1
M\ Zg< -

+2H'§/’(T,Z) 3

(o,zo,ezp)}
(127)

Gathering the list of bounds (79), (80), (82), (83), (84),
subjected to (85), implies the shrinking condition (114) we
are looking for.

Finally, in order to certify both properties (72) and (73),
we impose on the constants y >0 and v >0 the conjoint
constraints (78) and (85). Proposition 14 follows. O

In the next proposition, we solve the nonlinear Cauchy
problem (32), (33) in the Banach spaces described in Subsec-
tion 3.1.

Proposition 15. We take for granted that assumption (20)
holds. We fix the constants y >0 and v > 0 as in proposition
14. Then, the convolution Cauchy problem (32), (33) possesses
a solution ®,(u, z) which belongs to the space Gk (0.20%,) , for

any given o > 0 provided that 0< Z,< y. Furthermore, one
can single out a constant M, > 0 (relying on k, q,,0,b) such
that

(128)

H(H)p(r, Z)H(azo %,) <M, Zj + H‘P(T, zZ)

(G,ZO,CZ{I,) '

Proof. According to Proposition 14, we can apply the classi-
cal fixed point theorem for shrinking maps in complete met-
ric spaces to the map 3B : B, — B,,. By construction, (B,, d)
is a complete metric space for the distance d(x,y)=
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. k .
[lx - y||(a)zo,%) since the vector space G(U)ZO%) equipped
with the norm ||.||(U)ZO,%> is a Banach space. Furthermore,

under the constraints imposed in Proposition 14, the map
B : B, — B, is shrinking of Lipschitz type 1/2. As a result,
B : B, — B, has a unique fixed point, denoted Z,(7,2) €
B,, meaning that

1

B(Z,) =5, (129)

This means in particular that we obtain a solution
(unique in the ball B,) Ep(‘r, z) for the equation (111). More-

over, owing to Proposition 6, we check that
10:"8, (7. 2)]

<M, Zg||E,(z, z)||(0 <M, Zjv.

(020%,)

Zo%,)
(130)

The decomposition (69) then confirms that the map

0,(1,2) = 0“5, (1,2) + ‘?’(T, z) belongs to G](‘G’ZO’%), solves
the convolution Cauchy problem (32), (33), and suffers the
bounds (86). O

3.3. Construction of Genuine Solutions to the Main Cauchy
Problem (22), (23). In this subsection, we state the first main
result of this work.

Theorem 16. Assume that condition (30) is granted Assume
that the radius rg of each bounded sector T, described in

Theorem 3 fulfills
A 1/k
P
< () -

for 0<p<¢—1, where A, is introduced in (14) and where {

(0) =T,/ (n 4 1)".
Then, the Cauchy problem (22), (23) possesses a holo-
morphic solution v,(t, z) on the product T , x Dy ,, for some

radius Zy>0 small enough. Furthermore, (t z) can be
expressed by means of a Laplace transform of order k,

Vvp(h2) = kJL O,(u, z) exp (— (?)k> d_uu,

p

(131)

(132)

for (t,z) €T ,x Dy, along a halfline L, V1Y,

which appears in the representation (15). The Borel map ©,
(u, z) represents a holomorphic function on the domain %,
X Dy, whose Taylor expansion

=[0,4+00)e

)= 0, (133)

B=0
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is submitted to the following estimates

0, 5()| <K, B! (z%)ﬁ g

k
exp (or u|”), (134
Iy o2 (n @), 130
forall B> 0, allu € %, for well selected constants K, > 0, any

given o > 0, where r,(B) is the sequence defined by (34). In
particular, the Borel map ©,(u,z) suffers the next bounds

estimates

|0, (1, z)| < 2K |u| exp (0((b)|u|k), (135)

for (u,z) €%, x Dy ).

Proof. The proof is a direct consequence of Proposition 15
and of the construction made in Subsection 2.3. O

In the next corollary, we show that v,(t,z) turns out to

solve a nonlinear Cauchy problem with analytic coefficients
in space z near the origin and polynomial in time ¢, which
involves both differential operators and dilatations/contrac-
tions g — difference operators acting on time.

Corollary 17. The holomorphic map v,(t,z) solves on the
product T ,x Dy , a particular nonlznear Cauchy problem
which is polynomzal in time t of the form

P(tkﬂat) a§+KVp(t, Z)
- Y fu(t2)(9M00,) (4"t 2) (136)

m=(m,my,mz) €M

+ G(t, 2, {(9702v,) (41, Z>}£=<r1,rz,r3>e@)’

for given Cauchy data of the form

(aivp>(t,0):Ej(t),OSjSK—I, (137)

together with

(afz'vp)(t, 0)=¢,(t)hk<j<k+S—1,  (138)

for well-chosen polynomials Ej(t) with complex coefficients
for k<j<x+S-1 (which depend on q).
The set M is a finite subset of N? x Z which satisfies in
particular the constraint m, < S+« for all m = (m,, m,, m;)
€M and R is a finite subset of N’ with the property that
r, < S whenever (r,,1,1;) € R.
For all m € M, the coefficients f, (t,z) are polynomial in

t and holomorphic w.r.t z the disc Dy. The map G(t,z,
(u,) ) is polynomial in the variable t, a polynomial of

degree at most 2 in the variables u, for r € R and relies holo-
morphically on the variable z in the disc Dy,

17

Proof. We introduce the next two g — difference differential
operators

0,(t,2 0,0, a)
=P(1"19,)0; -
( t) 1:(10,11%13)6»% (139)
-cl(z)tloof;;t(( 519 ) alz),
and
(t z,0,,0, a)
=0y — d, (z)t"a
h=(hg,hyhyhs) €6 g " (140)

. ((tk”at) " BZ’Z) v—a(t z)v*

where o, stands for the dilation operator acting on func-
tions through o, f(t,z) =f(qt,z). By construction, the
holomorphic map v, satisfies

0,(t,2,0,,0,,0,)v,(t, 2) = u,(t, 2), (141)
and the map u,, fulfills
(t 2,0,,0,,0 ) u,(t,z) =0, (142)

for (t,z) € 7, x Dy . By coupling (95) and (96), we obtain
that

0,(t,2,0,,0,,0,) °0,(t,2,0,,0,,0,)v,(t,2) =0,  (143)

which can be expanded in the more precise shape

P(13,) 5™, (1,2) - p(#12,)
h:(ho)hl,hz,hﬁe%

hy
ey e)a ((¢12,)"2 )02
I
-y cl(z)tlﬂaf;;t<<tk“8t> a’;)

I=(lph Lok )ed

x Iy + h 5
(T, s ((5) )
I=(ly Lyl )t
hy
’ Z dh(z)thw;?((tkﬂa) 82'2)
h=(hg,hy by hy) €6 -

v, (t,2) - P(t’f*lat) aﬁ{a(t, XA z)}

I
Y c,(z)tlﬂcrl;;t<<tk“at)lal;>
I=(lpslyhyls ) e i

{(r z)v (tz)} 0,

(144)
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and gives rise to the equation (136). Concerning the
Cauchy data, the map v, is compelled to the conditions

(33) which are rewritten in (93). Furthermore, the fact that
u,(t,z) is subjected to the constraints (12) at z=0 can be

recast in the form

<8£o 0,(t,2,0, 0, oq)vp) (t,0) =9;(1), (145)

for 0 < j < S — 1 which can be rephrased through the Cauchy

conditions (138) for suitably selected polynomials \gl; ,(t) with
complex coeflicients for k <I<x+S—1, since j+x>j+h,
for all h = (hy, hy, hy, hy) € € provided that 0<j<S-1. O

Example 3. A model of such an equation (136) can be
obtained in coupling the examples 1 and 2 given by (18),
(24) and is written in the form

(0, - 1)0lv,(t,2)
=5q4°1°(0,0,v,) (¢ 't,2) + q °t"°(370,v,)
(q7't2) -q°F(9,0,v,) (47"t 2)
+2t°07v,(qt, 2) — zt°(0,) (t, 2)
+26°((8,0,7,) (t:2) x v, (. 2) + (9,7, (£ 2)
X (9,v,)(1:2)) = 2(8,7,) (£, 2) X v, (1, 2) = 2°v3(qt, ).
(146)

4. Asymptotic Expansions in Time Variable

In order to simplify the notations throughout this section,
we rewrite our main nonlinear Cauchy problem (22), (23)
in the following form

agvp(t, z) =

et z) (a’f‘ a’;z vp) (q_k3 t, z)

k=(k kk)eB (147)
+a(t, 2)Vy(t, 2) + Uy (1, 2),s

for prescribed Cauchy data
(afz'vp)(t,O):aj(t),OSng—1, (148)

where & is a finite subset of N and where the coefficients
e, (t,z) are polynomial in ¢ and holomorphic relatively to z
on the disc Dy given in Subsection 2.2.

According to the condition (31) imposed on the set € in
(22), the next feature holds for the set &,

(149)

1
k>k, + (E+l>k1,x>k2,k32k1,

for all k = (ky, k,, k;) € %. Indeed, it is straight to check that
for any given integer h; > 1, the decomposition
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h .
(tk+1at) "= Y A k() (150)
=0

holds for suitable polynomials a;;, ,(t) with real coefficients
that rely on j, hy, k.

4.1. Reduction to an Auxiliary Cauchy Problem. We first
write down the convergent Taylor expansions of the coeffi-
cients of (98) at z=0,

e(t2) = Ze&n(t)i—r:, (t:2) = Zan(t)i_':, (151)

n=0 . n=>0

for all t € C, all z € Dy. Furthermore, we expand the forcing
term u,(t,z) atz=0

u,(t,2) = Zup,n(t)z—:f, (152)

n=0

that converges provided that z€ D¢, for all t€ T,

according to Theorem 3. Finally, we recast the analytic solu-
tion vp(t, z) to (98), (99) obtained in Theorem 16 as Taylor

series at z=0,

v,(t2) = vam(t)fq—’:, (153)

n>0

which is convergent provided that z € D, ,, and t € 7 .. The
constant Z,, > 0 is in particular taken small enough in a way
that Z, < 1/C, and Z, < 2R. By plugging the above expres-
sions in the main equation (147), we check that v, solves
(98), (99) if and only if the sequence of functions v, (t) sat-

P
isfies the next recursion

|
n: =(ky.ky.ky ) €B 1y +11y=1 ny:

k, -
VPv”*"f(t) _ e&,nl(t) (at VP*”Z‘*‘kz) (q . t)
|

|

Y+, Ay =1 ny! n,! N
(154)
for all n >0, with prescribed conditions
v i(H)=9;(t),0<j<xk-1 (155)

We plan to reduce this problem, by means of a majorant
series approach to an auxiliary problem disclosed in (116),
(117) that will be solve in the forthcoming Subsection 4.4.
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At the onset, we apply the general differential operator ai
for all integers [ > 0 to the latter recursion (104) and get

ai pn+vc( )

n!

L+k, —k;
_ 5 ; 3 e, (1) (at vp,n2+kz) (a71) )
I!n,! L'n,

k=(kykyky)eBny+my=nl +1,=1

ll 2 l?
9, (1) vy, (1) 3 M(t)}

L'ny! Llny! INV/N

+
ny+nytis=nl +l+l=1
!
L 9itpa(t)

n!

>

(156)

forall n>0,all />0.
We set 77" C T, as a proper subsector centered at 0. We

introduce the next set of sequences

Vp,l,n = Ssup atvpn( ) (157)
tew
where by definition,
V. =sup|dg.(t)], 158
pibj thp tgoj( ) ( )
for 0 <j<x -1, along with
Ek,l,n = ) k, (t) » A e s an(t) > Up,l,n
1S5/4 €
(159)
=sup a,upn( )|
tewW

for all , n > 0. Since the map 0 st g7t leaves W stable

(ie, th (W) W) for any mteger I; >0, we deduce from
the recursion (106) a sequence of inequalities

VPJJHK < il Ek’ll’nl VPJz*klﬂ’lz*kz qfk3l2
- ATH In!
n! K=k, ks ey Srenl, STt Lint Ln,!
+ |A11»V11 VP»lzJ’lz Vp,l3,n3 UP»I’”
NATREATRNALN 1
P S S Ln! Lin,! Lln,! n!
(160)
forall ,n>0.
We introduce a sequence denoted v,,;, which fulfills the

next recursion relation

Vodnex _ Z Z z I Eppm Vo I, +kp,ny+k, q_k312
n! k=( I'nyt Ln,!

=(ky.kyks)eBn+ny=nl +1,=I

+ Z | All>”1 Vodon, Vplyn, UP’L”

TV L) Lingd !

P B Lin! Lin,! Lln,! n!
(161)
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with given initial data
Vp,l,j = P;l,j’OSjS K—1. (162)

By construction, in comparing (110) and (111), (112), we
observe the crucial fact that

\%

pln < Vp,l,n’ (163)

for all I, n> 0. Let us define the next formal generating series

T' X"
X)=) Vo I T (164)
Ln>0
together with
T’ X"
Z Ek ln (T X)
1L,n>0
= ZAM 7 V(1% (165)
1,n=0
Y T’ X"
- pln :
Ln>0 n'

A direct computation following from the recursion
(111), (112) shows that the formal series VP(T, X) solves

the next nonlinear Cauchy problem

v, (T, X) = E (T, X) (a’;l aﬁ‘gvp) (q_k3 T, x)

k=(k kpks)€B

+A(T, X)v (T X)+U (T,X),
(166)
for prescribed Cauchy data
(aﬁ(vp)(T, 0)=j,,(T),0<j<k-1, (167)
where
ij Z phjTr 11 (168)

for 0<j<x—1, whose coeflicients are defined by (108).
Since ¢ ;(t) are polynomials in ¢, we deduce that j; (T) are
also polynomials in the variable T, for 0 <j<x—1.

4.2. Asymptotic Expansions and Bounds for the n—th
Derivative of the Holomorphic Solutions to the Linear
Cauchy Problem Discussed in Section 2.1. In this short sub-
section, we draw attention to parts of the results obtained
in our previous work [1] that will be applied in the next Sub-
sections 4.3 and 4.5. Namely, as a consequence of Theorem
16 from [1], we get the following statement on the
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asymptotic expansion in time t of the maps up(t, z)
(described in Theorem 3).

Theorem 18.

(1) There exists a formal power series U(t,z) =Y 54, (2
)t" with bounded holomorphic coefficients u,(z) on
some fixed disc D¢ for a well-chosen constant Cg
> 0, which represent the common asymptotic expan-
sion of all the functions t— u,(t,z) on 7 ,, for 0<p
<= 1, uniformly relatively to z on D¢ . It means
that, for each 0 < p <¢— 1, for each proper subsector
W T, for each integer N > 0, one can single out a
constant ¢(N, W) > 0 with

N
sup |u,(t,2) = Y u,(2)t"| <c(N, %)|tN",
2€Dy5¢, n=0
(169)
forallte.

(2) The maps t — u,(t, z) are infinitely often differentia-
ble at the origin and

(aiup) (0,z) =1luy(2), (170)

for all 1> 0, all z € Dy, , given that 0<p<¢— 1.

The second point 2 of the above result is not mentioned in
[1] but is a direct consequence of the first item 1. By applica-
tion of a classical result in asymptotics mentioned in Proposi-
tion 14 p. 66 of [14].

Furthermore, in Corollary 17 of Theorem 16 from [1], we
derive important asymptotic bounds for the 1 — th derivative
of the partial maps t — u,(t,z) on bounded sectors. Indeed,

the next result holds.

Theorem 19. For each 0 < p < ¢ — 1, for each proper subsector
W' c T ,» one can select two constants C',M' > 0 for which

altup(t, z)’ <C' (M’)II!F <£) q12/2,

sup
2€Dy5c,

(171)

for all integers 1>1, all te W', where Cg>0 is the well-
chosen constant fixed in Theorem 3.

4.3. Banach Spaces of Formal Power Series. In this subsec-
tion, we unveil the definition and useful features of the
Banach spaces in which we plan to seek for solutions to
the aforementioned Cauchy problem (116), (117).

Definition 20. Let T, X, >0 be real numbers. We set s> 0
and g>1 as real numbers. We define the space G, (T,

X,) as the vector space of formal power series V(T,X) €
C[[T, X]],
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T X"
V(T,X) = Z Vin gy o (172)
1L,n>0 : :
such that the norm
A T! X7
V(T X) [ . , (173)

|| sq) 2
(To-Xo:59) l,éo g2 I(1+(s+1)l+n)

is finite. One checks that the vector space G, (T, X,)
equipped with the norm |[.[|y x ., represents a complex
Banach space.

Remark 21. In the case g = 1, similar norms have been intro-
duced by Miyake in the work [15] in order to construct for-
mal power series solutions of Gevrey type to linear PDEs
with analytic coefficients.

The next proposition is central in order to deal with the
nonlinearity of the problem (116), (117).

Proposition 22. Let V(T,X),V,(T,X) € G, (TyX,).
Then, the product V,(T, X)V,(T, X) belongs to G, (T, X,)
and one can find a constant L, > 0 (depending on s) such that

HVI (T’ X)VZ(T’ X) ”(To,Xo,s,q)

(174)
S LIV (T X 7, x0TV 2 (T X 1, 50)

In other words, (G, (T, Xo), |||l (1,x,5.q)) turns out to be
a Banach algebra.

Proof. Let

;T X"
— J
Vi(T,X)=) Vi T

Ln>0

(175)

for j=1,2 two elements of G, ,(T}, X, ). Their product writes

12 -
Vi, Yin X
V(T X)V(T,X)= Y | > e | 2
o | i Lin ' Lin,! | I n!
ny+1,=n
(176)
By definition, its norm fufills the bounds
IVi(T, X)V, (T X) |
G
< (17 R
LHZ;’O 11+le:—1 Lin! Ln,! (177)
ny+1,=n
1 1

| yn
g"2T(1+ (s+1)l+n) 0720(TXo54)°
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Since g > 1, we first observe that

qlflquﬁlz < qlz/z, (178)
for all integers I;,1, >0 with [, + [, = 1.
The next lemma is essential. O

Lemma 23. There exists a constant L, > 0 (depending on s)
such that

I'n! 1
I \Ln\ T(1+ (s+ 1)l +n)
(179)
<L !

"T(1+ (s+ Dl +n)T(1+(s+ 1), +n,)’

for all integers I, 1,,n;,n,>0with I, +1,=1land n; + n,=n.

Proof. We depart from the next inequality

I!'n! (I+n)!
Lin\Ln,! ™ (1 + ny)!(L, + ny)! (180)
I'(l1+1+n)

ST+ +n)C(1+L+ny)’

for all I},1,,n,,n, >0 with I, + I, =1 and n, + n, = n. These
bounds straightly follow from the binomial expansion for

each term of the identity (1+x)'(1+x)" = (1+x)"", for x
eR.
In the next step, we need to prove the next. O

Lemma 24. The next inequality

F(1+(s+ Dl +n)I(1+(s+1)l,+n,)

FC+(s+1)(I;+1)+n, +n,)

L+l +n)I'(1+1,+n,)
I+l +L+n;+ny)

(181)

holds for all 1,,1,, n;, n, > 0 Proof We recall the next identity
defining the so-called Beta function (see [14], Appendix B)

I'(a)I'(B) _ JI(I _ t)fx—ltﬁfldt, (182)

I'(a+p) 0

provided that «, 3 > 0 are real numbers. As a result, observing
that

fi)y=(1-thrh <1, (183)

provided that t € [0, 1], we get that

21

IF(1+ s+ Dl +n)I(1+(s+1)l,+n,)
FC+ s+ +1L)+n,+n,)

(1 _ t)(SH)l]Mlt(s+1)12+n2dt

(1 _ t)l’+n’tlz+n2dt= F(l + l] + nI)F(I + l2 + n2)
0 rC+lL+L+n;+n,)

(184)

Il
—— —
o ~

from which Lemma 24 follows.
From the functional property I'(z+ 1) =zI'(z) for any z
> 0, we can factorize

P2+ (s+I1)(I;+ 1) +n; +n,)
=(I+(+D)(;+L)+n+n)l(1+(s+1)
(L + L) +n;+ny),
2+l +1L,+n;+n,)
=(I+L+L+n,+n)I(1+],+1,+n,+n,).
(185)

Combining the bounds (125) and the expansions (127),
we get that

T+ (s+ Dl +n)I(1+ (s+1)l,+n,)
L1+ (s+1)(I;+1) +n;, +n,)

186
<l 1+l +n)I'(1+1,+n,) (186)
<C(hn) T(1+1+1,+n; +ny)
where
1 1
C(l,n) = T+ (s+Di+n (187)

1+1l+n

where 1=1, +1,, n=n; +n, with 1;,1,,n,,n,> 0. Besides, a
constant L, > 0 (relying on s) can be found such that
C(ln)<L,, (188)

for all I,n>0. Finally, the collection of the bounds (124),
(128), and (129) yields the forecast estimates (123).

Owing to the upper bounds (122) and (123) applied to
(121), we reach the awaited inequality

[[V(T, X)V,(T, X)H(TO,XO,S,q) <L, Z

Ln=0

1 2

Vi, Y, i xn
Vo @I+ (s+ 1)L+ ) gEPT(L+ s+ D) +my) |0
n+n,=n
:LlHVI(T’X)”(TO,XO,s,q)HVZ(T’X)H(TD,XD,s,q)'
O
(189)
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The next proposition helps us in addressing the linear
part of the Cauchy problem (116), (117).

Proposition 25. Let ki, kj, k;>
requirement

0 be integers under the

ky>(s+ Dk, , ky=k,. (190)

Then, the linear operator o i,y © al}f a)_(kz is bounded from
the space G, ,(Ty, X,) into itself. In other words, there exists a
constant L, > 0 (depending on g, k,, k,, s) with

|Erav) ()], s

< LXg T3 | V(T X))

(191)

T Xy5,q)°
for all V(T,X) € G, (T, X,)-
Proof. Let V(T,X)=Y,,.0v,, T"/I’X"/n! be in G, (To, Xo)-

The action of the g - difference differential operator is
expressed through

k ~—k
(aTlaXZV> ( b, X) Z Vivk, n-k, q* l , (192)
1>0,n>k,
and enables us to rewrite the norm
K —k K k
Ty Xy || (0F 0% 2V 5T, X
0 < > (q ) ‘ (T9:X0559)
_ |Vl+kl,n—kz | g ! l+k, X ky
120,12k, qlz/z L1+ (s+1)l+ ”)
|V1+k n—k | 1 l+k, < -n—k
= ZZ T lX Z,
,Zoékz bn gk 2 T(1+ (s+ 1)(I+ k) +n—k,) 0 0
(193)
where
(Fk)'2 T+ (s+1)(I+k) +n—k
(gln: q _ —ksl ( ( )( 1) 2)’ (194)
g q" I'(1+(s+1)l+n)

for all />0, n>k,. In the continuing part of the proof, we
show that the sequence €, is actually bounded by some
constant.

Indeed, recall from [14], Appendix B, that for a given a
€ R, one can find a constant K, > 0 (relying on a) such that

<K x%, (195)

provided that x>1. Consequently, we get two constants
K 1. >0and L, >0 (depending on s, k;, k,) with
ESELS) .
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F(1+(s+1)l+n+(s+1)k;, —k,)
I'(1+(s+1)l+n)

<

1
<K
skoks (1+ (s+ 1)l +n)

(196)

<
ky—(stD)k; = Lys

for all >0, n>k,, provided that (131) holds. On the other
hand,

I+k,)*12
gt Ik —ks) 312

e = gl ghi? < gh? (197)

for all />0 under the assumption (131). As a result, we
obtain

6, <471, (198)

for all />0, n>k,. Finally, based on (133) and (136), we
deduce

Th Xk (a'%‘ 0y V) (q,k3 T, X) H(T o 199)
k 2
LoV Xl o1, x, 59
which is tantamount to (132). O

In the next proposition, we show that the coefficients, the
forcing term and Cauchy data of the problem (116), (117)
belongs to the Banach space G,/ (T, X,) for well-chosen

parameters.

Proposition 26. Let k, g chosen as in Section 2.

(1) The series U,(T, X) appertains to G,;..(T,, X,) for
Ty, Xy > 0 small enough

(2) The series £ (T, X) and A(T,X) belong to G (T,
X,) for Ty, X, > 0 small enough

(3) We set up

(200)

K—1 ) X/
X)= Y jip(T)
j=0

For any nonnegative integers k;, k,, k; >0, the polyno-
mials (al;fafpr)(q‘k3 T,X) belong to Gy ,(To, X) for any
given Ty, X, > 0.

Proof. We focus on the first point (1). According to Theorem
3 stated in Subsection 4.2, with the help of the Cauchy for-
mula, we deduce that the sequence U ;, defined in (109) is

subjected to bounds of the form

piln

(DN
Upin < Uny (L) (00 (), (200
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for some selected constants Uy ,, U}, U, >0, whenever [> 1,

n > 0. Besides, from the formula (182), we observe in partic-
ular that
F(a)(B) < I'(a+p),

(202)

provided that «, 3> 1. This last inequality combined with
the functional relation I'(z + 1) = zI'(z) for any z > 0 begets

l!F<£>n1§F<2+ G +1>l+n>
= (1+ G +1)l+n>F<1+ G +1>l+n),
(203)

for all I>k, all n>0. Thereby, we deduce constants Do,p’

U,, U, > 0 with

Uy < Uy, (DI)I(DZ)”F (1 + (Ilc + 1) I+ n) 4" (204)

for all [, n > 0. Bestowing the last expansion of (115) implies
the next norm bounds

U, 1 | Ty X2
U T,X _ pln 0“0
H o( )H(TO,XO,llk,q) l,%o qlz/z I'(1+ ((I/k) + 1)l +n)

N < \! — \n -
<U,, Y (TOEUI) (XOIUZ) <4l

(205)

provided that T, X, > 0 are constrained to TODI <1/2 and

X,U, <1/2.
We address the second point (2). According to the
assumptions of Section 2, the functions ¢, (¢, z) and a(t, z)

are polynomial in ¢ and bounded holomorphic on some disc
Dy, relatively to z, for all k € 3. From the Cauchy formula,
we deduce that the first two sequences in (109) satisfy the
bounds

! !
Exn < Eox(Ey) (By)"Inl A, <AG(A)(A,)" !0l
(206)

for some well-chosen constants £y, E;,E, >0 and Ay, A,

A, >0, for all , n>0. Owing to (139) and since the map x
— I'(x) is increasing on [2,+00) (see [14], Appendix B),
we check that

l!n!sl‘(2+l+n)sr<2+ (11{ +l)l+n>qlz’2

_ 1 1 P12
= <1+ <k +1>l+n)1“<1+ (k+1>l+n>q s

(207)
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for all I, n>0. Whence, constants E%, EE/l, Ez >0 and Ko’

A, Rz >0 can be found with

Ez)”r<1 + (% + 1>l+ n)qlzﬂ,
n = O(Kl)l(ﬁz)”lﬂ<l+ (llc +1)l+n>qlz/z)

(208)

m
=
s
IN
ult
=
&
/N
i
~——
/N

=z
£

AN
> (

for all [, n>0. Thanks to the first two expansions of (115),
we deduce the control of the norms

E,(T.X)|
H k( ) (To:Xo,1/kq)

!
— IEg i | Ty X5

T T+ (VR + D)+ n) (209)

N NN — \ " N
<Eo Y (TOrEl) (XO[EZ) <4Eg,

L,n>0

together with

IACT: X 7, x17ka)
-y A, | To X}
52 ' T(1+ ((Vk)+1)l+n)

N} - \!/ — \ " -
<A,y (TOAl) (XOAZ) < 4A,,

(210)

whenever T, X, > 0 are submitted to T0E1 <1/2, TORI <1
/2 and X,E, < 1/2, X,A, < 1/2.

Finally, the last point (3) is straightforward since for any
given integers ki, k,, k5 > 0, the quantity

H (a’;l o Wp) (q*"s T, X)‘ . (211)

(To:Xo:1/kq)

is a polynomial in the variables T'j, X,, and is therefore finite
for any fixed T, X, > 0. |

4.4. Solving the Auxiliary Cauchy Problem. In this subsec-
tion, we seek for a formal power series solution to the non-
linear Cauchy problem (116), (117) by means of a
decomposition

V(T X) = 05"Y (T, X) + W, (T, X), (212)
where the polynomial WP(T’ X) is displayed in (137), for
some formal series Y, (T, X) to be determined.

We observe that v,(T,X) fulfills the problem (116),
(117) if the expression Y, (T, X) solves the next fixed point
equation
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Y, (T, X) =

, E,(T,X) (a’; af;*"yp) (q-ks T, X)

k=(kikyoks )€ -
+A(T, X) (35°Y, (T, X) + W, (T, X))
+U(T.X)+ Y E(T.X)
k=(kyky k) e B
-(a’;laﬁ‘gwp) q’k3T,X).
(213)

Our ensuing undertaking is the construction of a solu-
tion of this latter equation (149) within the Banach space
of formal series discussed in the previous Section 4.3. In
order to fulfill this objective, we set up the next nonlinear
mapping A : C[[T, X]] — C[[T, X]] defined as

(Y (T, X)) =
k=(kykyk3) e

+A(T, X) (0" Y (T, X) + W,(T, X))
TUTX)+ Y E(T.X) (a’;aﬁ‘gwp)

k=(kykoks)eB
. (q_k3 T, X).

E, (T, X) (a’;l o) Y) (q*"s T, X)

(214)

In the next proposition, we discuss sufficient conditions
under which 2 represents a shrinking map acting on some
small ball centered at the origin in the space Gy, (T, X))

Proposition 27. Taking for granted the condition (149), some
small real number &> 0 can be singled out such that if 0<
X, <&, one can choose a radius @ >0 such that A suffers
the next features.

Let B, be the ball centered at 0 with radius @ in the space
Gyiq(To» Xo)-

(1) The next inclusion

A(B,) C By, (215)
holds.
(2) For any Y, Y, € B,, we have
1
LY ) =AY 2)| 7, x kg < 5 1Y1 = Yol iy
(216)

Proof. We behold the first property. Let Y(T, X) belong to
the ball B,. Under the constraint (100), Propositions 22,
25, and 26 allow the next inequality
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@t ) )|

<L |E(T.x)|

(T:Xo-1/k,q)

(To:Xo1/k,q)
|| (oFax"™* ) (a0 x) |
(

<4L,LEq, Xy T | Y(T. X)

(217)
Ty, Xo,17Kkq)

||<T0x0,1/k,q)’

to hold true along with

HA(T, X)(35°Y (T, X) + W,,(T, X))

(To-Xp:1/ksq)

—x 2
< LTHA(T’ X)”(TO,XD,I/k,q) x HaX Y(T’ X) + WP(T’ X)H(TU,XD,I/k,q)

s4L§KO(szg|\Y(T,X) )+ W, (T.X)]|

2
T0>Xo)1/k)q)> ’
(218)

H(TO,XO,llk,q

for some constants L;,L, >0 and Eg;, A, >0. Eventually,
due to Propositions 22 and 26, we arrive at

H[EE(T, X) (akT‘ aﬁ‘gw},) (q_k3 T, X) ‘

(To:Xo,17kq)

cufesnn],,.,, | Ghah) (o)
' k( ) (To:Xp:1/k,q) T )\ (To:Xo17k,q)
v i) (a2
S ACZAN (ToXoa)
(219)
for some constants L, >0 and Eo,k > 0. O

From now on, we take the radius @ > 0 in a way that

4L§KO(”WP(T,X "+ 4l

)H(To»XOJ/kﬂ))

CY a (ahdkw,) (o m )|

k=(kkyok;)€B (To-Xg:1/k,q)

< ®,
(220)

for some fixed X, > 0. Then, we pick up a tiny constant & > 0
with 0 < X, < £ aiming to the next constraint

4L, L,Ey X5 o Ty @ + 412A,
k=(ky ks ks )€ -

(LX50+ W, (1. )| "+ 4l,,

(Toxo,l/k,q))

oy 4L1E0,kH(a’;a§gwp) (q—kaT,X)H
ke=(ky ks ks ) €% -

<@.

(To-Xgs1/k,q)

(221)

This latter inequality can be reached since the quantities
Xgikz and X§ are small as X, > 0 tends to 0, owing to (100).
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Piling up the above estimates (153), (154), and (155)
under the limitation (156) hints at the due inclusion (151).

We address the second property. Let Y, (T, X), Y, (T, X)
be taken within the ball B,. The above inequality (153)
prompts the next bounds for the linear piece

B0 (33 (vi - va)) (a4 TX) |

<AL L,Eg Xg T | Y, (T, X) - Y, (T, X)

T X 1/k:q)

H (To:Xos17kq)
(222)

With an eye toward the nonlinear block, by means of the
basic identity a® — b* = (a - b)(a + b), we factorize the differ-
ence of squares as

Ay = (0Y (T, X) + W, (T, X))?
— (0, (T> X) + W, (T, X))

= 0" (Y1(T, X) = Y,(T, X)) x (95" Yo (T X)
+2W,,(T, X) + 0"Y, (T, X)).

(223)

Consequently, on account of Propositions 22, 25, and 26,
the next estimates

M(T’ X)A1, ”(TOJ(oJ/k,q)

< LA X)| 7, x,109)
x [0y (Y1(T, X) = Yo(T, X))”(TO,XO,I/k,q)

x || oY (T, X) + 2W,(T, X) + a;(KYZ(T’X)H(TO,XO,IIk,q)

< BALXS (LX3| V(T X) | o,

Xo1/kq)
2 Wo T X e * L X8 V2T X))
Y (T, X) = Yo (T, X)H(TO,XO,I/k,q)’
(224)

follow. Then, we pick out a small constant &> 0 with 0 <
X, < ¢ intending to the next condition

Y AL LE Xy T + L24ALXS
k=(ky.kyks)eB (225)
1

: (2L2X5w + 2| W, (T, X) <T0,x0,uk,q>) <3

Storing up the previous bounds (157) and (158) under
the restriction (159) triggers the Lipschitz property (152).

At last, we compel the constants @ > 0 and £ > 0 to fulfill
both constraints (156) and (159) in order to guarantee each
of the two foretold properties (151) and (152).0.

In the upcoming proposition, we solve the auxiliary non-
linear Cauchy problem (116), (117) amidst the Banach
spaces introduced in Section 4.3.

Proposition 28. Let us assume that the condition (149) holds.
Let the constants @,& > 0 be determined by Proposition 27.

25

Then, the nonlinear Cauchy problem (116), (117) owns a for-
mal power series solution v,(T, X) that belongs to the space
Gyg(To» Xo) presuming that 0< X, <&. Along with it, one
can find a constant L, > 0 (resting on k, q, k) such that

HVP(T,X)H( <L, Xjo+ ||WP(T,X)||(

Ty X, 11kq) ToXp,1lkq)"

(226)

Proof. On the basis of Proposition 27, the classical fixed
point theorem for shrinking maps in complete metric spaces
can be applied to the map 2 : B, — B, from the plain
observation that (B, d) represents a complete metric space
for the distance d(x, y) = [|x =y (1, x,1/kq) Since the vector
space Gy,(To, X,) endowed with the norm .||, x 1/kq)
is a Banach space. Indeed, under the conditions asked in
Proposition 27, the map % : B, — B, appears to be of
Lipschitz type 1/2 and hence shrinking. Whence, 2 : B,
— B, has a unique fixed point, denoted Y, (T, X) € By, sig-
nifying that

(227)

In particular, a unique solution Y, for the equation (149)

is found in the ball B,. Along with it, due to Proposition 25,
norms estimates can be achieved,
0" <LXG[| Y[

<L,Xo. (228)

Y H (To:Xo1/kq) To.Xo,17kq)

Consequently, the splitting (148) attests that the map
v,(T,X) =0y"'Y,(T,X) + W, (T, X) appertains to G, ,(To,
X,) and solves the problem (116), (117) under the restric-
tion (160). O. O

4.5. Asymptotic Expansions of Mixed Order. In order to
describe the type of asymptotic behaviour which arises in
our settings, we need the following definition issued from
our recent work [16].

Definition 29. Let (F, ||.||z) be a complex Banach space. We
set k>1 an integer and g > 1 a real number. Let f : T —>
[F be a holomorphic map, where I stands for a bounded sec-
tor in C* centered at 0. Then, the map f enjoys the property
of having the formal series

F(r) = a,t" € F[t]]

n=>0

(229)

as Gevrey asymptotic expansion of mixed order (1/k; (g, 1))
on 7 if for each closed proper subsector 7" of I centered at
0, two constants C, M > 0 can be distinguished with

- S

N+1
< CMN+1F< - >q(N+1)2/2|t|N+l’
F
(230)

for all integers N >0 and any t € 7.
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We are ready to enunciate the second main outcome of
the work.

Theorem 30. We consider the set {v }0<p of solutions to
the main Cauchy problem (22), (23) establzshed in Theorem
16. If one sets [, as the Banach space of bounded holo-
morphic functions on the disc D, equipped with the sup
norm, then each partial map t — v,(t,z) can be viewed as a
holomorphic map from the sector I, into [F, , for 0<p<g
— 1, aslong as 0< Z, < Zy/2, where Z, is set up in Theorem
16.

Hence, provided that Z, > 0 is taken small enough, for all
0<p<c-1, the maps t > v,(t,z) share a common formal
power series

Zh te[FZ [[t]],

>0

(231)

as Gevrey asymptotic expansion of mixed order (1/k; (g, 1))
- To rephrase it, for each 0<p <¢— 1, for each proper
subsector W T, two constants C,M >0 can be singled

p)
out with

< Net o (NI Nan22,, N+
sup [v,(t,z) - Zh,( )t|<CM+I“( )q(+)/|t|+,
ZGD71 1=0 k

(232)
for all t € W', all integers N > 0.

Proof. According to the bounds (160) from Proposition 28
and Definition 20, the unique formal series v, (T, X) € C[[T

, X]] solution of the Cauchy problem (116), (117) given by
the expansion (114) is compelled to satisfy the next bounds

!
Voin < (L Xo@ + ||W, (T, X)|| T0X0,1/k,q)> (T()) (233)

1\" 1 2
. <)To) F(1+ <% +1)l+n>q”2,

for all I,n>0. On the other hand, the next lemma will be
required. o

Lemma 31. There exist constants K;> 0, j=1, 2,3 such that

I'(a+ B) < K, (K,)*(K3)FT (@)I'(B),

for all real numbers o, B> 1.

(234)

Proof. We provide a complete proof of this classical result
since it is not contained in our reference [14] on special
functions. We depart from the Stirling formula (see [14]
Appendix B), which ensures the existence of two constants
A, A, >0 for which

Al xx x—l/z e—x

< T(x) < Axx2e™ (235)
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for all x > 1. Therefrom,
12 « B
Terf) ( i ) <1+E> (1+E> - (236)
T(@I(B) = a2 \a+p a B

Besides, one can pinpoint two constants B, >0 and B,
> 1 such that

(aiﬁ/3> Ceprn s, (237)

for all $>1 and from the classical estimates log (1+x) <x
for x > 0, we deduce that
(1 + (x)ﬁ <e”
, g) =

(10 £)" - (s (1 £) )
(238)

for all real numbers a, f>1. Lastly, piling up the above
bounds (165), (166) and (167) yields the awaited estimates
(164). O

In view of the inequality (113), we deduce from (163)
together with (164) the next decisive bounds for the higher
order time derivatives

sup|v,,,(1)| < (L2X3a>+ |W, (T, X)
tew”

for all n >0, together with

sup[2t,, (1)
tew”

< (LngcD + || W, (T, X)H(Toxn,l/km)

: (;O)l(;o)nf(l + <% + 1>l+n>q’2/2
5\70(\71)1(\72)%(@ + l)l)F(l +n)g 2
of 1>I(V2)nmf(l + (% + l)l) nlg' "
o I)I(Vz)nf((i + 1>l>r(1 +n)q "
Vo ( l)l(wz)nmf(l + (% + 1)1) vql 2

for all I > 1, n> 0, for some constants V, >0, V,, V,, V, >0,
and \v/o, \V/l, 3\72 >0 (relying k, g, x, To, X, @ and V,,; for 0
<j<x-1), where 7/ stands for a fixed subsector of 7.
From the Taylor formula with integral remainder, for
each 0<p<¢—1, n>0, we can expand the function v, ,(t)

as follows

(240)

1l
<)
<)

IN
<)
<)

<)
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N (dlv,,)(0)
ph
Vpn(t) = Z ( I ) tl + RN+1,pn(t)’ (241)
=0
where
LN t—h)N
Rriaga(®)= | 80 U gan (a2)

for all £ € 7/, all integers N > 0. The remainder Ry, ,,(f)

can be estimated from above by means of the latter key
bounds (169),

Il

Roaga(®) = (]| el ) () 0 )
.(K/z)"n!r< N+1>qN+1
< (Vo) ) (%) 1

(k (N+ 1)>q(N+l) | |N+1

(243)

forallte .
For each 0 <p <¢ - 1, we define the formal power series

I n

75(62)= Y (3h0) 0) o € Cls2])

L,n>0

(244)

It turns out that 9,(¢, z) can be rewritten in the form

z)= th)l(z)tl

>0

(245)

where the expressions hp,l(z) are holomorphic on a disc D,
provided that its radius Z, > 0 is taken small enough. Indeed,
the first term h,,(z) is expressed through the series

)= 2 %pa(0)

n=0

(246)

which represents a holomorphic function on D, for Z; <
X,/2 since

Ih (247)

- |z | n ~
0@V Y <X_ <2V,
n=0

0

owing to the bounds (168), whenever |z | <X,/2. Besides, for
all 1> 1, the coefficients h,,(z) are given by the expansions

h®) = 1 (Z(ai ) 0 )—,)

n=0
which define holomorphic maps on D , when Z, < 1/2\72

(248)

since
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|hp,,(z)|g\70( ) () mz( )"\zr’sz\v/o(\v/l)lr(é)qlz’z,

n=0
(249)

according to the bounds (169), given that |z | <1/2\V/2.

Consequently, in view of both expansions (170) and
(173) along with the remainder estimates (171), we deduce
the next error bounds

M=

v, (t:2) = Y hy(2)F]
=0
N "
:|Z>;)Vp,n( Z(;( tpn) >m|
=D Ryy1pn(t) ¢ 1<V, (\71)1“% (250)
n=>0 !

2N +1) | gD 2N+ |V "
(5 +>)q 1Y (121 %)

N+1 1 5
52\/ (\/ ) F(E (N + 1)>q(N+1) /2|t|N+1)

for all t € 7, all integers N > 0, given that |z| <Z,, for Z, >0
chosen as above.

In the last part of the proof disclosed within the next
lemma, we show that the coefficients h,,;(z) do not depend

on p for all [>0.

Lemma 32. The coefficients

Ty = (30 ) (0,

of the formal series v,(t, z) given by (172) do not depend on p,
forall I, n> 0. As a result, the coefficients h,,(z) of the formal

expansion (173) do not depend on p for all | > 0 and thereby
each formal series V,(t, z) turns out to be written as a single

formal series

(251)

2) =Y hy(2)t, (252)

=0

with holomorphic coefficients h)(z) on Dy , for > 0.

Proof. Paying regard to the relation (156), we get in particu-
lar the next recursion for the sequence v, ,,,

aeknO

v
pln+e |
n Z Z Z . I'n,!
’ k=(ky.ky ks )€ BNy +1y=nl, +1,=] 1
i |: Z i at anl (0) Vp,lz,nz Vp,ls,n3:|

Il Ll Lin.!
R M s N Lin! Lln,! Lln,!

, 0ty (0)

n'

P,12+k1,n2+k2 —k; 1,
Lin,!

>

(253)
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with prescribed set of data

V0= (ai@) (0), 0<j<k—1, [20. (254)

Now, we observe that the above prescribed quantities

Y, for 0<j<x—1 and [>0 along with the forcing terms

aiup)n(O)/n! for all [>0, all >0, do not depend on p,
according to our assumption (23) and Theorem 3, 2.. As a
result, we deduce by induction from the above recursion
(175) that the whose sequence ¥, do not depend on p for
all ,n=>0.0

At last, the statement of Theorem 30 issues from the
above lemma 32 and the error bounds (174). O

5. Confluence as g Tends to 1

Throughout this section, the notations introduced in the ear-
lier sections of the work are lightly modified. Our objective is
now to keep track of the dependence of the family of solu-
tions {v,(t,2)} o<pec1 © the initial problem (22), (23) rela-
tively to the parameter q > 1, constructed in Theorem 16.
On that account, we denote v, (t,z) the function v,(t,z).
We also attach a second index q to the Borel map ©,(u, z)
by setting ®,(u, z) = ©,,,(u, z) within the integral represen-
tation (88). From now on, the real parameter g is chosen
inside an interval (1, q,] for some fixed real number g, > 1.

5.1. A Limit Singular Linear Cauchy Problem. In this subsec-
tion, we call attention to parts of the results reached in our
previous work [1] that will be applied within the next sub-
section. We keep the same notations as the ones introduced
in Section 2.1.

We consider the next singular Cauchy problem

P(tk+1 at) aiu;l (t, Z) — z G (Z)tlo <tk+lat)ll aiz U, (t, Z),

1=l k) et )
(255)

for given Cauchy data

(alz'u;1>(t, 0)=p,(f), 0<j<S-1.  (256)

where all the data k, S, P, o/ and the coefficients ¢;(z) with [
€ o along with the initial data ¢,(f) for 0<j<S—1 are
already declared in Section 2.1.

In Section 8.1 of the paper [1], the next statement is
outlined.

Proposition 33. Let @ = {J, U} be an admissible set of sec-
tors as chosen in Definition 2. Let U be one sector belonging
to the family of unbounded sectors %.

One can build up a solution u,(t, z) to the Cauchy prob-
lem (177), (178) which is bounded holomorphic on a domain

T X Dypc, where the bounded sector I belongs to the family

T of bounded sectors from @ and corresponds to U under
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the requirement (2) of Definition 2 and where Cg > 0 is some
well-chosen constant. The map u,(t,z) can be expressed by
means of a Laplace transform of order k,

u,(t,2) = kJLyw;l(u, 2) exp (— (?)k> %,

along a halfline L, ¢ % U {0} described in Definition 2 (2),
for all (t,z) € T X Dy .

The Borel map w,;(u, z) represents a holomorphic func-
tion on U x Dyjpe,- Its Taylor expansion

(257)

u)z"
w,(u,2) = an;l %, (258)
n=0 :
suffers the next bounds
|wn;1(”)| < C;(Cg)"n!|u] exp (k, log® (|u] + up) (259)

+alog (Ju| +up)),

for all n>0, all ue % u{0}, for fittingly chosen constants
Cyk;>0and uy>1, a>0.

5.2. A Limit Nonlinear Cauchy Problem. In this subsection, a

novel Cauchy problem is introduced that we call the limit

problem as g > 1 tends to 1. Its shape is displayed as follows
0., (t,2) =

hy
dh(z)th‘]((tk*lat) a’;w;l)
h=(hohyhyhsy) €@

“(t,z) +a(t, z)vi(t, z) +uy(t, 2),
(260)

for given Cauchy data

(afz'v;l)(t,O):@(t), 0<j<k—-1,  (261)
where the forcing term w,,(t, z) is the holomorphic solution
of the singular linear Cauchy problem (177), (178) unveiled
in Proposition 33 of the former subsection. Besides, all the
items «, k, € along with the coeflicients dh (2), a(t,z) for h
€ € and the Cauchy data aj(t) for 0<j<x—1 are those
already introduced in Section 2.2.

We aim for a solution to (182), (183) having the profile
of a Laplace transform of order k,

vy () = kJL ®, (1, 2) exp <— (?)k> %“,

Y

(262)

along the halfline L, given in (179), where the Borel map
©,, (u, z) is holomorphic with respect to u on % and analytic
w.r.t z on some small disc D, centered at 0 with radius r > 0.

The same computations as the ones of Section 2.3 by
means of Proposition 4 shows that the Borel map ©,) (4, z)
solves that next auxiliary Cauchy problem
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30, (1, z) = y d (2) (kuk) " (aﬁqu)

=(ho,hy iy Ty €G3y =0

(u,z) +

h=(hohyhyohy ) €Bihg=1

[ 6w ) ()

1k
+a0(z)ukj ®;1<<uk—s) ,z>(~);1(s”k,z)
0
1

for given Cauchy data

(8£®;1)(u, 0)=P,(u), 0<j<x—1.  (264)

For later need, we make the change of variables s = u*x

and s, =sx; for 0<x,x; <1 in the integrals involved in
(185). As a result, ©, (u, z) solves that next auxiliary Cauchy
problem

h
350, (1,2) = dy () (k)" (20, ) (1.2)
h=(ho:hy by by ) €€5hy=0
Lo+
i 2 @) TR

=g,y 1y ) €5y >1

+ay(z J ( x) 1k, )® ( Uk )
A

-(1 oy Z h/k J h/kl

. (J:)@;l (uxllk(l _xl)l/k’ Z) 0,

. (uxllkx%/k’ z) (L) dx +w, (4, 2),

1-x))x, ) x
(265)

for given Cauchy data (186).
The next proposition comes along with the same steps as
in the proofs of Proposition 15 and Theorem 16.

Proposition 34. Let @ = (T, %) be the admissible set of sec-
tors distinguished in Proposition 33. Let % be the infinite sec-
tor belonging to U selected in Proposition 33.
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A solution v,;(t, z) to the Cauchy problem (182), (183) can
be reached, that is bounded and holomorphic on a domain T

XDy 1 for some small radius Z,, >0, where I is the

bounded sector from J_ singled out in Proposition 33. More-
over, v, (t, z) is described using a Laplace transform of order k,

vy(tz)= kL O, (u, z) exp <— G)k) d—:,

forall (t,z) € T x Dy, » along the halfline L., that appears in
the representation (179). The Borel map ®,;(u, z) stands for a
holomorphic map on the domain % x D,_,, which solves the
above auxiliary Cauchy problem (185),Y (187), and (186).
Besides, the map ©,;(u, z) belongs to the space G](CU,ZO;I’%) and
enjoys a decomposition of the form

(266)

®,(u,2) = O;°E, (1, 2) + ¥ (u, 2), (267)
where ‘?’(u, z) is defined in (63) and Z.;(u,z) belongs to
Gl((o,zn;l,%) and satisfies

||E§1 (u’ Z) H(G’ZO;I’%> < v;l’ (268)

for some suitable constant v,; > 0.

In the ensuing corollary, we observe that v, (¢, z) actually
solves a limit nonlinear Cauchy problem with analytic coef-
ficients in space z in the vicinity of the origin and polyno-
mial in time t.

Corollary 35. The analytic map v, (t, z) solves on the product
T x Dy, a particular Cauchy problem relying polynomially

on time t with the shape
» ( . at) 3y, (2) = E(t, 2 vy (b2)) . mme;@)’ (269)

for given Cauchy data of the form

(aiv;l)(t, 0)=¢(t), 0sjsk-1  (270)
together with
(a{;,vd)(t,O):Eﬂ(t), k<j<k+S—1, (271)

or well selected polynomials ¢ . (t ,k<j<k+S—1 (that are
p y Ji1 ]

independent from q). The set R is a finite subset of N? for (
T ty) € R with the property that r, < S+« for any (r;,r,)

€ R. The map é(t, z, (ur)rgéz) is polynomial in time t and

in its arguments u, with r € R and analytic w.r.t z on

Dy, 12
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Proof. We set up the differential operators

Dy(t,20,,0,) = P(tk”at) 35 - o(2)th
I=(lolshsk)ed 272
ll (7)
- (#13,) "ok,
and
Dy (t,2,0,,0,)v=0" - d, (z)t"
h=(hohy 1y hs) €6
h=(hohyhyshs )€ (273)
tk+1 0 h ahz _ 2
. ¢ 2 |v—a(t,z)v".
According to Proposition 34, v, (t, z) satisfies
D, (t, 2,04, 0,)v, (L, 2) = u, (, 2), (274)
and based on Proposition 33, the map wu,, (t, z) solves
D,(t,z,0;,0,)u,(t,z) =0, (275)

provided that (t,z) € 7 xDy_,. By pairing (194) together
with (195), we obtain

D,(t,2,0,,0,) > D,(t,2,0,,0,)v,(t,z) =0, (276)
that is represented by the equation (269). Regarding the
Cauchy data, the map v,; suffers the conditions (261) which

are replicated in (192). Moreover, the constraints (178) put
on u,(t,z) can be reworded as

(2 2o(620, )7 ) (10) = 5(1),  (277)

for 0<j<S—1 which begets the assumptions (193) for

properly chosen polynomials 51;1 (t) with complex coeffi-
cients for k<I<x+S-1. |

5.3. Analytic Solutions to the Limit Singular Linear Cauchy
Problem under the Action of a q— Difference Operator. In
this subsection, we take heed of a technical result achieved
in our foregoing work [1] that will be called upon in the next
subsection. We keep the notations of Subsection 5.1.

In Section 8.2 of [1], the next result is established.

Proposition 36. Let 3> 1 be an integer and let q € (1, q,).
Two constants Cy, C,y > 0 (that are unrelated to q) can be
found such that

w51 (8) = w,y (47P)]
<|q 7 = 11Cy(Cyp)"nllul exp (k; log®(lul+p)

+ a log (|ul+uy)),

(278)
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for all ue % U {0}, for all integers n > 0, where the constants
k; >0, uy>1, «>0, and the unbounded sector % appear in
Proposition 33.

5.4. Analytic Solutions to the Limit Nonlinear Cauchy
Problem under the Action of a q — Difference Operator. This
subsection is dedicated to the proof of the next technical
proposition.

Proposition 37. Let > 1 be an integer and set q € (1, q,).
Then, one can find some constants v.; > 0 and M., > 0 (unre-

lated to q) such that for any given o >0, if Z,> 0 is taken
small enough, the next bounds

H@);I(u, z) -0, (q‘ﬁu, z)

(020) My (1-47F), (279)

hold.

Proof. The proof is rather lengthy and is made up with sev-
eral steps.

In the first step of the proof, we formulate a Cauchy
problem, stated below in (208), (209), that the difference

MO, (1,2) =0, (u,2) - O, (q‘ﬁu, z) , (280)

is compelled to solve. We first state a Cauchy problem satis-
fied by the quantity ©,;(q Pu, z) by substituting u by g Pu in
the equations (265), (186).

0,0, (q”su, z)

3 el e

h=(hoshyhashs) €€k =0

. (q’ﬁu, z) + Z d,(2) vy

h=(hoshyhphy)€Biho=1
! holk=17hy hy ~h vk ) 9%
. [ (1-x)"* o0, (q'ﬁux ,z) -
Jo
1
+a0(z)J 0, (q’ﬁu(l x)Vk, z>®;1 (q'ﬁux”k, z)
0
X A

—x)V
(q_ﬁ“)h ' -1
[ (hik) J (1=

(lﬂ_iix)x + Zah(z)

h=1

. 1@ B, 1k 1- 1/k ®
;1 q ux ( 'xl) »Z ;1

0

d d
) (q‘ﬁux”kx%/k, Z) B S K w, (q_ﬁ% Z):
(I=x)x;) x )

<8£®;1)<q'ﬁu,0>=ﬁj<q'ﬁu> , 0<j<k-L

0

(281)

On the way, we need to perform some practical com-
putations. Namely, using the basic identity ab—cd = (a—
c)b+c(b—d), we recast the next list of pieces in a suitable
manner:
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(k”k)hla?@;l (,2) - (k (q‘ﬁu> k> I <agz@;1> <q—ﬁu, Z)
- {(kuk)hl - (k<q5u>k>hl
(k) ) s - o (st

90, (12) (282)

and

uh0+khljl(l — )l g, (ux“k, z) dx
0 ? X
ho+khy (1 d
- (q’ﬁu) + J (1-x)lo*xhgl@, (q Buxilk 2 )_x
0 X
hy+kh, ] (1
[ - o=
0
1
-0, (ux”k )ﬁ + (q"ﬁu>h0+khlj (1 —x)h‘)/k’lxh‘
= 0
d
. [82’2@1 (ux”k, z) - 822@1 (q"gux“k, z)} —x,
? ? X

)ha/kflxhl ahZ
z

(283)
along with
J;@“ (u(l —x)Vk, Z) e, (uch, Z) ’ il;;)x
[;@1 ﬁu 1- )uk) z)®;1 (q Buuxl/k, z) i f};)x
J ([04(s1-2"2) -0, (g Pu1-"z) | (284)

x)l/k, Z>

@1< Xk, )+@ (q-ﬁu(l—
51 dx
e O (atu2) ) 7

(2) -

and

1 1
th a _x)h/k—l <J e, (ux”k(l x )1/k 2)9;1
0 0

dx dx
. (ux”kx}/k,z> 1 ax
(I=x)x, ) x

- (q7%u) hJ;(l — x)lt (J;@;l (a7 Puct(1-x))"2)

d. d.
-0, <q*ﬁux1/kxi/k’z> (1_2 )_x

)x, ) x
_ |:uh _ <q—ﬁu)h} J;( S (J;@;1 (uxllk(l _xl)llk)z>
E

1-x)
-0, (ux”kx{”‘,z) % + <qfl3u>h£(1 — )it
)”k,z>)

1-x)x

J 1/k1 xl)llk’ ) ( Bux l/k(

x@l(ux”kx”k >+® (q ﬁux”k 1—x l/k )

N < (uxllkxllk ) e, (q‘ﬁuxlka}/k, Z))}(l —dii)xl} %
(285)
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Based on the two equations (265), (200) together with
the prescribed data (186), (201) and thanks to the above
computations (202), (203), (204), (205), we can now
exhibit a Cauchy problem fulfilled by the difference AP
©, (u, z) given in (199) owning the following shape:

a:chﬁ@;l (Ll, Z)

hy
:h . h;)emo dh(z){ {(k”k)h B (k(q’ﬁu>k) }
: 82’2@;1(% z)+ <k(q’ﬁu) k) hlaQZAﬁG;l(u, z)}
+ D d, (2)

K
h=(hohy by by ) €Gshy21 I (holk)

tGRCONSEI

ke, ( k. 2)% ( _ >h0+khl
[ prate,) (wn) £
+ aO(z)JO{AﬁQI (u(l - X)”k,z)® (ux”k )

+@;l<q—ﬂu<1_x>uk )Aﬂ@( o))

(1-x)x
2@ i | (- (r)')
UO )M (J (L= x ) 2 )
0, (st ) il )i]

1=x)x
. (q ) J )bkt U {AﬁQl (ux“k(l “x)", z)

.0, (uxllkx{/k’ ) +0, (q’ﬁux”k(l _xl)llk,z)

-A/"@ (ux”kx}/k,z)}L ﬁ
i1 (1-x))x, | x

tw, (u’ Z) ~Wa (qiﬁu’ Z) >

x)holk—l

(286)

for given Cauchy data

—

(aJZ’AﬁQI) (u,0) = P;(u) - P; (q-ﬁu) ,0<j<k—1. (287)

In the upcoming step, we plan to solve the problem
(206), (207) within the Banach space described in Subsec-
tion 3.1. In the first instance, we need to rephrase the inte-
gral operators involved in (206) in terms of those
appearing in Subsection 3.1 by means of the parametriza-
tion s=ukx, s, =sx, for 0<x,x, <1. Indeed, we deduce
that AP®, (u,z) turns out to solve the next linear Cauchy
problem
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B’Z‘Aﬁ(a;l(u, z) for some expression AﬁE;l(u, z) to be determined, where

= y dy (2) {khl [1 - q-ﬁkhl} ki gl

b=l okl ) €3hy=0 AP (u,2) ZABP (291)
K\ ™
£0,(1,2) + (k(q‘ﬁu) ) o Ao, (u, z)}
hy = = 5 . .
+ d, (2) k for AﬁPj(u)sz(u)—Pj(q Pu), with 0<j<k-1.
h=(hohy iy hs ) €Bihg 21 I'(hylk) We pinpoint the crucial fact that Aﬁ(@;l(u, z) solves the
- L Rkl problem (208), (.209) if .the quantity APE,(u,z) satisfies
. [1 — g Plhot 1)] X u J (u - s) the next fixed point equation
0
uk —
.Shlailz®~1 (51/k’ z) é " q—[f(h0+kh1)ukj Aﬁ:u(“) z)
; S .
hylk-1 ds = z dy ( ){kh [ 9 ﬁkh} 1010, (u,2)
) ( Uk s) s (82’2 A"3®;1> ( sk z) ° } h=(hghy o) €G3y =0
e\ ™ _
Wk " + (k(q"ﬁu) ) (a;“_hZ)AﬁE;l(u, z)+ a’;zAﬁ‘P(u, z)) }
+ ao(z)ukj {A'BQI ((uk - s) ,z)
’ Y K B(hy+hy)
- 1k + d,(z) 1 — g Plothh
.0, (Suk’ Z) +0, <q ﬁ(uk _ S) i Z> hethopigyegnz L (holk) [ }
uk hylk—1 ds
ds 4 X uk[ d-s) oo, (s )
1/k z 5l >
.A‘BQ;I(S ,Z)}m+};ah(z) .0( ) < )S

ut hylk-1
1 { {1 o uk ; hik-1 + q*ﬁ(hﬁkhl)uk[o (uk —5) o (a;(x—hz)Aﬁ_g;l (Sl/k, Z)
0

u —s
k
: +6£’2Aﬁ‘¥’ stk 2 é} +a (z)ukr {(8;’%‘65;
‘<5L®;1<(s—51)1/k,z)® (Silk’z) (s_dzll)sl) <( L ;uk ;) ;ﬁlp((o )1O/k >)® (;k )
. u —s ,Z |+ u —-S , Z (ST, Z
? +q_ﬁhukJ:k (uk—s>h/k_1 '

: {SJS {A'B(E;1 ((s —s)VK z)@ (s{/k, z)

d d 1
+0, (q‘ﬁ(s S z)AﬁQ (s}’k, z) } ' Aﬁl{j( " )) } (i _SS)S * h; a(2) TR
_ ut hik-1
RS I (el L B Ty
oty ) e (4 s
for assigned Cauchy data { J {(a “APE, ((S sV z) +Aﬁ‘1’( (s =), ))

» 3 L . (51 ,z) 0, qﬁs—s “k,z)
(afZA ®;1)(u,0)=Pj(u)—Pj(q ﬁu) ,0<j<k—1.

(a7
—x B Sl ds, ds
ooy () (i) ] 4

tw,y(4,z) —w, <q"'3u, z).
In the second step of the proof, we seek for a solution
to the above problem (208), (209) expressed by means of (292)
the next splitting

Our next duty will be to search for a solution and pro-
vide bounds relatively to g for a solution to (212) in the

Banach space G , for any given o >0, provided that

APO, (u,2) = 0"APE, (u, 2) +Aﬁ'¥’(u, z), (290) i
’ ’ (0,20,%)
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Z, >0 is chosen small enough. With that in mind, we intro-
duce the linear map

D (Aﬁa(r, z))

=Y d@[1-g ] Make, (r2)
h=(hghyhyhy ) €Bshg=0

+ (k (q‘ﬁr)k> " (a;<'<-hz>A/35(r, z) + ol AP (x, z)) }

hy
* 2 4y (2) r(zo/k) { (1o

= (g, iy 1) €Bhy 21

™ 7k Y vk )\ 95 Bihyekhy) K
X T (T —s) slazz@l(s ,z)—+q ot
: s
0

Tk —

J (Tk_s)ho/k 15,1l (a;(x—hz)AﬁE(sllk’ z)
0

Tk

s (9, 2)) ‘f} ey
({9 o((0-9)
0,(%2) +e, <qﬁ (#-9)" ) (a;mﬁa (+%2)
- 4P (s, z))}
-{[l—q-ﬂh]fkjjw—s)”"‘ CRICES
T

. [sJL{(@Z“ABE((s—sl)I/k, z) +Aﬁ‘¥’((s—sl)”k, z))

e (Syk’ Z) +0, (q_ﬁ(s -s)"% Z)

(as(ane) e (1)) o 2

+w,y(r,2) ~w, (q’ﬁr, z) .

ot z ah(z h/k)

(293)

In the next lemma, we discuss sufficient conditions
under which D acts as a shrinking map on a small ball cen-

tered at 0, whose radius depends on g, in the space G( 220

O

Lemma 38. We take for granted that the conditions (30) hold.
Then, one can single out a small real number ¥ > 0 in a way
that if 0 < Z, < ¥, one can select a radius 0 > 0 which is inde-
pendent of q (but relies on q, such that 1< q < q,), such that
D possesses the next two qualities: let By(;_,

s be a ball cen-
tered at 0 with radius 0(1 - qF)
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(1) D maps By_,4) into itself, meaning that
D (Ba(lfq,,;)) CBy(1_gs)- (294)
(2) For any APE,, APE, € By(1_q#)> We have
H@(Aﬁal) —@(AﬁEz) ) HA/3~ M|
(0.20%) (0.20%)
(295)

Proof. As a prefatory material, norm bounds estimates are
required for some pieces of the map D.

(a) Indeed, at first we need estimates for the norm
|w, (1,2) —w, (q7Pr, z)||(0,20’%). According to the
expansion (180) and the definition of the norm, we

get
de (1,2) —w, (‘Iﬁﬁf’ Z) (0.20%)
=n  (296)
=Y em@-wa ()| B
n=0 ’ : ot

and owing to the bounds (197) brought to mind in
Proposition 36, we can upper bound the coefficients
of this latter series by

Wy, (‘17/37)

Hwn;l (t) -

(n,0,%)
1+ 7]

s L e o) - )
< (1 - q*'B> C9(C10)”n!i121£) (1 +x2k) exp (—axk)

- exp (k; log*(x + uy) + o log (x + 1) )
< (1 - q_ﬁ) Co(Cyo)"nl,
(297)

for some constant C, (unrelated to q), for all integers
n = 0. Thereupon, it leads to

Hw;l (1.2) —wy (q_ﬁ'[: Z)

(020%) (298)
< (1 - q‘ﬁ) ) (CIOZO)" < 2(1 - q‘ﬁ) Co»
n=0
provided that Z, < 1/2C,,,.
(b) We focus on the quantities ||Tkh182'2®;1(T, Z)H(U,Zo,%)

for integers hy, h, > 0 under the constraint (20) and

on [0, (q477.2)ll , 7,2,
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According to the decomposition (189) with the bounds
(190) and owing to Propositions 6 and 12, we obtain

(L ACHCE)

(J,ZO,?Z)

< Hrkh‘a?@;l(r, z)

(0:20,1,%)

< Hrkhlag(“’hz)i;l(‘r, z)

2
(0:Z,1,%) ( 99)

+ Hrkhlagz‘?(r, z)

(0:Z41,2)

—h g
<M, Z5 o, + H‘rkhl AW (1, 2)

bl
(0:70,,%)

along with

o1 (a7n2) (0.20%)
< HQI (q_ﬁr, z)
()

J#ve)

< (i)

K«
<M, ZE v,
(0:201,%)

(0:20:15%) (0:20.,%)

(G’ZO;I’%)’
(300)

for some constant M, > 0 (independent of g but relying on
q, such that 1 < g<gq,) provided that Z; < Z,,.

(c) We ask for sharp bounds for the
||TkhlaI;2Aﬁ‘\f/j(T, z)||(0,20)%), for integers h,h,>0
under the constraint (20). Departing from the expan-
sion (211), we observe that

norms

k—1-h,

- - j
Mo APY (1, 2) = Z TkhlAﬁPj+h2(T)Z,—', (301)
=0 J
and its norm writes
khy 3hy AR
T"MORAPY (1, 2
H 2AY(n2) (0202)
= 5 (302)
= TMAPP, T ‘ fo,
,zo joia(7) (i) J!

where

Abstract and Applied Analysis

[ea7,0,00)

2

(o)
L+g* N1k Kk | ABTD
= sup exp (~om, ()71 ) [r[ |4 P, ()|
TEU |T‘
| |2k _
<sup exp (—0|T|k>|r\kh1’AﬁPj+h2 (1)}
e 1Tl

(303)

since 1,,(j) > 1, for all j>0. Furthermore, we can recast the
difference as an integral

Aﬁphhz(‘[) =j 5 Pin, ,(S)ds = (1 - qiﬁ) TJ Pj+hz,
q Pt 0

(th+qPr(1-h))dh,
( )

(304)

by means of the parametrization s=th+ g #7(1 - h) with
0<h<1. Since P;,, is a polynomial with complex coeffi-
cients, its derivative can be written in the form

5 ! 5 I h
Piy, (s)= Z Piipn s (305)
h67j+h2,

for some finite subset 7 " of N and complex coefficients

Jj+h,
P, h'. We set

1Py, 1(x) = Z 1P 16, (306)
he]Mz’
and since
’Th +qFr(1- h)) < |tk + ‘q’ﬁ‘lfl(l ~h)<lz],  (307)
forall Te C, all 0 <h <1, we get in particular that
1By (et q#e(1= ) <Py, (7], (308)

whenever 7€ C and 0<h < 1. We deduce from (221) and

(222) that
< (1 — q’/3 )

for all T € C. Thereupon, gathering (220) and (223) yields a
constant My, ., >0 for which

Vo

P

T j+hy

]Aﬁ P (1) () (09)

[ea5,0,00)

(os%)
< (1 - q_ﬁ) sup (1 +x2k) exp

x>0

k\ Jkh, | D -
. (—ax )x P l(x) < (1 —q ﬁ)Mk’hl,j,hz.

(310)
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Keeping in mind (219), we finally get a constant
Ny oz, > 0 such that

Hrkhl aﬁmﬁf/(r, zZ)

_ B B
(U,ZU,?[)S<1 9 >Nk>h1,h2,K,ZO' (311)

(d) Bounds for the uanti
q ty
”Tkjgk(Tk _ S)ho/k—lshlagz(a;l (Sllk, Z)dS/SH(UZ ) are

also required, for integers hg, h;, h, >0 under the
constraint (20). Based on the decomposition (189)
with the bounds (190), Propositions 10 and 12 allow
to get a constant M, > 0 with

T holk-1 ds

TkJ (Tk - 5) st a’;zel <s“k, z) —
: s, .

0 (0.20%)

(* holk-1 d

(L S

TkJ (‘rk - s> shlai”@;l (s“k, z) —
0

(0:202:%)

(* holk-1 d
/K= (e —_ S
TkJ (‘rk - s) shlaz(" hZ)al (s”k, z) —
; s

0

7 holk-1 _

‘rkJ (Tk - s) M ai‘ﬂl’(s”k, z) ds
0 s

7 holk-1 _

TkJ (Tk - s) haly (s”k, z) ds
0 s
(0.Z0,,%)

(312)

IN

(0.2, %)

+

(0:200:%)

>

—h
< M3Zg;1 v, +

presuming that Z, < Zo,-

(e) We demanded also accurate estimates for the norms

>

(0.20%)
(313)

4 holk-1 - d
TkJ ('rk - s) sholh APy (s”k, z) ®
0 s

for integers hy, h;, h, > 0 under the constraint (20). From the
expansion (211), we check that

k—1-h, j
- - z
ai'zAﬁ‘I’(s”k,z) = Y AP, (slfk),_,, (314)
p= S
and therefore,
x-1-h T hylk-1 7
A= z TkJ (Tk—s) U ohlAPp 2(5”")(15 =
j=0 0 Goa)
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On the basis of the upper bounds (223), by means of the

change of variable 4= |r|*x with 0<x<1 and keeping in
mind the lower bounds r,(j) >1, we deduce a constant
Mk>ho’h1xh2>j >0 fOr Wthh

G hylk-1 -
TkJ (Tk - s) ’ shl_lAﬁPj+h2 (s”k) ds
0

1+ [7]*

sup I exp (—arb<j>|r|k)|rkj:'k
) <|T|k _ h) ho/k’lhhﬂ (1 _ q—ﬁ)hl/klpﬁhzll (hl/k)dh

< (1 - ffﬁ) sup (1 +y2k) exp (_Gyk)yh“khl'ﬁﬁhz/'
y>

(o)
<sup

1
: (J’)J (1 =)otk g < (1 - q_ﬁ) Mypo
0

(316)

At last, pairing (227) with (228) gives rise to a constant
Ny on ez > 0 such that
> 515K.2¢

T holk-1 _ d
Tkj (Tk - s) shlangﬁ‘P (s”k, z) s
0 s

(0zp)  (317)

= (1 B q_ﬁ) Nk‘h0>h1’hz”‘>20 h

We are now ready to come to the core of the proof. We
fix our attention on the first item 1.

Let APZ belong to G](‘a 7 %) such that

(ozo) =" (1-a%).

We provide explicit bounds for each block of the map
D(APE).
Proposition 11 and (217) return

HAﬁE(r, 2) (318)

Hdh(z)khl [1 - q’ﬁkhl} Tkhlai”@;l(‘r, z)

(020)
sl fal(z)(man, o
kh, 3ha s
+|| "M (T, 2 .
H ‘ ( ) (‘T’Zo;p%))
Propositions 6 and 11 together with (225) trigger
d, (2)k" g~ Bk gk (5=(ho) ABZ (2 7Y 4 9™ AP (1,
| u(apping it (5 o)+ s
<|d,|(Z,) kg P (M, Zg || 4P 2w,
| (20) 1o 3 oz,
+ (1 - qiﬁ)Nk,hl,hz,x,Z(,)'
(320)
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Proposition 11 and (226) afford Propositions 8, 10, and 11 together with (217) beget

& ’ (2) s 1= ) rkJ: (#-9)""

_ B(hg+khy) | Lk
W) Tl [1 " }TL

hylk-1 ds
. <Tk - s) Moo, <sl/k, z) —
; s

(o) (321)

= ’dﬁ‘ (Z°> F(I;zhl/k) [1 a )} x| Mz, <l <Z°) F(;/k) [1 - qiﬁh}%
0

7 holk-1 - ds
TkJ (Tk - s) ! shlai'“P<s”k, Z) — .
s
0 (0:Zo0 %)

+ 0.Zp%)
<lol (%) g [~ ol
Propositions 10 and 11 along with (229) prompt < |ay| (ZO) F(;/k) [1 -q ﬁh}M3M2
_ 2
T (o)
<lanl(Z0) 7 ! [1-q™|p,m
« <a;(x—h2 AﬁE( 1k, >+ah Aﬁ\y( 1k, ))@ h I'(h/k) 1 M
lemny (322 _ 2
5 K B +khy) Sy || B . <MIZ§;1U;1 e Z)H(“’Zon’%)) .
S 6| (2) g 7 (w2 @m ) | (324)

+ (1 - qiﬁ)Nk,ho,h,,hz,xZ.())'

Propositions 6, 8, and 11 with the help of (217), (218)
and (225) furnish

Proposition 6, 8, 10, and 11 coupled with (217), (218),
and (225) breed

a,(2) (h/k)q . kL (Tk_5>h/k—1
£ Bzl (+
J {(a “ (<T S) ) x [s[ {(a;”AﬁE<(s—Sl)l/k, z) +A5‘?’<(s—sl)”k. z))
I/k JO
Aﬁl{/( ,Z )@1 st z _®;1(Sllk’z>+®. (q"s(s—s )1/k,z>
w00 (=) e (era(en (o < )+ 2E(42))) J’?J‘f
AﬁlP< Uk ))}W (020) < ‘ah‘<

?)
o ' [ { (- )
e (e slyaz))@;«sw,z)
0, (q’ﬁT: Z) H (0.2,%) e, (q’ﬁ <Tk B 51) “", z) (a;mﬁs (S}/k, z)

om) r 2 (42)) } e

5hM

[©a(r, Z)H(U,zo,czz) +

: Ha;mﬁs(r, 2) + AP (1, 2)

<|ao|(Zy )M, | | M, Zy||APE(x, 1-qF 0.2,
|“0|( 0) 2{( 149 (1.2) (020%) +( q > N X )
. _ < |ay| <Z )W q "' MM,
'Nk,o,o,x,20> X <MIZO;1U;1 + HW(T’ z) 0 %))
_ {Ha “APE(1,2) + APTO, ( sk 2z ) ]
+ (MIZS;IU;1 + H‘P(q’ﬁ‘r, z) (a,Zo;l,‘Zl)) (0.20%)

(1842 (52,)

B
&) (0.20%) * (1 a q_ﬁ)Nk,o,o,x,Zo)} - ! <q " Z> (oZo)

) .Hagmﬁg(r, 2) + APPO, (Si/k’ Z) H (J,ZU,%)}

: (MIZS
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<Ja|(Z) %q‘ﬁwg% KMIZS
X <MIZS;IU;1 + ‘ lP(T’ ?) (a,Zo;,,%)>
+ (M 12010 + Hl?(q_ﬁn Z) <a,Zo;v?‘>)

(0207) (1- q”j>Nk,O,0,K,ZO)] .

From now on, we select a small sized quantity Z, > 0 and
suitable ¥ > 0 (taken independently of g € (1, g,]) in a way
that the next inequality holds

: HA‘BE(T, 2)

(325)

: (MIZS HA";E(T, 2)

> Idhl(Zo) {k”l [1 _ q—/skh,]

h=(hgh,,hy,hsy)€G5hy=0
+ khl q’ﬁkhl
(0Z00%)

(M ZK hz~(1 -q ﬁ) + (1 —qiﬁ)Nk,hl,hz,mZn)}
. y |dh|(Zo)p(:—:,k)

oyl ) €521

h=(h
—h
{ h0+kh (M3Zg;1 2 v,

hylk—1 - ds
T J (Tk - s) R ai‘z‘f’(s”k, z) —
0

) )
(0,20, %)

+www@¢wqhwpow@mmmm}
+agl <ZO)M2 [(Mlzgf)(l - qiﬁ) + <1 - q7ﬁ>Nk,o,o,x,Zo)
(a,zoyl,(zz))

(o[ (aoes)| )
. <M123f2<1 - q_ﬂ) + (1 - q_ﬂ>Nk,0,0,x,Zu):|
) }glah (z ) T { (-],
) P

) { M, o“(l_ - ) <l—q7B)Nk,o,o,x,Za)
(azu,;zz)>
+ ( Zoavy + H‘P i, Z) (g,zo;l,%)>

M

(o010 (17 o)

+2(1 q ﬁ)é sa(l—q ﬁ)

. <M Zglhzv + H khlai'“?’(-r, zZ)

+

x (Mlzg;lv;l + H‘?(T’ 2)

: <M1Zg;lv;1 + ";I//(T’ Z)

x(MZOlv +H‘I’Tz

(326)
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Notice that the above constraint (238) can be achieved
since all the quantities

P khil ( VAR g Bk
5 q ) T
1-qF =0 1-gF
hy+kh, -1 —Bkh kh-1
= OZ (q—ﬁ)] g’ _ y (q—ﬁ g
j=0 1-qF =0
(327)

remain bounded for q € (1, q,] provided that kh, > 1, h, +
kh,>1,and h>1.

At last, the collection of all the inequalities (216), (231),
(232), (233), (234), (235), (236), and (237) listed overhead
under the condition (326) yields the first expected item
(214).

We concentrate on the second feature 2. of the map D.

Let AP5,, APZ, be elements of G’g 2) with

HAﬁEJ.(r, 2) (328)

(zo) =" (1-a%).

for j=1,2.

According to the computations made to treat the first
property 1 of ®, we deduce forthrightly the next list of
inequalities

H d, (2)k" g P gk g () (AﬁEl (1, 2) - APE, (1, z))

(0.20%)

<|dy| (2o )R a2y | 495, (7. 2) - 45 (1. 2)

(0.20%)
(329)

and

K T holk—1
By +khy) _k k Iy
O (O

x 0,0 (2, (,2) - 4, (s, 2) ) &

= khl ~k—h
<l|d ‘ Z)— _ﬁ(ho*'khl)M 7 2
’ h ( °) F(holk)q 370

: HA/;EI(T, z2) - APE, (1, 2)

(022

>

(020

(330)

along with
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o) (331)
< Janl(Z MZKMlZg A8, (r,2) - A5, (r,2) (o,zo,%))
X (Mrzg;lvl + HlP(T’ ?) (a,Zn;.,%))
+ | M Zy, v, + H‘\f/(q Fr Z) (J)Zm,%)>
A<M123 APE\(1,2) - 45, (1, 2) (a,zn,%)ﬂ’
and
a,(2) r(rt/k) q_ﬁhrk (=) h/k | { o{( R
<(s )z )_ 2( Yk, )))@l(llk’z)
10, ( ) Z)( (Aﬁ" ( Z
—AﬁEz(S}/k’z>))} s—dil s ?
(=) 1} (02y%) (332)

- 1 - H
< |“h|<Zo> T(hik) q " MM, {(MrngAﬁzl(T’ z)
(0’20’%)> x <MIZS;1U;1 + H‘P(T’ 2)
M,z + | (a7,
+ ( 140,V + (q T Z) (020 %)
,2) - APE, (1, 2)

. <M123HM51(I z (g,zo,%)ﬂ.

Hereafter, we choose Z, > 0 small enough in a way that

- AﬁEZ(T, z)

(0:20,,) )

] (22 o 25
h=(ho,hy 1y 1 ) €G 5y =0

+
h=(hy,hyhyhy ) €G3hy=1

dh|<2 ) (:h/k) Mz
+ || (20>M2 {Mlzg (MIZ&IU” ' H\?(T’ %) <a,zo;,,%))

+ (M, Z5 v, + H‘?’( ’ﬁr,z) M,Z,
( 1401Y51 q (0201 2) 140

+ zlah‘(Z0> h/k)q M3M2 [M Z

(0:Z;,%) )

+ (M, Z; v, + H‘¥’< Fr z) ZK 1
o 1 ’ (0:Z0,1,%) 0 2

: (Mlzg;lv;l + HIP(T’ Z)
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and gathering (239), (240), (241), and (242) gives rise to the
shrinking property (215).

Eventually, we select the constants Z, >0 and 9 >0 in a
way that both constraints (238) and (243) hold concomi-
tantly. Lemma 38 follows. O.

In the upcoming lemma, we solve the linear Cauchy
problem (208), (209) within the Banach space GIEG,ZO,%)' 0
Lemma 39. Let us presume that condition (30) holds. We sin-
gle out the constants Z, > 0 and 0 > 0 (independently of q in
(1,9,)) as in Lemma 38. Then, the linear Cauchy problem
(208), (209) owns a solution A'B® 1(u, z) that belong to the

Banach space Gk for any given o > 0. Along with it, a

constant M > 0 (unrelated to q € (1, q,)) can be found with
the next feature

HAfB@;I (u,2) (334)

<M, (1 - */3>.
(0207%) L1 q

Proof. Derived from Lemma 38, the classical fixed point the-
orem for shrinking maps on metric spaces can be used for
the map D : By_,5) — By_gs) according to the fact
(By(1-4)d) stands for a complete metric space for the dis-
tance d(x,y) =[x =[5z, %) Whence, D: Byy_gp —
By(1_q#) carries a unique fixed point denoted APE (u,2)
inside the ball B;,_,4), meaning that

o(4'5,) =o', (335)

As a result, a unique solution APE, for the equation
(292) is established in the ball B;(;_, 4. Furthermore, propo-
sition 6 conjointly with the decomposmon (210) and the
bounds (225) certify that the map

N0, (u,2) = 0MPE, (u,2) + APV (u,2), (336)

belongs to G}(“7 7y solves the problem (208), (209), and suf-
Zo,

fers the next upper estimates

MO, (u,z
H ,l(u ) (O’,ZO,?()
<M Z"HAﬁE. ,Z +HA’3¥’ 2
10 1(2) (02,,%) (42) (0:20%)
< Mlzgf)(l - q_ﬁ) + (1 - q_ﬁ) Nioox7,

SMl;l (1 - q_ﬁ)’

(337)

for some constant M 1.1 > 0 which is unattached to g in the
range (1, g,].0.
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According to Lemma 39, it turns out that the unique
formal series in z with holomorphic coefficients on %
solution of (208), (209) is subjected to the bounds (244).
Since the difference ©, (u,z) - ©, (q7Pu,z), which repre-
sents in particular a formal power series in z with holo-
morphic coefficients on %, is shown to solve (208), (209)
in the first step of Proposition 37, it must coincide with
the solution AP®,(u,z) constructed above in the second
step of the proof, and we deduce conclusively that the
for sought estimates (198) hold for it. This completes the
proof of the proposition. O

5.5. Error Bounds between the Borel Maps of the Analytic
Solutions to the Linear Cauchy Problems (11), (12) and
(177), (178). In this subsection, we remind the reader of a
result obtained in our previous work [1] related to the

dependence of the family of solutions {u,(t, Z)}0<P<<—1 to

the linear Cauchy problem (11), (12) relatively to the param-
eter g > 1 set up in Theorem 3. This result will be applied in
the ensuing subsection.

We consider the admissible set @ ={J, %} of sectors
chosen in Proposition 33, where an unbounded sector %
and corresponding bounded sector I are distinguished.
We denote

u(t,z) = kJ w,, (1, 2) exp (-(u/t)k) d_u”, (338)

LY
for (t,z) € 7 x Dyyc, the solution of the problem (11), (12)
displayed in Theorem 3, along the halfline L, taken in Prop-
osition 33, where the Borel map w,(u,z) has now an

attached index g in order to keep track of the dependence
in g>1. According to Theorem 3, w;q(u, z) represents a

holomorphic function on the domain % X D, 5, with a Tay-
lor expansion of the form
Z”l

! >

w,(u,2)= an;q(u) (339)

n=0 n

whenever u € %, z € Dy 5. We keep the notations of Section
5.1. In Section 8.3 of [1], the next result is stated.

Proposition 40. Let g € (1,q,]. Two constants C;;,C;,>0
(that are unconnected to q) can be singled out such that

|, (4) = W, ()| < (g = 1)C,,(C )" n!|ul exp
- (k; log’ (|lul+u,) + a log (lul+uy)),
(340)

for all ue % u{0}, all integers n >0, where the constants k,
>0, uy> 1, a >0 are fixed in Proposition 33.

5.6. Error Bounds between the Analytic Solutions of the
Nonlinear Auxiliary Cauchy Problems (32), (33) and (185),
(186). This subsection is devoted to the expounding of the
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next proposition which plays a central role in the upcoming
third main result of this work discussed in Theorem 44.

Proposition 41. Let q € (1, q,|. Then, one can select two con-

stants 20 >0 and ]\V/II > 0 that are unrelated to q, such that for
any given o > 0, the next bounds

©4(:2) = @ (1.2 (7, <MiZola= 1), (341)

hold, where ©,, stands for the solution to the Cauchy problem
(32), (33) that belongs to the space G](co,z,,:zz) for some Z,>0
(relying on q, but independent of q) built up in Proposition
15 and where ©,) solves the problem (185), (186) and is exhib-
ited in Proposition 34.

Proof. The proof is split up is two main parts.
In the first part, we frame a Cauchy problem specified
later on in (253), (254) which is fulfilled by the difference

Al;q(»-D(u, z) = 0, (u,2) - ®;q(u, z), (342)

for which we seek upper bounds.

To that end, we need some prelusive computations. The
basic identity ab—cd=(a—c)b+c(b—d) will help us in
recasting in an appropriate manner the next list of differ-
ences appearing as building blocks of the pending equation
(347). The differences dealing with the linear terms can be
reorganized by inserting some auxiliary terms as

(kuk> " ol 0, (u,z) - <k (q’h3 u) k) § o 0, (q’h3 u, z)

:-(ku )h‘—<k(q- )k> "0, (u,z)
T
"= (+(

))
- [ ((a™4)')
+ <k (q-hsu)k) § [a’;al (u2) - 90, (q_h3 10, z)

+ ai”@;l (q‘h3 u, z) - ag‘z@;q (q‘h3 u, z)} ,

k
h
+ <k(q
k

h3u
[6226;1 (u’ Z) - alz12®;q (q_h3 u, Z)]
h3u

00, (u,2)

h]
hy ]

(343)

and



i ”kJ (w5 { S{(ks)’% - (k<q-h3$uk>k) m}
P, (M2) + (k (q,%sw)k)hl
[0, (5,2) - oo, (a7, 2)] } z
A -0y

ahz@ RIS ( —hy 1/k ) ai’l®;1 (Sllk) Z)
_ ahz® ( —hs l/k) Z) +0
_ a}zz@q(q ha gk Z)] }

along with the differences for the nonlinear terms that can
be reshaped as

Qv
N:‘
=
~~
=
=
3
“
=
vk‘
N
~—
QU
%)

(344)

k

ukJ: 0, ((uk - 5) l/k, z) 0, (s”k, z) ﬁ
<uk _ S) 1/k) z) o, (Sl/k, z) ﬁ

" z) _ @M( (uk _S)l/k’zﬂ (345)

|
<
o~
—_—
=) £
9
5
7 N

1 ) ds, ds
( S_Sl /k’ Z)Qq(sllk’ Z) (s—sl)sl> B
_ (uk—s h/k 1<SJ {[(9;1((5_51)1#(,2)
Gq(( sk, z ) (s%”ﬁz) +®;q((s—sl)”k,z>

}@
1 1/ ds, ds
{6;1 (Sl k’z> _@q( lk’z)} } (s—sl)sl)s'

(346)
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Owing to the fact that @, (resp. ©,,) solves the linear con-

volution Cauchy problem (185), (186) (resp. (32), (33)), pay-
ing regard to the redrawn expressions (343), (344), (345),
and (346) and keeping in mind the notation (199) of the pre-
vious Section 5.4, we can state the linear convolution Cauchy
problem fulfilled by the difference A¥®(u, z) as follows

DZA”’@(u, z)

_ 5 d,(2) ( [(kuk)h‘ - (k(qhau)k)hl}

h=(hg,hy;hy,hs)€E3hy =0

940, (1,2) + (k(q'hluy)hl

: [a’;mhz(a;1 (u,2) + aZZA‘;@(q"”% Z)])
k

1 u holk=1
dy(2) =——~ ukJ uk —s
sty ) €Bshg=1 I'(hylk) ( 0 ( )

g: h
H h3sllk> )h]} « airz@;l (Sllk’ z>

0
r0, (155" ) a0 s 2) | L) &

—51)81 ) s

(347)

for prescribed vanishing Cauchy data

(afZ'Al;q@) (4,00=0 , 0<j<k-1  (348)

In the ensuing part, we intend to solve the above problem
(253), (254) by way of the Banach spaces introduced in Sub-
section 3.1. Namely, we search for a solution to (253), (254)
shaped as

A¥MO(u, z) = 0,*A¥E (u, z), (349)
for some expression A%Z(u,z) to be specified. One checks

that A%@(u, z) matches the problem (253), (254) if the map
AYE(u, z) is subjected to the next fixed point equation
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AME(u, z)

hy
=h . hzzh)ewo dh(z)<[<kuk)h B (k<q—h3u)k> }

K\ ™
. 82‘2(9;1(14, z) + (k <q’h3 u) )

[0, (1) 42,0 AME (g w2 )| )

1 ol holk=1
' ﬁ:(h(,,h,,h;})e?;;hnzldh(Z) I(hylk) (ukJO (uk N s)
. H(ks)hn - (k<q—h351/k)k) hl} x 020, (sl/k) z)
+ (k(,[h;sl/k)k) I {angh:&@;l <s”k,z)
+ o) Al g <q—h351/k’ z)] is)
+ ao(z)ukJ:k (a;ml;@«uk _ s) I/k, z) ) (Suk’ z)
+0, (uk_S)I/k)z)a;KAl;qE<sl/k)Z)) (ukd-ss)s
1 ay(z h/k rk (uk 3 s) hik-1

SJS [B’KAI'Q (( )Uk’z)®;1 (s%/k,z)

0

v, (=)o ae(ihe) e ) S

+w, (1 2) —wy(u, 2).

(350)

NIES

+

=
11

In the sequel, we seek for a solution, for which sharp
bounds relatively to g are exhibited, to (256) inside the Banach

space G _
(0,20,%)

Z, >0 remains small enough. In order to meet this objective,
we set up the next linear mapping

, for any prescribed o > 0 in the condition that

G (Al;qE(‘r, z))

hy
- h=(h0,h1,h%)e%;hozodh@ ( [(ka)h ) <k (q_h3T)k) ]

K\ M
: 82’2@);1(1, z) + <k (q_h3r) >

(oAb 0, vz + 00 AN (g o2 | )

1 7 holk-1
+ d, (2) TkJ ™ —s
(hohy hZh: JEBshg=1 I'(holk) ( 0 ( )

v e ot
(ko)) e, (on

41

R

J ( wrs((#-9" e
)
' gah h/k Jrk(fk‘s)h/k_l (sL [0z atz
() (i) 0, ie-ar")

(i )

+w, (7,2) —wy(7, 2).

+ay(2)T

~~
u’»—l
L=
N

~——

(351)

In the following lemma, sufficient conditions are enunci-
ated under which € becomes a shrinking map on a tiny ball
whose radius hinges on g centered at the origin in the space

k
Clozoy 0

Lemma 42. Assume that the condition (30) holds. Then, a
small sized real number y >0 can be singled out in a way

that if 0< Zy< X, a radius v >0 can be distinguished (in
an unrelated manner to g, but depending on q, for which 1
<q<qy) such that € acquires the next two hallmarks: let

us denote B, the ball centered at 0 with radius v(g-1)

inGE _
(0,20,%)

(1) € maps BU( 1)

into itself, signifying that

@(B\J(q_l)) CByipsy (352)

(2) The inequality

!IG(A“‘IEJ—@(A”%)H( 7%)
(353)

< 34z, - 4|

holds as long as A5, A¥E, € By (4o1)-

Proof. We first supply norm upper estimates for some parts
of the map G.

(a) Upper bounds are established for the norm

w1 (7, 2) —w, (7, 2) ||<020)%). Departing from the

expressions (258) and (339), we arrive at
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(|wa (7, 2) = wy (7, 2)|| (0.2y)

on (354)
Z
= Z ||wn;1 (T) - wn;q (T) || (n,0.%) - 4

|
n=>0 n:

and owing to the bounds (247) stirred up in Propo-
sition 40, the coeflicients of the above series can be
upper bounded by

||wn;1 (T) ~ Wiy (T) H (n,0,%)

1+|c*
= sup 7| exp (—arb(n)|f|k)|wn;l(r) —wn;q(u)l
TeU |T|
<(q-1)Cy;(Cypy)"nlsup (l + x2k) exp (—axk)
x=0

- exp (k; log*(x + ug) + o log (x + uy) )

<(q- 1)611(C12)n”!’
(355)

for some constant 611 >0 (unrelated to g), for any
integers n > 0. Thereby, it brings in

le1(7:2) = wiy (02| (0 2,1)

- —\n — (356)

<(q- l)CUZ (CIZZO) <2(g-1)Cyys

n=0
on the condition that EO <1/2Cy,.
(b) Bearing in mind (217), we already know that
khy 3h
10720, (1,2 g
H z ’1( ) (J,Zo,?{)

(357)

—h =
<M, Zg, vy + ’ Tkh18];2Y1(1, z)

>
(0:20,,%)

for some constant M, > 0 (independent of g but rely-
ing on q,), where Z,;, v,; > 0 are defined in Proposi-

tion 34, as long as EO <Zyy-

(c) We need accurate
kh, 31 Ah

|7" 02 A 3®;1(T, z) ‘|(U’ZO’

gers hy, h,, h; submitted to the condition (30). Call-
ing to mind Lemma 39, the next splitting

bounds for the norms

) for nonnegative inte-

AO,(1,2) =0 A5, (1,2) + AW (1,2), (358)

holds where A" 2, (7, z) belongs to the ball By(1-gts)
ok
in G(a,ZO,
A" (1,2) is defined in (211). Owing to (225), we
can set a constant Ny, ;. > >0 with

) for some constants Z, 0 >0 and where
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Hrkhl A Am Y (1, 2)

~h
i < (1 q 3>N 5 .
(0:20%) hyhy sz

(359)

Besides, according to Proposition 6, we get a constant
M, >0 (independent of g) such that

Hrkhl o, AME (1, 2)

(U,Zn,?l)

< Mlzgfhz ABE (1,2)

360
(U,ZU,W) ( )

< Mlzg_hzb(l - q_h3).

Thereupon, we deduce from (263) and (264) the awaited
bounds

Hrkhl 82’2Ah3®;1 (1,2)

(0,20,%)
<|| oAtz (na)|
(o207 (361)
+ Hrkhlai’zAh“?(‘r, 2)|| .
(U,Zo,%)
Shy —h ~h
<M,Z, zv<1 —-q 3) + (1 —-q 3)Nk,hl,h2,x,20’
provided that Eo <Z,.
(d) Keeping in mind (226), we observe that
o holk—
TkJ (Tk - s) ! lshlagz@l (s“k,z) é
0 ’ s, -
(U,ZO,?()
T hylk— _
< M3Zg:1hzv;1 + TkJ (Tk - s> lsh‘ai’“f’<s”k, Z) é s
0 (0:Z41,%)
(362)
as long as that Eo <Z,.
(e) Precise bounds for the norms
k
TkJT (‘[k - s) hO/kilsh1 ol Al 0, (Sl/k, Z) ds )
0 * N (o)
(363)

are required. Owing to the bounds (229), we can exhibit a
constant Ny, .5 >0 with

7 holk-1 d
/K= = S
TkJ (‘rk - s) sh BZZAh“I’(s”k, z) —
s

0

(0Zo)  (364)

)\ o :
< (1 -9 3>Nk,h0,hl,h2)x,zg’
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and according to Proposition 10, we get a constant M, >0
(unrelated to q) with

7 holk-1 d
o/ K= (— —_ S
Tkj (Tk - s) Mo ) Al 5 (s”k, z) —
’ s
0

(0.20%)
~ x—h ~K—h
<M 25"\ A B (7, 2 <M,Z 25(1— —h3).
349 1(1:2) (0.20%) 349 q
(365)

Thus, on grounds of (267) and (268), we reach the due
bounds

TkJT (Tk—s)hg/kl 1ah Ah3® (l/k )E
0 N

(0,20,?{)

k
g TkJT (Tk—s)h[,/k 1 la (k=hy) A 5-1 (Suk’ z) é
; s
0 (02o)
k
+ TkJT (Tk - s) ho/k_lsh‘ai'zAh“?’(s”k, z) é
0 * N (o02)
"’K—h - —hg —h —
SM;Z, ZU(I -9 ) + (1 -9 3>Nk,h0,hl,h2,x,20’
(366)
whenever ZO < Z,.
(f) We also need the bounds
O,(1,z = o NSMZS v, + H'?’ T,2 , (367
H ,1( )H (G,Zm%) 140;1Y51 ( ) (0.20,%) (367)

which is a particular case of (261) and according to Proposi-
tion 15, one can select constants M, Z,, v > 0 (unrelated to g
but depending on g,) with

H®?q(T’Z)H(a,ZO )< 1©,(7.2 H (0,20

(368)

>

<M,Zkv+ H‘I’ T,2
1Zg ( ) oz

whenever Eo < Zy.
We are now in position to reach the heart of the proof.
We focus on the first attribute 1. We set A¥Z(1,z) in

ko with
(0,20, %)

|A"E(z, 2) | (o20%) <v(g-1). (369)

We display explicit bounds for each piece of the map €
(A¥E).
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Proposition 11 and (261) beget
k)™ S VN
dy(2) (k‘[) —<k(q 31)) 0,;20,(1,2)
(J,EO,%)
<[ || (Z)
Tk gha
(M Z01 v+ H 0,2¥(t1,2) (U)Zn;l)%)>.
(370)

Proposition 11 and (265) yield

hy
dy (2) ("(Q"’”)k> o Ah O, (1.2) -
AN/

<o (2080 (0,255 (1~ ) (371)

h
+ (1 -q 3)Nk,h1,h2,x,20)'

Propositions 6 and 11 trigger

i)

— —k=h, o
< ‘dh ’ <Zo)kh1q’h3kh‘ (MIZO |a%E(z, 2)| (g,zo,czz))
< [dy|(Zo ) Kg (leﬁ"”?(q - 1))'

h
0, () Ala g (q%r, z)

(372)

Proposition 11 and (266) prompt

d, (2) erf (#-5)""" l(z«)’“

) (k(q—h351/k>k> " 00, (Sl/k, Z)$ (0:Z0)

= dﬂ'@) T(hy/k) K1 azite,

(0:Zo,1,%)
(373)

Proposition 11 and (269) return
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1 T holk-1 Propositions 6, 8, 10, and 11 together with (270), (271)
dy(2) 7 (Tk - 5) spark off
NP p

hy
(k<q—h3sl/k)k) I are, (Sllk,z>? h/k JO (Tk )h/k 1< L [a KAl

<[] (%) 7 T(h, /k)kh " ((S—S)”k 2)0, (s1%2) + 0, ((s-5)" )
(M 7 h2~(1—q > <1—Q’hB)Nk,hO,hl,hz,x,Z())A PRIE (Si/k,zﬂ ds, )

(s—s;)s

(0.70) (374)

Propositions 10 and 11 furnish

0 i (4" ()’ (

% a;(x—hz)Al;qE (q—h351/k, z) é

(G,EO,%)
k

T
TkJ [a;"A“‘is
0

1/k
1/k
,z>®1<51 2)+0,

1k ds
Kk ALg = Lk 1
,z)azA H(sl ’z)}(rki

(
(0.20%) . ((Tk _s,

7 UV by bk, =s1)s 0z
< | () T " o (o70)
e <layl(Zo) ot My, {Ila A5z, 2) |
| <M3(Zo) HM:m)H(a,zo,%)) ||<§ o) T <Hh/k> oo Mo,
: )| o N+ 7.2)||/ -
— 1 by hikh — N\ k—hy B ;1 > (O',ZO,%) /AN (U,Zo,%)
S‘dﬂ‘(zo)r PN M3<Z°> via-1 ). e 1
( ) Ha Al,qH(T Z)H = ]<|a |(Z)7MM
(375) 2 0TI ez | SN0 Ty T
Propositions 6, 8, and 11 with the help of (270) and ' |:M1 <Z0> a5, Z)H(U,ZO,%)
(271) promote _
. (Mlzg;lv;l + H‘P(T,z) oz %))
k " K ALq k_ 1k 1/k — o
N (e W B M
+0, k_ Uk, >a”‘A1;qE vk, ) ds ) ANICE, _
’q((T S) ‘)% (S Z) (th=s)s (0) M, (ZO> HA E(m Z)H(a,zo,%)
S|a0|<zO)M2(Ha;KAl;qE(‘r,z)H(G’Z)’%)H@;I(T,Z)H(U’ZO’%) <layl(Z,) (h/k)M M, [M (2,) va-1)

0,(1 = |[oF AR E(T, > Y7
#104(r2) 7,0 1374202 5,2 Mz o))
7 ANIEE _ - -
S|ao|(zo)Mz {Ml (Zo) 142 2)]| (,.2,) + (Mlng+ H‘P(‘r, 2) )M1 (Z())KU(q— 1)}
(0:Z0,%)
-(Mlz&lv;ﬁH‘f’(T,Z) (G,ZM)) (377)
+ (Mlng+ H‘?’(T, z) %)) From now onwards, we choose a small sized quantity
(0,27 e

Z,>0 and proper v >0 (taken freely from g€ (1,4,]) in a
M 1( ) |A%E(z, )| (020’%)} way that the next inequality holds

- — \K_ -
< (7o o () 4 -] 11 (3)
h=(ho by hyohs ) €65y =0 h
| M, ZE v, + H‘?’ T,2 K—h, Ky Al
( 140,191 (1.2) (U’Zo;p%)) X <M1Z0;1 U;1+HT 0¥ (1, 2) (‘7'20;1'%))

<">Zo>‘24>) . (EO) ola- 1)} ' +ldy | (2o )R (M2 o (1- g7

(376) + (1 - Q’“‘)Nk,hl,hz,mzo) +ldy | (Eo)kh‘ g

+ (MIZSU + H‘f’(r, z)
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(MIEO “o(g-1) )}
h=(hg,hyhyhy ) €G30 =1

(MZ01 v+

+ldy | (2 )F(h 3 K (.2

+ (1 -q )Nk,ho,hl,hz,mzo> +1d, | (EO)
‘ r(hlo/k) Kt (M3 ()" vta- 1))]

+1a| <EO>M2M1 (EO) v(q-1) {Mlzg;lv;1

’l.'k

hlk—1 - ds
T (Tk - s) sh'a’;“l’<s”k, z) —
0

o(1-4"

+ H';’(T z)

+ M, Z5 + Hs?(r, 2)

(0.20,,%) (Uzo’%>:|

" Z' @l (2 ) T

x |:M1Zg;lu;l + H‘F(T> 2)

M, (Eo> Kv(q -1

+M,Z%
@zy 0

+H\?(T,z) +2(q-1)C, < 0(q-1).

(‘7>Zo'%):|
(378)

Observe that the above constraint (281) is achievable
since all the quantities

1—g™ 11—(1/q
q-1 q 1-(1/q)

S

- I/q

9 i3

L— gk 11— (1/g)"" 1”3"’“21 ! < )
q-1 q 1-(1/9) 9

(379)

remain bounded whenever q € (1, q,], for given integers h;
>1, hykh, > 1.

Eventually, piling up the inequalities (260), (273), (274),
(275), (276), (277), (278), (279), and (280) reached above
under the condition (378) produces the awaited item (258).

We focalize on the second aspect 2. of the map €. Let
AYE|, AYME, be elements of G’(‘ %.%) such that

0,2,
|4, 2]

) <v(q-1), (380)

for j=1,2.
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The estimates involved in the first property 1. of €

enable us to write down the next set of inequalities

dy (2) (k(q% 7) k) "ok
(s(ete) s e

k—h,

<|d,| (zo>khlq’h3khl (MIZO

(0.zo%)  (381)

~HA1;q51 (1,2) - A5, (1, 2) H (0,20,?1) ) >

and

dy(2) ﬁ TkJTk (Tk - s) Folk-1 <k (qfhgsllk) k> I « a;("‘h2>
0 0
.(Al;qgl (q—msl/k, z) Mg, (q—hSSuk) z)) ?

< |dﬁ|( ) T, /k) khlq’hskhl <M3 (ZO)K—hz

'HAI;qEI(T’ Z) _ Al?QEZ(T, Z)H (a,%,%))’

(0.20%)

(382)

along with

ao(z)TkJ:k (a;" (A“‘fEl <(rk - s) " z)
_ptag, ((Tk )™ ) ) 0, (+".2)
‘o, ((Tk )" ) o5 (a2, (% 2)
~atre(s2)) ) 25 -
< ol (21 07" (47, 5. 2) - 475, 2)|
(022 1€1 (0D (5 2,2) + @™ )| (57,2

|joz" (AY2,(1,2) - A¥E, (1, 2)) | (0.20%) )

£|a0|(20)M2 {M ( ) HA 98, (1.2) - Al;qEz(T’z)H(a,Zo,w)

) (a,ZOl?l)>
)M (B)’

z
||AYE, (1, 2) - AME, (1, 2 H 0z }

: (Mlzg;lv;l + H‘P(T’ Z)

+ (Mlzgu + HI\IJ’(T z)

(383)
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and

- 4%E (Si/k’ Z)ﬂ (s —d:)s1 > ?

SW(ZO) (h/k)M M, [M (ZO)K
a2, . 2) - 495, 2) |

O'ZU(Z/)

) (J,Zo_l,?l)>
(aZO%)> ( )K

Z
oz

From this point forward, we pick up Eo > 0 close enough
to 0 in a way that

X (Mlzg;lv;1 + H‘?’(T,z

(MZ U+H‘P 1,2

. HAl;qu(T, z) - Alq

|| (ZO) Kn ‘fh}kh'MlEZ_hz
h=(hgshy s )€Bihg=0

- 1 — N\ k=h,
d,l(2 kg s¥M, (2
+ﬁ=(h0,h,,h§3)e%;hozll h|< 0> I'(hylk) 1 3< 0>

~— ~— K ~—
+ |110|(ZO)M2M1 (ZO> {Mlzg_lv;l + H‘I’(T, z)
’ (0:Z0,1,%)

] Z'“hl( ) T(hik)

~— K
- M;M,M, (Zo> |:Mlzg;lv;l + H‘P(T> 2)

+ M, Zjv + H‘T/(r,z

(0520, %)

+ M, Zjv + H‘T’(T z)

:|
(GZO U) 2

The collection of bounds (282), (283), (284), and (285)
contingent upon (286) sparks off the second feature (259).
At last, we single out the constants Zo and v > 0in a way
that both constraints (281), (286) occur unitedly. Lemma 42
follows.
In the lemma to come, the linear Cauchy problem (253),
(254) is solved within the Banach space G* _ .
(0:20,2) O]

Lemma 43. Take for granted that the condition (30) hold. We

fix the constants \Z/O >0 and v > 0 (independently of q in (I
»qo]) as in Lemma 42. Then, the linear Cauchy problem
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(253), (254) carries a solution A%@(u,z) that belongs to

the Banach space G’(‘ % 20 for any given o > 0. Along with
0,4

it, a constant Z\V/II > 0 (unrelated to q € (1, q,]) can be distin-
guished with the next property

AO(u )|, <M Zy(q-1).  (386)
I (0:20%)

Proof. Based on Lemma 42, the classical fixed point theorem
for shrinking maps on metric spaces can be used for the map
€ : By(,.1) — By due to the fact that (By,_, ), d) repre-
sents a complete metr1c space for the d1stance d(x,y) =
IES —y|| 0 Z0tl)" Thus, € : B, ) gets a unique
fixed pomt denoted AY1Z(u, z) inside the ball By,
ing that

g-1) 7 Bigg-

-1) mean-

G(AME) = AME. (387)
Thereby, a unique solution A= for the equation (350)
is confirmed in the ball B;( 1) Furthermore, Proposition 6

conjointly with the decomposition (255) warrant that the
map

A¥O(u, z) = 0;*AME(u, z), (388)

belongs to Gk ay solves the problem (253), (254) and is

0
submitted to the next upper estimates

|40 2)|(, 7, < MiZol| 42w )|

O‘ZO )

SMIZOH(q_ 1) SMle(q -1),

(389)

for some constant M 1 >0 which is unattached to g in the
range (1, q,].0.

According to Lemma 43, it turns out that the unique for-
mal series in z with holomorphic coefficients on % solution
of (253), (254) suffers the bounds (287). Since the difference
O, (1, z) — O, (u, z), which represents in particular a formal
power series in z with holomorphic coefficients on %, is
shown to solve (253), (254) in the first step of Proposition
41, it must coincide with the solution A™®(u,z) con-
structed above in the second step and we arrive at the con-
clusion that the for sought estimates (248) necessarily hold
for it. The proof of the proposition is completed. O

5.7. Confluence for the Analytic Solutions of the Problem (22),
(23) as q— 1. In this subsection, we unveil the third and
last main result of the work.

Theorem 44. Let D = {T , U} be the admissible set of sectors
distinguished in Proposition 33. We denote % the unbounded
sector singled out in Proposition 33 and T its corresponding
bounded sector in accordance with the requirement (2) of
Definition 2.
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We denote v,(t, z) the bounded holomorphic solution to
(22), (23) on the product T x Dy ,,, given by a Laplace trans-

form of order k, see (88), constructed in Theorem 16. Besides,
we consider the bounded holomorphic solution v.,(t, z) of the
nonlinear limit problem (182), (183) on the domain T X

Dy, ,, expressed through a Laplace transform of order k, see

(188), built up in Proposition 34.
Then, a constant C> 0 (unrelated to q € (1,q,)|) can be
found such that

sup v, (t,z) —vy(t,2)| <C(q- 1), (390)

teJ zeD—
Zol2

for all q € (1, q,). In other words, the solution v,y (t, z) of (22),
(23) merges uniformly on T x Dio/z to the solution v, (t, z) of

(182), (183) as q — 1.

Proof. We express both solutions v, (t,z) and v,(t,z) as
Laplace transforms

v (t2) = kJL 0, (1,2) exp (_(%)k> d_;,

v,(t,2) = kLy@;1 (,2) exp <— (':)k) i:.

along a halfline L, = [0,400)e¥""Y ¢ 2 U {0} assigned to the
condition

(391)

cos (k(y —arg (t))) > A, (392)

for some fixed constant A > 0, provided that t € 7, where the
Borel map ©,(u,z) is outlined in (89) and ©,(u,z) is
described in (189) whose Taylor expansion can be displayed
as

B
0, (u,z) = ZQLB(”)%’ (393)

B0

for (u,z) €U x Dy ).
The deviations bounds reached in Proposition 41 can be
rephrased in the next explicit way

‘®;1(u’ Z) - ®;q(u’ Z)’

B
< 3 10.4(4) ~0.5004)|
B0
<My Zy(q - 1) "] STEY
<MiZy(q- >W%exp(arh<ﬁ>|u) A

<28,Z,(a - Dlul exp (o€ (D)),
(394)

for all u € % U {0}, provided that z € DZO/z'
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Thereby, we can govern the difference v, (t, z) — v, (t, 2)
in the following manner

< 2M122(q—1)J;m exp (oc(b)rk) exp (— (é) kA) dr,
(395)

forallte T, all ze D, , bearing in mind that radius r5 of
0

I fulfills
A 1/k
" (ocw)) ’

according to (87). This achieves the expected bounds (289).
O

(396)
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