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Abstract: A surface-enhanced Raman scattering (SERS) method for measuring nitrate nitrogen in
aquaculture water was developed using a substrate of β-cyclodextrin-modified gold nanoparticles
(SH-β-CD@AuNPs). Addressing the issues of low sensitivity, narrow linear range, and relatively
poor selectivity of single metal nanoparticles in the SERS detection of nitrate nitrogen, we combined
metal nanoparticles with cyclodextrin supramolecular compounds to prepare a AuNPs substrate
enveloped by cyclodextrin, which exhibits ultra-high selectivity and Raman activity. Subsequently,
vanadium(III) chloride was used to convert nitrate ions into nitrite ions. The adsorption mechanism
between the reaction product benzotriazole (BTAH) of o-phenylenediamine (OPD) and nitrite ions
on the SH-β-CD@AuNPs substrate was studied through SERS, achieving the simultaneous detection
of nitrate nitrogen and nitrite nitrogen. The experimental results show that BTAH exhibits distinct
SERS characteristic peaks at 1168, 1240, 1375, and 1600 cm−1, with the lowest detection limits of
3.33 × 10−2, 5.84 × 10−2, 2.40 × 10−2, and 1.05 × 10−2 µmol/L, respectively, and a linear range
of 0.1–30.0 µmol/L. The proposed method provides an effective tool for the selective and accurate
online detection of nitrite and nitrate nitrogen in aquaculture water.

Keywords: β-cyclodextrin; gold nanoparticles; SERS; nitrate nitrogen detection; aquaculture water

1. Introduction

As aquacultures undergo continual development towards intensification and larger-
scale operations, the imperative for a sustainable, environmentally friendly, and health-
focused development model emerges as the guiding principle for the future of this industry.
Aquaculture water quality plays a pivotal role in influencing the healthy growth of aqua-
culture organisms and remains the primary contributor to harmful pollutant residues in
aquatic products. Nitrate nitrogen, a common nitrogen-containing waste in aquaculture wa-
ter, primarily originates from fish bait and the waste generated by aquaculture organisms.
Although the toxicity of nitrate nitrogen is relatively lower than that of nitrite nitrogen
and ammonia nitrogen, prolonged exposure to excessive nitrate levels can have adverse
effects on aquatic animals, affecting their health and growth rates [1]. Additionally, nitrate
nitrogen has the potential to convert into nitrite nitrogen and ammonia nitrogen, with
nitrate being reduced to the more reactive and toxic nitrite nitrogen, posing further risks
to aquaculture organisms. The existing literature substantiates the idea that the extensive
utilization of nitrogen-based fertilizers, including ammonium nitrate, potassium nitrate,
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and sodium nitrate, is contributing to the decline of amphibians [2]. Therefore, the precise
detection of nitrate nitrogen in aquaculture water is a crucial matter that warrants attention.

Traditional methods for detecting nitrate nitrogen include the ion-selective electrode
method (ISE), Griess reagent method, gas-phase molecular absorption spectrometry, and
ultraviolet spectrophotometry [3–5]. The spectrophotometric method based on the Nessler
reagent is currently the most commonly used detection method, but it requires large in-
struments and a complex preprocessing process [6]. Therefore, it is not suitable for the
detection of complex water environments. Recently, some electrochemical [7,8] and opti-
cal [9,10] detection methods have been increasingly reported for nitrate detection in water.
Electrochemical sensors represent the most widely used and mature technology in this
domain. ISE is one of the potentiometric methods for detecting nitrate in electrochemical
methods [11,12]. Sephra et al. [13] developed a nitrate ion-selective electrode (NO3-ISE)
based on Ni2O3/rGO nanocomposites (NNGC) for the detection of nitrate ions. The ISE
method for detecting nitrites has the advantages of high selectivity, real-time monitoring,
and high sensitivity [14]. However, it comes with the drawbacks of higher costs associated
with ion-selective electrode preparation and maintenance, potential interference from other
substances, and a limited linear range. Voltage amperometry is a widely applicable and
sensitive electrochemical method, particularly suitable for the development of portable
sensors in an aquaculture [15,16], such as screen-printed electrodes (SPEs) [17]; however,
it exhibits relatively lower specificity and may be influenced by sample complexity and
operational intricacies. A current research focus in nitrate detection lies in the nanomaterial-
modified electrode method, such as metal nanoparticles, carbon-based nanomaterials, and
graphene, which have excellent electrocatalytic performance, contributing to improving
the electrochemical signal of nitrates and enhancing detection sensitivity [18,19], offering
enhanced selectivity and sensitivity. However, challenges persist in addressing the stability
and reproducibility of nanomaterials, necessitating further exploration and development
in this area.

Additionally, optical detection methods, such as UV and mass spectrometry, are also
widely used in a water quality analysis due to their ultra-high sensitivity and environ-
mental adaptability [9,20]. Fluorescence detection methods have also been reported [9].
However, the current optical methods, specifically the spectrophotometric method, are
operationally complex and susceptible to interference from other ions when applied to
actual aquaculture water [21]. Raman spectroscopy is also one of the optical detection
methods, with advantages such as high sensitivity, high selectivity, real-time detection,
label-free operation, and a fast response [22,23]. The outstanding fingerprint recognition
ability of surface-enhanced Raman spectroscopy (SERS) has found extensive applications
in chemistry, biology, environmental science, and other fields, particularly in the detection
and analysis of trace substances [24,25].

In the field of water quality monitoring, SERS is currently employed for the detection
of various pollutants in water, such as heavy metal ions [26,27], organic compounds [28,29],
and microorganisms [30], providing the rapid monitoring of water pollution. The detection
of nitrate nitrogen in water using Raman spectroscopy techniques, especially the applica-
tion of SERS, has been reported. SERS has proven to be particularly effective for measuring
nitrate and nitrite nitrogen in aquaculture water [31,32]. In a previous report, we introduced
a SERS detection method for nitrites based on a single metal nanoparticle substrate, achiev-
ing favorable detection results [33]. Nanoparticles, with their unique photoelectrochemical
properties, have been extensively used in various optical sensors, electrochemical sensors,
and biosensors [34–36]. In SERS applications, single metal nanoparticle substrates have
limitations in stability, relatively limited surface enhancement effects, and low specificity.
Modifying the surface of nanomaterials, with advantages such as enhanced stability, con-
trolled surface enhancement effects, and improved specificity, is more suitable for dealing
with complex environments and meeting sensitivity requirements [32]. The sensitivity and
anti-interference capabilities of single gold (Au) and silver (Ag) nanomaterial substrates for
SERS detection of low-concentration nitrate nitrogen are insufficient, and portable Raman
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spectrometers may not achieve the required accuracy. Currently, SERS nanocomposites
substrates generally include metal alloy particles, core–shell structures, composite material
nanostructures, molecularly imprinted polymer composites, and two-dimensional material
composites [37–41]. Additionally, the combination of supramolecular compounds with
metal nanomaterials broadens the application of SERS [42]. Therefore, the development
of highly sensitive and selective SERS substrates is crucial for achieving the rapid and
accurate detection of low-concentration nitrate nitrogen in aquacultures.

Cyclodextrins, a class of cyclic oligosaccharides, are compounds characterized by
a macrocyclic ring of glucose substituents linked by α-1,4 glycosidic bonds, rendering
them supramolecular compounds [43–46]. Cyclodextrins are produced by the enzymatic
conversion of starch, while typical cyclodextrins contain many glucose monomers, with
β-cyclodextrin, featuring seven glucose subunits, being specifically employed in this study.
The unique structural characteristics of cyclodextrins confer strong hydrophobicity to their
inner regions, while the outer side exhibits robust hydrophilicity due to a multitude of hy-
droxyl aggregates [47]. β-cyclodextrin molecules, owing to their structural characteristics,
possess the capability to efficiently encapsulate various target substances within their cavi-
ties. This property has rendered them widely employed in the realms of both chemistry and
biology [48–53]. The combination of metal nanoparticles with supramolecular compounds
such as cyclodextrins can effectively identify the target substance and has been widely used
in molecular recognition and photoelectrochemical sensors [42,54–57]. Building upon this
principle, this study explores cyclodextrin-encapsulated gold nanoparticles to enhance the
selectivity and Raman activity of a single metal nanomaterial substrate. The substrates
exhibit a high SERS enhancement factor, along with ultra-high sensitivity and selectivity,
facilitating the rapid and accurate detection of nitrate nitrogen in aquaculture water.

In this paper, a nanomaterial substrate functionalized with cyclodextrin-encapsulated
gold nanoparticles (SH-β-CD@AuNPs) was prepared by reacting o-phenylenediamine
(OPD) with nitrite, incorporating mono-(6-mercapto)-β-cyclodextrin molecules and gold
nanoparticles. This nanomaterial substrate served as a highly effective tool for the mea-
surement of nitrate nitrogen at low concentrations in aquaculture water. First, nitrate was
oxidized to nitrite by vanadium (III) chloride (VCl3), followed by the cyclization of nitrite
and OPD under acidic conditions to form benzotriazole (BTAH). BTAH, exhibiting high
SERS activity on SH-β-CD@AuNPs substrates, enabled the indirect detection of nitrate
nitrogen by analyzing the SERS spectra of BTAH. The method investigated in this paper
combines cyclodextrins with metal nanoparticles to prepare SH-β-CD@AuNPs nanoma-
terial substrates and demonstrated remarkable accuracy in the measurement of nitrate
nitrogen in aquaculture water. The experimental results additionally demonstrate that the
method presented in this paper holds broader applicability in the field of nitrate nitrogen
and nitrite nitrogen detection.

2. Materials and Methods
2.1. Reagents

Chloroauric acid (HAuCl4, 99.9%), sodium carbonate (NaCO3, 99.0%), sulfamic acid
(NH2SO3H, 99.0%), borax (Na2BO10H2O, 99.0%), sodium bicarbonate (NaHCO3, 99.0%),
and sodium hydroxide (NaOH, 99.0%) were purchased from Aladdin Reagent Co., Ltd.
(Shanghai, China). O-phenylenediamine (C6H8N2, 98.5%), vanadium(III) chloride (VCl3,
99.0%), and β-cyclodextrin (C42H70O35, 99.0%) were obtained from Macklin Biochemical
Technology Co., Ltd. (Shanghai, China). Hydrochloric acid (HCl, 36–38%, AR) was pur-
chased for Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All other reagents
were obtained from Shanghai Chemical Reagent Co. (Shanghai, China), and all solutions
were stored in the dark at 4 ◦C. All other reagents were of analytical pure grade and above,
and water for all solutions was prepared using deionized water (=18.20 MΩ cm).
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2.2. Instruments

Ultra-Visual (UV–Vis) absorption spectroscopy was employed to determine the absorp-
tion of the nanoparticles and reaction products (INESA-757, INstruments and Electronics
Associates, Shanghai, China). Analysis of AuNPs and modified nanomaterial substrate was
performed using transmission electron microscope (TEM, JEM-2100F, JEOL, Tokyo, Japan)
(Malvern, Zetasizer nano ZS90, Malvern, UK). A spectrophotometer system (DR 3900, Hach,
Loveland, CO, USA) was used to confirm the results. The CNC ultrasonic cleaner, magnetic
stirrer, high-speed centrifuge, drying oven were used for the fabrication of nanomaterials.
Additionally, the QE-Pro Raman spectrometer analysis system of Ocean Optics was used,
the excitation light source was 785 m, equipped with RPB-785-1.5-SS Raman fiber-optic
probe and cuvette, and the software used was Oceanview1.6.

2.3. Samples

Four kinds of water samples, such as tap water, aquaculture water in fish tank (carp),
aquaculture water in land-based factories (grouper), and seawater, were prepared to vali-
date the present method. The tap and the tank water were collected in the laboratory (the
tap and the tank water were collected in the laboratory (China Agricultural University Na-
tional Innovation Center for Digital Fishery, Beijing, China), and the seawater was gathered
from the sea near Mingbo, Yantai, Shandong Provence, China. The aquaculture water in
land-based factories was provided by Mingbo Aquatic, Shandong Provence, China. The
water samples were filtered with 0.45 µm microporous membranes to eliminate possible
interference caused by turbidity due to particles. Real water samples were obtained by
adding nitrate standard solutions with concentrations of 0 and 5 µM to aquaculture water,
which were used for the evaluation of feasibility.

2.4. Solution Preparation

For OPD stock solutions (10−4 mol/L), 0.1081 g of OPD was dissolved in 10 mL deion-
ized (DI) water under heating conditions. Sodium nitrate (NaNO3) standard stock solutions
(10−2–102 mol/L) were prepared by dissolving 0.085 g of sodium nitrate solid powder in
10 mL DI water, and store in dark place at 4 ◦C. The other concentrations of sodium nitrate
working solution were sequentially diluted with deionized water. HCl working solutions
were prepared by taking 1 mL of HCl (37%) into 10 mL DI water. VCl3 stock solutions were
prepared by dissolving 0.08 g of VCl3 solid and adding 0.8 mL of HCl working solution
into 10 mL DI water. Sulfamic acid working solutions (6 × 10−4 mol/L) were obtained
by dissolving 0.058 g of sulfamic acid in 10 mL DI water. Cyclodextrin working solutions
were prepared by dissolving 0.01 g of cyclodextrin in 10 mL DI water. Chloroauric Acid
Solutions (1%) were made by dissolving 0.5 g chloroauric acid solid in 50 mL DI water.
Dilutions of other concentration solutions were made using deionized water.

2.5. Preparation of Modified Nanomaterial Substrate
2.5.1. Fabrication of AuNPs

In this paper, Au nanoparticles (AuNPs) with particle sizes of 55 nm, were prepared
with sodium citrate reduction method [58,59], respectively. The steps of synthesis are as
follows: a 100 mL solution of 0.01% chloroauric acid was heated to boiling in a round-
bottom flask with continuous stirring and a rapid addition of 1.8 mL of 1.0% sodium
citrate solution, resulting in a color change from black to burgundy. The solution was
heated for an additional 30 min, cooled, and then restored to its original volume with
deionized water, yielding 50 nm gold nanoparticles. For larger size AuNPs preparation,
the detailed preparation process has been reported in our previous paper [33,60,61]. The
AuNPs were put into 50 mL brown glass vials cooled at room temperature and finally
transferred to the refrigerator for storage at 4 ◦C. All glassware should be kept clean during
nanomaterial synthesis.
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2.5.2. Fabrication of β-Cyclodextrin-Modified AuNPs

The cyclodextrin employed in this paper was mono-(6-mercapto)-β-cyclodextrin. Con-
sequently, the experiment involved the modification of SH-β-CD@AuNPs with cyclodextrin
sulfhydryl groups. It is known that the sulfhydryl groups on cyclodextrins readily adhere
to the surface of AuNPs, forming S-Au bonds and thus ensuring the stable modification of
cyclodextrins onto the AuNPs [62,63]. The method employed in this paper involved the
use of β-CD as a reducing and stabilizing agent for the preparation of SH-β-CD@AuNPs.

The process for preparing AuNPs consistently utilized sodium citrate as both the reduc-
ing agent and stabilizer. As reported in the literature, mono-(6-mercapto)-β-cyclodextrin,
comprising D-D-glucopyranose, exhibits inherent reducing properties. Hence, in the ex-
periment, cyclodextrin also functioned as a reducing and stabilizing agent for the direct
synthesis of SH-β-CD@AuNPs. The preparation method closely mirrored that of AuNPs
synthesis. Specifically, a solution of 0.1% chloroauric acid was heated and stirred, and a
1 g/L concentration cyclodextrin solution was swiftly introduced with continuous stirring.
This mixture was maintained in an 80 ◦C water bath for 10 min, resulting in a burgundy-
colored solution. The final solution was cooled to room temperature, and the prepared
nanomaterials were stored in brown glass vials in a refrigerator at 4 ◦C. It is noteworthy that
cyclodextrin-coated gold nanoparticles tend to aggregate when the particle size exceeds
50 nm. The resultant mixed solution exhibited a burgundy-red color, and the final pH of
the solution was 7.0.

2.6. Experimental Steps

The traditional cadmium column reduction method for nitrate reduction is intricate in
its procedures and involves the use of toxic reagents. Conversely, the ultraviolet reduction
method is both inefficient and less stable. In this study, an innovative approach was
adopted, replacing VCl3 for the conventional cadmium column to reduce nitrate to nitrite.
Specifically, a 5 mL centrifuge tube was loaded with 200 µL of nitrate solution. Subsequently,
100 µL of VCl3 working solution was incrementally added, followed by dilution to 1 mL
with deionized water. The resulting mixture was sealed and stored. This composite solution
was placed in a desiccator at 50 ◦C for 35 min to ensure the complete conversion of nitrate
to nitrite. Following this, 200 µL of OPD solution was introduced to the composite solution
and allowed to react at room temperature for 15 min. Upon completion of the reaction
between OPD and nitrite, 0.5 mL SH-β-CD@AuNPs solution was added to the mixture.
After shaking for 1 min, the volume was adjusted to 2 mL, and the solution was left
at room temperature for an additional 2 min to ensure the thorough adsorption of the
generated BTAH and the SH-β-CD@AuNPs substrate. Ultimately, the mixed solution was
transferred to a 1 cm quartz cuvette for SERS detection. The experimental dosage ratio for
sodium nitrate solution, VCl3 solution, OPD solution, and SH-β-CD@AuNPs substrate was
maintained at 2:1:2:5.

In the presence of both nitrate and nitrite ions, aminosulfonic acid can be employed
to eliminate the interference from nitrite ions. However, the use of aminosulfonic acid
introduces some margin of error, influencing the experimental results. Therefore, when
conducting experiments under conditions of coexistence of nitrate and nitrite ions, we
simultaneously measured two sets of comparative samples during the measurement. Hence,
the expression for the detection of NO3

− is given by

NO3
− = NOXmeasure − NO2

−
measure (1)

where NOXmeasure is the detected concentration (µmol/L) when NO2
− and NO3

− in the
sample are converted to NO2

−, and NO2
−

measure is the concentration of nitrite ions in the
original sample (µmol/L).

Additionally, in this experiment, the excitation wavelength was selected to be 785 nm,
the laser power selected to be 300 mW, the exposure time was selected to be 5 s, and the
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number of detections was selected to be 5 times for the SERS detection of nitrate nitrogen
based on SH-β-CD@AuNPs substrate.

3. Results and Discussion
3.1. Principle of Nitrate Detection Based on SH-β-CD@AuNPs

The Raman signal of nitrate ions is inherently weak, even at high concentrations,
making it challenging to observe their Raman characteristic peaks. While SERS signals
for high concentrations of nitrate ions may reveal characteristic peaks, practical detection
in aquaculture water with low nitrate ion concentrations (1 mg/L) often results in weak
SERS signals, leading to a suboptimal detection performance. In this study, VCl3 was
employed to convert nitrates into nitrites. The principle is that the substance generated
through the reaction of nitrite ions with ammonium substances can adsorb into the cavities
of cyclodextrin modified with thiol groups. This enhances the SERS signal intensity of
nitrite derivatives and indirectly measures the concentration of nitrate ions. Under acidic
conditions, the reaction between OPD and nitrite leads to the formation of a compound
known as BTAH [64–66].

The reaction mechanism is illustrated in Figure 1. In this reaction, the SERS signals for
BTAH, derived from nitrate ions, and SERS signals based on AuNPs are relatively weak.
This is because BTAH cannot be directly adsorbed onto the surface of AuNPs. The literature
reports suggest that large cyclic supramolecular compounds, such as cyclodextrin, can
modify the surface of a nanomaterial substrate through covalent or non-covalent interac-
tions, enhancing the functionality of the nanomaterial substrate [67,68]. In this experiment,
thiol-modified cyclodextrin was employed as a stable ligand to modify the surface of
AuNPs, resulting in the fabrication of a SH-β-CD@AuNPs functionalized nanomaterial
substrate. The thiol groups of mono-(6-mercapto)-β-cyclodextrin used in this study readily
bind to AuNPs. The modification with cyclodextrin significantly improves the ability
of AuNPs to selectively recognize and adsorb target analytes. In aquatic environments,
β-cyclodextrin serves as a large cyclic molecular receptor, allowing for certain organic and
inorganic compounds and biomolecules to enter its cavity and form host–guest complexes.
The derivative of nitrite ions, BTAH, demonstrates a strong affinity for the hydrophobic
cavity of β-cyclodextrin, enabling selective entry [69,70]. Therefore, BTAH exhibits strong
adsorption on the SH-β-CD@AuNPs substrate. Accordingly, in this study, gold nanoparti-
cles (AuNPs) with a diameter of 50 nm and modified with cyclodextrin were synthesized
for the detection of nitrogen derivatives, specifically BTAH, resulting from the conversion
of nitrate ions to nitrites. Following the transformation of nitrate ions into nitrites and their
subsequent reaction with OPD, BTAH exhibited a particularly distinct SERS signal on the
surface of the SH-β-CD@AuNPs substrate.
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3.2. Characterisation of SH-β-CD@AuNP Substrates
3.2.1. UV–Vis Absorption Spectra

A UV–visible absorption spectral characterization was carried out to gain a preliminary
understanding of the AuNPs and SH-β-CD@AuNPs substrates (see Figure 2). It can be
observed that the characteristic absorption peak of the AuNPs is approximately 520 nm,
while the absorption peak of the synthesized SH-β-CD@AuNPs substrate is situated around
530 nm for the surface plasmonic resonance (SPR) absorption peak. The UV absorption peak
position of AuNPs theoretically depends on the size and shape of the particles. Generally,
gold nanoparticles exhibit a characteristic SPR absorption peak in the UV region. For
spherical gold nanoparticles (50 nm), the surface plasmon resonance peak typically appears
in the range of 520 to 530 nm. Smaller particles usually exhibit a blue shift, while larger
particles may result in a red shift. The position in this range can serve as a preliminary
indicator of the size of gold nanoparticles.
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Additionally, by comparing AuNPs and SH-β-CD@AuNPs, we observed that the peak
disappeared after modifying with cyclodextrin, and the absorption peak position shifted to
around 530 nm. This is because, in the absence of a modification with single-(6-thiol)-β-
cyclodextrin, the AuNPs are stable due to electrostatic repulsion between the gold particles.
After modification, the thiol groups on single-(6-thiol)-β-cyclodextrin form stable Au-S
bonds, adsorbed on the surface of AuNPs [71]. This disrupts the original stable double
electron layer structure, affecting the aggregation state of the gold sol. Therefore, after
cyclodextrin modification, the UV–visible absorption spectrum of SH-β-CD@AuNPs shows
a redshift of the absorption peak to 530 nm.

3.2.2. Zeta Potential

The zeta potential plot is the difference between the concentration and potential of
the substance to be measured as a function of the distance from the charged surface of
the particles suspended in the dispersed medium. The magnitude of the zeta potential
represents the degree of electrostatic repulsion between neighboring charged particles in
the dispersion [72,73]. Therefore, when the zeta potential (negative or positive) is high,
the colloid stability is better, and when it is low, the colloid is easy to be deposited or
flocculated. The zeta potential of the SH-β-CD@AuNPs nanomaterial substrate prepared
in this paper is shown in Figure 3. The results show that the zeta potential is −17.5, which
has good stability and better results in detection.
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3.2.3. TEM Characterization

The external appearance, organization, and size distribution of the synthesized SH-β-
CD@AuNPs substrates were characterized using transmission electron microscopy (TEM),
and the results are presented in Figure 4. It reveals that the AuNPs exhibit relative homo-
geneity in size and dispersion, primarily adopting a spherical morphology. It is evident that
there are black dot-like structures around the gold nanoparticles. This is attributed to the
stable Au-S bond formed between the thiol group on single-(6-mercapto)-β-cyclodextrin
(SH-β-CD) and the gold nanoparticles, disrupting the original stable double electron layer
structure and influencing the aggregation state of the AuNPs. The reduced interparticle
distance leads to aggregation. Furthermore, the UV–Vis absorption spectra before and after
the modification with SH-β-CD also support the observation of aggregation. The original
unmodified gold nanoparticles exhibit a characteristic resonance absorption peak at 520 nm,
while the SH-β-CD-modified particles show a redshift in the absorption peak, indicating
some degree of aggregation. Therefore, cyclodextrin has been successfully modified onto
the gold nanoparticles.
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Additionally, using Nano Measure software1.2, we calculated the average particle
sizes of AuNPs and SH-β-CD@AuNPs to be 49.3 nm and 50.1 nm, respectively. Figure 5
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illustrates the size distribution of the AuNPs and SH-β-CD@AuNPs substrates obtained in
this study. It is evident that more than 90% of the gold nanoparticles have sizes concentrated
in the range of 45–55 nm, and for the SH-β-CD@AuNPs substrate, more than 70% have
sizes within 50 ± 5 nm, with around 40% having sizes around 50 nm. In conclusion, the
SH-β-CD@AuNPs substrate prepared in this study exhibits uniform particle sizes and
excellent stability. The TEM characterization indicates that the modified nanomaterial
substrates have been successfully prepared and exhibit good performance.
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3.3. SERS Detection of Nitrate Nitrogen
3.3.1. SERS Spectral Analysis

The SERS spectra of OPD solution with a concentration of 100 µmol/L, 10 µmol/L
sodium nitrate solution, and 10 µmol/L sodium nitrite are shown in Figure 6 (a–c), respec-
tively. It can be observed from the graphs that none of the three sample groups exhibit
particularly obvious Raman characteristic peaks. These results indicated that none of the re-
actants involved in the cyclization reaction interfere with the SERS signals. In Figure 6 (d,e),
it is evident that the Normal Raman spectra (NRS) and SERS on AuNPs of the nitrite ion
and the OPD-derived substance BTAH also lack particularly distinct characteristic peaks.
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from the reaction between NO2

− and OPD; (e) SERS of BTAH on AuNPs; (f) SERS of BTAH based on
SH-β-CD@AuNPs.

Upon comparing Figure 6 (e,f), more noticeable Raman characteristic peaks appeared
in the SERS of BTAH after mixing with SH-β-CD@AuNPs. In the absence of cyclodextrin,
we observed the Raman spectra of BTAH and gold nanoparticles, finding that its Raman
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signals were weak. However, in the presence of β-cyclodextrin, the SERS signals of BTAH
were significantly enhanced, with four distinct characteristic peaks at 1168, 1240, 1375,
and 1600 cm−1. This result indicates that the introduction of cyclodextrin causes BTAH
to enter the cyclodextrin cavity, forming a stable complex. The Raman characteristic peak
at 1168 cm−1 is associated with the vibrational mode of the triazole ring, attributed to the
triazole ring-breathing mode [74,75]. The peak at 1245 cm−1 corresponds to the planar
bending vibration of C-H, and those at 1375 cm−1 represent the stretching vibration of
the benzene ring and azole ring [75–77]. Additionally, a distinct characteristic peak at
1600 cm−1 is observed in Figure 6 (e), originating from the phenyl ring stretch vibration
due to the inclusion complex formed by AuNPs with β-CD derivatives [78]. Furthermore,
several weak characteristic peaks are visible in Figure 6, mainly encompassing the in-plane
bending vibration of N-H and the stretching vibration of N=N=N.

The experimental results indicate that an interaction occurred between BTAH and
the substrate of SH-β-CD@AuNPs, with BTAH entering the cavity of cyclodextrin in the
SH-β-CD@AuNPs to form a new host–guest inclusion complex. These characteristic peaks
indicate that the SH-β-CD@AuNPs synthesized in this paper greatly enhance the SERS
signals of BTAH on its surface. Consequently, it can be used for the ultrasensitive detection
of BTAH in mixed solutions, facilitating the simultaneous measurement of nitrate ion and
nitrite ion concentrations.

3.3.2. Calculation of Enhancement Factors

The enhancement of Raman spectral signal results from the increase of the effective
cross-sectional area of the molecules, and the enhancement factor (EF) of SERS is corre-
lated with the SERS cross-section [79]. The calculation of SERS-EF relies on the specific
conditions of the SERS substrate, the target samples, and the excitation wavelength. The
SH-β-CD@AuNPs nanomaterial substrate developed in this paper exists in colloidal form.
Therefore, in this work, the chosen AEF calculation formula [80–83] is as follows:

EF =
ISERS × CRS
IRS × CSERS

(2)

where ISERS refers to the SERS spectrum of the BTAH molecule, the reaction product of
nitrite conversion of nitrate to OPD phantom. CRS refers to the concentration of nitrite
nitrogen (mol/L) at the time of detection in the NRS of BTAH, while IRS refers to the NRS
of BTAH. CSERS refers to the concentration of nitrite nitrogen (mol/L) as detected by the
SERS of BTAH.

The SERS-EF values at SERS characteristic peaks at 1168, 1240, 1375, and 1600 cm−1

were calculated by substituting the experimentally measured values of Raman spectral
intensity and concentration into the aforementioned formula. As illustrated in Table 1, the
calculated results demonstrate that the SH-β-CD@AuNPs nanomaterial substrate exhibits
a robust SERS signal with a significant enhancement effect when detecting nitrite ion
derivatives. Consequently, the modified nanomaterial substrate developed in this study
will display heightened sensitivity in a practical nitrate measurement.

Table 1. The calculated results of SERS-EF.

Raman Characteristic Peaks (cm−1) SERS-EF

1168 2.11 × 106

1240 4.67 × 106

1375 1.78 × 107

1600 1.98 × 108

3.3.3. Stability and Reproducibility of the SH-β-CD@AuNPs Substrate

Currently, nanomaterials have emerged as a key focus in the realm of high-sensitivity
and high-reliability electrochemical sensors, optical sensors, and biosensors. Nevertheless,
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challenges such as nanomaterial agglomeration, stability, and reproducibility during prepa-
ration persist. Metal nanomaterials particularly exhibit high reactivity and are susceptible
to oxidation during use, resulting in decreased SERS substrate activity. Additionally, the
stability of various nanomaterials substrate can vary widely. Consequently, this paper eval-
uates the stability of the SH-β-CD@AuNPs substrate. An amount of 10 µmol/L nitrate ion
was selected for this assessment. The prepared SH-β-CD@AuNsP substrate was employed
to monitor the nitrate ion samples with the same concentration over three consecutive
weeks, as depicted in Figure 7a. It can be observed that the SERS spectrum of 10 µmol/L
nitrate ion, as measured by the present method, exhibited no significant changes over the
three-week period. Figure 7b illustrates the variation in the intensity of the selected SERS
characteristic peak located at 1600 cm−1 over 21 days. Notably, the intensity of the SERS
characteristic peak at 1600 cm−1 showed minimal change over 21 days, with a relative
standard deviation of 9.63%. These experimental results affirm the good stability of the
SH-β-CD@AuNP substrates prepared in this study.
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Moreover, the reproducibility of different batches of the SH-β-CD@AuNP substrates
for nitrate detection was explored, and the results are presented in Figure 8. Notably,
the SERS of BTAH on SH-β-CD@AuNP substrates prepared in six batches did not show
significant changes in the detection of the same concentration of nitrate ions. These findings
prove the excellent reproducibility of the preparation method in this study.

3.4. Optimization of Experimental Conditions
3.4.1. Effect of pH

It has been reported in the literature that the cyclization reaction of nitrite with OPD to
produce BTAH exclusively takes place under acidic conditions. Under alkaline and neutral
conditions, the reaction of nitrite with OPD does not proceed. Therefore, the pH level plays
a crucial role in determining the rate of the cyclization reaction and whether nitrite is fully
derivatized to BTAH. In this study, HCl and NaOH were employed to adjust the pH of the
reaction system. Under the same experimental conditions, a sodium nitrate solution with a
concentration of 10−6 mol/L was chosen for conversion to sodium nitrite. Subsequently,
varying volumes of a HCl working solution were added. The SERS of the mixed solutions
at different pH values were obtained using the above method, and the changes in the
intensity of the SERS characteristic peaks at 1660 cm−1 were compared across different
sample groups. As shown in the Figure 9, when adding 0–100 µL HCl, the SERS signal
of the reaction product first increases and then decreases. The maximum intensity of the
1600 cm−1 SERS characteristic peak is observed when adding 50 µL of HCl, corresponding
to a pH of approximately 2.5. In summary, the reaction reached its optimal conditions at
pH 2.5. Therefore, 50 µL of the HCl working solution were introduced into the solution
system to ensure the smooth progression of the cyclization reaction and the accuracy of the
detection results.
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3.4.2. Effect of Reaction Temperature and Time

In this paper, the effects of temperature and reaction time on nitrate conversion
experiments, the cyclization reaction of nitrite, and the adsorption properties of BAH
on SH-β-CD@AuNPs substrates are investigated. The previous literature indicates that
temperature plays a crucial role in the rate of nitrate conversion. Under room temperature
conditions, the complete conversion of nitrate to nitrite using VCl3 typically takes 10 h. We
chose a temperature of 50 ◦C and employed sealed heating in a drying oven for 30 min to
ensure the thorough conversion of nitrate to nitrite in our experiments [84]. Regarding the
cyclization reaction of OPD with nitrite, the temperature requirements are not particularly
stringent. Here, we selected a room temperature of 23 ◦C for the nitrite cyclization reaction.
Exploring the impact of the cyclization reaction time, we investigated the effects within the
0–30 min time range. As shown in Figure 10a, the SERS intensity of the reaction product
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BTAH exhibited significant changes at the initial stages of the reaction, gradually enhancing.
Around the 20 min mark, the SERS intensity began to stabilize, reaching its peak at 20 min,
with no further significant alterations. Therefore, the cyclization reaction time between
OPD and nitrite was set at 20 min.
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Additionally, the effects of temperature and time on the adsorption of BTAH with the
substrate of SH-β-CD@AuNPs were also explored. The substrate of SH-β-CD@AuNPs
forms a host–guest inclusion complex with the guest molecule at room temperature.
At higher temperatures, BTAH is detached from the cavities of cyclodextrins in SH-β-
CD@AuNPs. Within the normal temperature range, there is little effect on the host–guest
inclusion complex. Hence, this study designates room temperature as the optimal condition
for the adsorption of BTAH onto the SH-β-CD@AuNPs substrate. Regarding the effect of
adsorption time, the SERS intensity of the reaction products within the range of 0–10 min
was explored. As shown in Figure 10b, within the first 5 min of mixing BTAH with the SH-
β-CD@AuNPs substrate, the SERS intensity of the reaction product notably increased. The
intensity peaked at 5 min and remained unchanged thereafter. This observation confirms
that, at the 5 min mark, all the generated BTAH in the mixing solution had entered the
cavities of cyclodextrins on the SH-β-CD@AuNPs substrate. Consequently, the optimum
reaction time for the interaction between BTAH and the SH-β-CD@AuNPs substrate was
determined to be 5 min in this study.

In summary, the optimal temperature for the nitrate conversion, the cyclization reac-
tion of nitrite, and the adsorption of BTAH onto the SH-β-CD@AuNPs substrate were 50,
23, and 23 ◦C, respectively. The optimal reaction times were 30, 20, and 5 min, respectively.

3.4.3. Effect of OPD Concentration

In the cyclization reaction between OPD and nitrite ions, the concentration of OPD
directly affects whether the reaction can proceed to completion, thus impacting the detection
results of nitrite nitrogen. We chose a nitrite ion concentration of 10−5 mol/L to examine
the effect of different concentrations of the OPD solution on the measurement results.
As illustrated in Figure 11, the change in the intensity of the SERS characteristic peak at
1600 cm−1 for the generated BTAH was observed when adding 200 µL of the OPD solution
with concentrations ranging from 10−3 to 10−5 mol/L. It can be seen from the figure that
the intensity of the SERS peaks at 1600 cm gradually increased as the concentration of
the OPD solution rose from 10−5 mol/L to 10−4 mol/L. The intensity of the SERS peaks
at 1600 cm−1 reached its maximum value at an OPD concentration of 10−4 mol/L, and
the SERS peaks remained constant when the concentration of the OPD solution was in
the range of 10−4 to 10−3 mol/L. Beyond this range, the intensity of SERS no longer
changed for OPD concentrations ranging from 10−3 to 10−1 mol/L. Therefore, an OPD
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solution concentration of 10−4 mol/L was selected as the optimal concentration for the
SERS detection of nitrate ions.
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3.4.4. Effect of Substrate Concentration

We also investigated the impact of varying amounts of SH-β-CD@AuNPs substrates
on the adsorption performance of BTAH. According to our experiment’s results, the con-
centration of SH-β-CD@AuNPs is 50 µg/mL. Under the same experimental conditions,
200 µL of sodium nitrate solution with a concentration of 10−5 mol/L was converted into
a sodium nitrite solution following the procedure outlined in this paper. Subsequently,
200 µL of the OPD solution was added to undergo the cyclization reaction, and different
volumes of the SH-β-CD@AuNPs substrate solution were introduced to compare their
effects on the experimental outcomes. From Figure 12, it can be depicted that the intensity
of the SERS characteristic peak at 1600 cm−1 showed an obvious increasing trend within
the SH-β-CD@AuNPs substrate concentration range of 2.5–20 µg/mL. The intensity of
the SERS characteristic peak at 1600 cm−1 reached its maximum at 12.5 µg/mL. Subse-
quently, the SERS intensity reached equilibrium and ceased to change within the range
of 12.5–20 µg/mL. Therefore, 12.5 µg/mL (500 µL) SH-β-CD@AuNPs were chosen as the
optimal concentration of SH-β-CD@AuNPs for nitrate ion detection in this paper.
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3.5. Analytical Performance
3.5.1. Selectivity

The aquaculture water is inherently dynamic, encompassing ions such as CI−, SO4
2−,

NH4
+, PO3

−, Fe3+, Mg2+, and coexisting organic matter, along with impurities. Therefore,
the effects of common interfering ions in aquaculture water on the measurement results
of nitrate ions were discussed. The interference from nitrite ions is discussed below. A
nitrate ion concentration of 10−5 mol/L was selected for the interference ion experiment
in this paper. The blank group test samples and samples with the addition of specific
concentrations of interference ions (CI−, SO4

2−, NH4
+, PO4

2−, Fe3+, Mg2+, Na+, and K+)
were measured under the same experimental conditions. Subsequently, the intensity of a
SERS characteristic peak at 1600 cm−1 was measured for each group of mixed samples, and
the experimental results are presented in Figure 13. From the figure, it can be observed that
the concentration of the added interfering ions is 100 times that of nitrate ions. In the paper,
whether it is sodium nitrate, potassium nitrate, or nitrate X, the actual species participating
in the reaction is the nitrate ion. These cations have no impact on the reaction between
OPD and nitrite ions. Additionally, these ions cannot be adsorbed onto gold nanoparticles
or substituted for BTAH within the cyclodextrin cavity. Therefore, their presence has
minimal influence on the SERS signal of BTAH. The relative standard error is less than
5.67%. This suggests that, based on the cyclization reaction between OPA and nitrite ion,
the prepared SH-β-CD@AuNPs substrate has high selectivity for detecting nitrate ions in
complex water environments.
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3.5.2. Linearity and LOD

Under the optimal experimental conditions, 11 groups of nitrate ion samples in the
range of 0.1–50 µmol/L were detected. It can be seen from Figure 14 that the SERS spec-
tra obtained from different concentrations of nitrate ions exhibited prominent Raman
characteristic peaks at 1168, 1240, 1375, and 1600 cm−1. Even at the lowest nitrate ion
concentration of 0.1 µmol/L, BTAH displayed a weak SERS signal. Therefore, the Raman
characteristic peaks at 1168, 1240, 1375, and 1600 cm−1 were selected for nitrate ion de-
tection. The linear regression models were established for SERS intensity and nitrate ion
concentration. According to the least squares method, the calibration curves obtained
based on the relationship between the intensities of four SERS characteristic peaks and the
concentration of nitrate are illustrated in Figure 15. Remarkably, these curves demonstrate
a good linear relationship within the concentration range of 0.1–30 µmol/L. The calibration
curve of the four SERS characteristic peaks was calculated by the least squares method, and
the linear regression equations and correlation coefficients were summarized in Table 2.
Therefore, the nitrate concentration could be accurately determined using the regression
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equations. The experimental results showed that the proposed SH-β-CD@AuNPs substrate
exhibits a highly reliable linear relationship for nitrate ion concentrations in the range of
0.1–30 µmol/L.
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To investigate the lowest measured concentration, 20 groups of blank concentration
samples were detected, and the lowest detection limits (LOD) at the four characteristic peaks
of 1168, 1240, 1375, and 1600 cm−1 were calculated at a signal-to-noise ratio of S/N = 3 [85].
The results were 3.33 × 10−2, 5.84 × 10−2, 2.40 × 10−2, and 1.05 × 10−2 µmol/L, respec-
tively, as shown in Table 2. Now, a few more methods based on optical and electrochemical
for nitrate determination developed in recent years, and the detection parameters, such as
the materials, principle, LOD, and linear range, have been added in Table 3. The proposed
SERS detection method of nitrate on SH-β-CD@AuNPs has higher sensitivity, higher selec-
tivity, and a lower LOD. Therefore, the development of highly sensitive and selective SERS
substrates is crucial for achieving the rapid and accurate detection of low concentration
nitrate nitrogen in aquaculture.

Table 3. Comparison of the performance from different detection methods.

Method Materials Linear Range (µM) LOD (µM) Ref.

Voltammetric ERGO-MWCNT a 10–750 3.3 [8]
Potentiometric Ni2O3/rGO 10–2400 27.4 [13]

Voltammetric CdS nanorods on glass screen
print electrode 50–5000 2.3 [14]

Ion Chromatography N/A 0.1–3 3 × 10−2 [20]
SERS Halloysite nanotubes-AgNPs 102–105 2 × 10−2 [86]
SERS SH-β-CD@AuNPs 0.1–30 1.05 × 10−2 This work

a ERGO-MWCNT: graphene oxide-multiwalled carbon nanotubes.

3.5.3. Detection of Nitrate Nitrogen in Real Water Environment

To verify the reliability of this nitrate nitrogen detection method in an actual aquacul-
ture water body, four actual water environment samples were selected for testing. These
samples encompassed the water bodies of a grouper marine aquaculture workshop, a fish
tank for carp aquaculture, pure water, and seawater. The testing protocol entailed two sets
of experiments for each sample: one for nitrite nitrogen detection in the actual samples and
the other for total nitrite nitrogen after a nitrate nitrogen reduction. Each group of samples
underwent five tests, and the average value derived from these experiments was taken as
the final result. The SERS spectra data were obtained by subjecting the mixed solutions
to a SERS analysis. Specifically, the SERS signal intensity at 1600 cm−1 was selected and
substituted into the univariate linear regression equation in Table 2.

Furthermore, a spiked recovery experiment was conducted to evaluate the accuracy
of the method under optimal experimental conditions. As depicted in Table 4, the results
demonstrate that this method aligns with the requisites for nitrate ion detection, exhibiting
spiked recoveries ranging from 96.8% to 103.4% and relative standard deviations between
1.89% and 4.21%. These findings underscore the method’s robust detection accuracy and its
applicability for detecting nitrate ion concentrations in actual aquaculture water, facilitating
the simultaneous detection of nitrate nitrogen and nitrite nitrogen.

Table 4. Determination of nitrate in different water samples by the present method and spectrophotometry.

Sample Added (µmol/L) Spectrophotometry
(µmol/L)

This Work
(µmol/L) RSD (%) Recovery (%)

Carp fish tank 0 8.12 5.17 2.14
103.45.0 9.90 10.34 3.75

Land-based
factories (grouper)

0 25.09 24.10 3.24
96.85.0 29.87 28.94 2.70

Sea
0 10.98 10.65 2.57

102.85.0 11.63 15.79 3.41

River
0 36.2 31.09 N/A

N/A5.0 41.6 31.4 N/A
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4. Conclusions

In this paper, a nanomaterial substrate of SH-β-CD@AuNPs was synthesized, which
exhibits a rapid, highly sensitive, and selective SERS approach for the detection of nitrate
nitrogen in water. This method leverages the cyclization reaction between nitrite and OPD
on the SH-β-CD@AuNPs substrate. Several experimental parameters, including the pH,
temperature, reaction time, reactant concentration, and concentration of SERS substrate,
were optimized to achieve optimal conditions. Under the optimal conditions, the nitrate
derivative BTAH exhibited distinct SERS characteristic peaks at 1168, 1240, 1375, and 1600
cm−1, with LOD of 3.33 × 10−2, 5.84 × 10−2, 2.40 × 10−2, and 1.05 × 10−2 µmol/L, respec-
tively. The linear range for nitrate ion detection spanned 0.1–30.0 µmol/L. Additionally,
the method demonstrated accuracy and spiked recoveries ranging from 96.8% to 103.4% in
the analysis of real samples.

The experimental results indicate that the proposed method has high sensitivity and
selectivity, meeting the requirements for the accurate detection of nitrate nitrogen and nitrite
nitrogen in aquaculture water. Future research will focus on the “dual-mode” detection
of nitrate ions, incorporating both SERS and fluorescence based on the SH-β-CD@AuNPs
substrate. This approach aims to enhance the detection accuracy, sensitivity, and selectivity
by utilizing the improved substrate as both SERS and fluorescence probes.
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