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Abstract: The rapid and accurate estimation of the nitrogen content of fruit trees helps to achieve a precise
management of orchards. Hyperspectral data were collected from leaves of apple tree canopies at different
fertility stages through field experiments to investigate the relationship between the nitrogen content and
spectral reflectance of apple canopy leaves. Two different preprocessing methods, Savitzky–Golay (SG)
smoothing and multiple scattering correction (MSC), were used to extract the feature bands by combining
the successive projection method (SPA) and the competitive adaptive weighting algorithm–partial least
squares (CARS-PLS). The reflectance values of the feature bands screened via these two methods were
used as inputs to construct the multi-factor inversion models of apple canopy leaf nitrogen content
based on the long- and short-term memory (LSTM) network, the support vector regression (SVR) and
the Least Squares Support Vector Machine Regression (RIME-LSSVM). The study compared the ability
of three algorithmic models to estimate leaf nitrogen content, and the results showed that the model
constructed with the reflectance values of the characteristic bands screened by the CARS-PLS algorithm
as inputs was more effective in predicting the nitrogen content of leaves. Furthermore, the accuracy of the
model constructed using RIME-LSSVM was significantly higher than that of the model constructed using
the long- and short-term memory network and support vector regression, in which the coefficient of
determination of the test set (R-squared) is 0.964 and the root-mean-squared error (RMSE) is 0.052. Finally,
the CARS-PLS algorithm combined with the RIME-LSSVM model has a higher prediction accuracy.
The study demonstrated the feasibility and reliability of hyperspectral techniques for the estimation of
nitrogen content of apple leaves in the Aksu region.

Keywords: apple tree leaf; feature extraction; Frost and Ice Optimization Algorithm (RIME); hyperspectral;
nitrogen content

1. Introduction

The fruits of Rosaceae apple plants are rich in vitamins and minerals. China is the
world’s largest producer of apples, with production reaching 48 million tons in 2022.
Xinjiang is one of China’s most important apple production areas, with a long cultivation
history [1]. The total area under cultivation has reached 390,000 mu, making apples an
important cash crop in the Ring Tarim Basin that play a positive role in helping farmers to
increase their income [2].

Nitrogen is one of the most important elements affecting the growth and development
of apples. A lack of nitrogen causes the yellowing and curling of leaves, which has an impact
on the quality of the fruits and can even result in the phenomenon of early fruit drop [3].
Meanwhile, excessive use of nitrogen fertilizers reduces the sugar content of the fruits and
exacerbates the problem of soil acidification, which affects sustainable development [4].
Therefore, timely and accurate access to the nitrogen content of the leaves at the apple
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crown can facilitate the real-time management of orchards by providing information on
growth and allowing for continued monitoring [5].

Traditional methods of plant nitrogen determination require that plant samples col-
lected in orchards are brought back to the laboratory, ground, and treated with chem-
ical reagents to determine their nitrogen content using formaldehyde [6] and distilla-
tion [7] methods. The formaldehyde method is an indirect titration of the acid–base
titration method, where formaldehyde interacts with an ammonium salt and undergoes a
formaldehyde–ammonia reaction, and the resulting compound is measured via colorimetry
to determine the color of the solution. The amount of nitrogen in the sample can be indi-
rectly determined; however, operating conditions must be strictly controlled, otherwise it is
easy to produce large errors [6]. The distillation method obtains the nitrogen concentration
by distilling out the nitrogen in the water sample and neutralizing and titrating it with a
standard hydrochloric acid solution, which gives accurate and reliable results; however,
the operation is cumbersome and time-consuming, and if the purity of the sample is poor,
the analytical results are often low [7]. Hyperspectral remote sensing has the advantage
of rapidly and non-destructively acquiring the canopy spectral information of crops, as
compared to traditional determination methods [8,9]. Spectral analysis and nutritional
diagnosis are carried out by utilizing the different degrees of light absorption and reflection
by crop leaf cells, pigments, and water content [9]. Since nitrogen content and chlorophyll
are closely related, a nitrogen content that is too low will lead to slowing down the rate
of chlorophyll synthesis in crop leaves. Chlorophyll has a strong absorption rate in the
red and blue light bands, and at the same time, the shape and position of the red edge
band will be changed with the lack of nitrogen, so that a spectral nutrient diagnosis of the
nitrogen content of the crop can be carried out accordingly [9]. Hyperspectral technology
has been widely used for nutrient estimation in crop leaves, which is currently a focus of
precision agriculture research [8,9].

Hyperspectral data in the acquisition process usually bear certain issues such as a
large volume, redundancy, duplication, noise, as well as other problems. Therefore, in
order to solve these problems so as to improve data quality, the data used in the prediction
accuracy of the model to produce certain constraints should be preprocessed. Previous
studies have shown that the preprocessing of spectral data can effectively reduce noise de-
composition; therefore, extracting the sensitive bands of nitrogen spectra and constructing
the model can improve the model accuracy. Ma et al. [10] explored the possibility of using
hyperspectral techniques for the detection of total soil nitrogen, SG smoothing, and MSC
spectral data preprocessing, combined with five modeling methods—partial least squares
(PLS), back propagation (BP) neural network, radial basis function (RBF) neural network,
extreme learning machine (ELM), and SVR—to compare the errors of spectral analysis
using chemical analysis results as a control. The results showed that all five models could
be used for the detection of soil total nitrogen content, and the SG smoothing preprocessing
model had a better detection ability compared with MSC, with an R-squared of 0.8767, and
an RMSE of 1.302, among which the SVR model had the best accuracy, with an R-squared
of 0.9121 and an RMSE of 0.7581.

Since hyperspectral data have high-dimensional characteristics, and a lot of wave-
length information in the visible and near-infrared spectra may be irrelevant to the target,
the extraction of feature bands can reduce the bias caused by irrelevant wavelength infor-
mation and improve the model prediction accuracy [11]. For example, the SPA algorithm
can effectively extract feature bands from severely overlapping spectra, thus minimizing
the effect of reducing covariance between spectral variables [12]. The CARS-PLS algo-
rithm rejects redundant information by filtering feature selection [13]. Previous studies
have shown that nonlinear models have more obvious advantages than linear models
in quantitative prediction [14,15]. Common nonlinear models include SVR, LSTM, and
RIME-LSSVM [16–18]. Therefore, this study further explores nonlinear modeling methods
applicable to the prediction of leaf nitrogen content in apple trees.
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To date, hyperspectral-based nitrogen inversion studies have mostly focused on wheat,
rice, soybean, corn, and other grain crops. For example, Bruning et al. [19] have conducted
nitrogen content inversion studies on hyperspectral data for four different genotypes
of wheat through multiple regression methods combined with 10 spectral preprocessing
techniques, and the results showed that the nitrogen content in the visible and near-infrared
bands of 400–1000 nm was predicted with a 0.59 accuracy of R-squared. The prediction
model accuracy was improved by adding the shortwave infrared band of 1000–2500 nm,
providing an R-squared of 0.66, indicating that the red-edge band has a better effect for
nitrogen content prediction. Guo et al. [20] took different varieties of winter wheat as the
research object, used the continuous wave removal method to expand the characteristic
band of nitrogen uptake, analyzed the correlation with leaf nitrogen accumulation (LNA),
and compared the prediction accuracy of three nonlinear modeling methods for LNA.
Their results showed that the continuous wave removal method improved the correlation
with the LNA, and the Support Vector Machine (SVM) regression model had a higher
accuracy with an R-squared of 0.8950. Yu et al. [21] investigated the relationship between
nitrogen (N) content and spectral reflectance difference of rice in cold land, established
a hyperspectral reflectance difference model for the difference in N content of rice, and
modeled the spectral data by combining the PLS, the ELM, and the genetic algorithm-
extreme learning machine (GA-ELM) algorithms after processing the spectral data using
the discrete wavelet multi-scale decomposition, the continuum projection algorithm, and
the principal component analysis. The results show that the GA-ELM model established via
discrete wavelet multiscale decomposition obtains optimal results in both dataset modeling
and training, and the R-squared of both training and validation datasets are above 0.68.

Hyperspectral techniques for nutrient element monitoring in fruit trees have also been
studied by previous researchers, such as Azadnia et al. [22], who combined visible/near-
infrared spectroscopy with four different machine learning algorithms, namely SVM,
artificial neural networks (ANNs), Random Forest (RF), and PLS, to predict N, phosphorus
(P), and potassium (K) contents in apple leaves. The results showed that the nonlinear
modeling approach outperforms the linear one in all models. Gómez-Casero et al. [23]
combined hyperspectral reflectance curves of olive trees under different nitrogen and
potassium treatments, as well as the optimal wavelengths for distinguishing between
different nitrogen and potassium treatments to explore the changes in the nutrient content
of olive tree leaves in vegetation indices, with an accuracy of up to 94.4%, and the results
showed that nitrogen or potassium nutritional deficiencies in olive tree leaves are mainly
concentrated in the near-infrared region of hyperspectral reflectance. Somers et al. [24]
collected spectral data on fruit tree leaves, fruits, and canopies in citrus orchards and cross-
referenced them with biophysical and biochemical characteristics of the trees to explore
the effect of citrus fruits on the spectral reflectance of canopies. The results showed that
the presence of fruit resulted in a significant decrease in reflectance in the infrared region
(700 to 2500 nm) of the electromagnetic spectrum. In the visible (VIS: 350 to 700 nm) region,
the fruit had less effect, mainly due to leaf chlorosis resulting from nitrogen competition
between canopy elements. Einzmann et al. [25] conducted two years of field monitoring
of Norway spruce forests to explore the effects of artificial stress (bark stripping) on tree
vigor in conjunction with hyperspectral data, transforming needle and canopy spectra with
spectral derivatives, vegetation indices, and angular indices, and checking the separability
of all features (ring-barked trees vs. control trees) using an RF classification algorithm.
The results showed that younger, well-maintained stands showed less change over the
2-year period, while the changes in older stands were observed in both coniferous and
hyperspectral canopy spectra, suggesting the great potential of hyperspectral remote
sensing in detecting early vigor changes in stressed trees. In contrast, there have been fewer
studies on the use of hyperspectral technology for the determination of apple physiological
and biochemical indices; therefore, the use of hyperspectral technology for monitoring
apple growth information in the Tarim Basin of the Southern Xinjiang Ring still needs to be
further discussed.
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In this study, the spectral raw data were preprocessed via SG smoothing and MSC,
and the feature variables of the bands were extracted using CARS-PLS and SPA algorithms.
Based on the feature variables extracted with the above two methods, the prediction
accuracies of the three models (SVR, LSTM, and RIME-LSSVM) were established and
compared, and the optimal model for estimating the nitrogen content of the canopy leaves
of apple trees was determined.

2. Materials and Methods
2.1. Overview of the Study Area

Shahe Town, Aksu Region, Xinjiang Province, is located in the northern edge of
the Tarim Basin; geographic coordinates are 41◦12′30′′–41◦24′30′′ north latitude, and
80◦47′15′′–80◦57′ east longitude. The irrigation area has a typical continental climate,
with large temperature differences between day and night. The average annual sunshine
is 2621 h, the average annual precipitation is 79.3 mm, and the average annual frost-free
period is 202 days. The climate is mild, rich in heat, and abundant in light. The soil type
was sandy, in which the soil organic matter content was 11.05 g/kg; effective phosphorus
content was 3.2 mg/kg; quick-acting potassium content was 33 mg/kg; alkaline-dissolved
nitrogen (ADN) and total nitrogen (TN) content were 10 mg/kg and 176 mg/kg, respec-
tively. pH value was 8.71, making it more suitable for growing apples.

2.2. Data Acquisition
2.2.1. Apple Canopy Leaf Hyperspectral Data Acquisition

Hyperspectral data of apple tree canopy leaves were collected using an ASD FieldSpec
HandHeld2 portable spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA).
Spectral data were collected from May to September 2023 during the full apple growing
season. Spectral data from all canopy leaves were collected under clear, windless, cloudless,
and stable light conditions, with a solar altitude angle greater than 45◦, and from 10:00
to 14:00 on the same day to ensure the accuracy of the spectral data. The spectrometer
needed to be calibrated with a whiteboard before data collection and every 15 min, and
the results of the calibration required that the spectral reflectance in the range of bands
were all 1. During the acquisition process, the sample leaves were placed against a black
background, the instrument probe was vertically downward and always kept 15–20 cm
away from the sample, and the spectrometer field of view was 25◦. When measuring the
spectra, the experimenter had to wear dark-colored clothes facing the direction of sunlight
to avoid shadows or light-colored reflections affecting the spectral characteristics of the
leaves, and at the same time, they had be careful to avoid the measurement of leaf veins.
Twenty spectral curves were collected for each sample leaf, and the average value was
taken as the final reflectance information of the sample. The spectral reflectance data were
collected using ViewSpecPro 6.2.0 (ASD Inc., Boulder, CO, USA) software.

2.2.2. Determination of Nitrogen Concentration in Apple Canopy Leaves

Leaves from which spectral data had been collected were placed in self-sealing bags to
await determination of the nitrogen content of the leaves. The leaves were placed in an oven
at 105 ◦C for 30 min for de-enzymatic treatment; then, the oven temperature was adjusted
to 80 ◦C and the leaves were baked until they were of constant weight. The dried samples
were ground into powder, weighed 0.2 g, digested and treated with H2SO4, and then the
total nitrogen content of the samples was determined using a KjeltecTM 8400 Kjeldahl
Nitrogen Analyzer (FOSS, Inc., Hilleroed, Zealand, Denmark) [26].

2.2.3. Spectral Data Preprocessing

During the acquisition of hyperspectral data, due to the effects of baseline drift,
sample inhomogeneity, scattering, and human manipulation, the spectral curve of the
signal contained a small amount of noise [27]. SG smoothing does not change the shape or
width of the signal when filtering noise [28], while multiplicative scatter correction (MSC)
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can effectively eliminate the spectral differences due to different scattering levels, thus
enhancing the correlation between the spectral reflectance and nitrogen content [29]. In view
of this, the two methods were combined to perform noise reduction on the spectral data.
The SG-smoothed image had the same shape as the original image, while MSC removed
the spectral differences by correcting the baseline translation and offset phenomena of the
SG-smoothed spectral data with the ideal spectrum (Figure 1).
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After removing the error samples, 165 sets of valid data were finally retained. These
165 sets of data were divided into a training set (containing 120 groups) and a test set (con-
taining 45 groups) using the SPXY algorithm [30]. The maximum value of the total sample
was 2.851 mg/g, the minimum value was 1.136 mg/g, the mean value was 2.165 mg/g, the
standard deviation was 0.578, and the coefficient of variation was 26.7%. The maximum
value of the training set samples was 2.851 mg/g, the minimum value was 1.136 mg/g,
the mean value was 2.085 mg/g, the standard deviation was 0.523, and the coefficient of
variation was 25.1%. The maximum value of the test set was 2.734 mg/g, the minimum
value was 1.412 mg/g, the mean value was 2.073 mg/g, the standard deviation was 0.636,
and the coefficient of variation was 30.7%. It can be seen that the coefficients of variation
are all less than 35%, basically conforming to normal distribution.

2.3. Selection of Spectral Characteristics of Apple Leaves

The dataset after spectral preprocessing was still a high-dimensional dataset, for which
subsequent processing is difficult due to the high redundancy of information and high
correlation between different spectral bands. Thus, selecting appropriate features from the
spectral data is the key to improving the accuracy of the resulting model.

We used two methods for feature selection: The SPA method and the CARS-PLS
method. The SPA method is a forward iterative selection method that utilizes projection
analysis of vectors to select the effective wavelength with the least amount of redundancy
as a means to solve the covariance problem, thus reducing the number of model inputs and
achieving a reduction in the training time of the model [15,31]. The CARS-PLS method is a
dimensionality reduction method based on the regression coefficients of the partial least
squares model. The wavelength points in the PLS model with large regression coefficients
(in terms of absolute value) are selected as a new subset each time, using an adaptive
re-weighted sampling technique [32,33]. A PLS model is constructed based on the new
subset, and the subset with the lowest root-mean-squared error of model cross-validation
(RMSECV) is screened out as the characteristic wavelength through multiple calculations.
The inversion model is then constructed by taking the spectral matrix of the sample data
and the spectral matrix of the random noise matrix mixing as the input. In this study, the
CARS-PLS algorithm was set to run 100 times with 20 sets of interactive validation.
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2.4. Algorithm Fundamentals
2.4.1. Long- and Short-Term Memory Networks

Long short-term memory (LSTM) is a type of recurrent neural network (RNN); how-
ever, compared with RNNs, it includes more gating units (including forget gates, input
gates, and output gates). These can selectively memorize historical data and improve the
long-term memory ability of the neural network, effectively overcoming the problems of
gradient vanishing and gradient explosion that occur in RNNs during training [34]. LSTM
neural networks usually use sigmoid and tanh as the activation functions, and the LSTM
memory cell calculation formula can be expressed using the following equations [35]:

ft = σ
(

ωixxt + ω f hht−1 + ω f cct−1 + b f

)
(1)

it = σ(ωixxt + ωihht−1 + ωicct−1 + bi) (2)

ot = σ(ωoxxt + ωohht−1 + ωocct−1 + bo) (3)

ct = ftct−1 + ittanh(ωcxxt + ωchht−1 + bo) (4)

ht = ottanh(ct) (5)

In Equations (1)–(5), ft denotes a forget gate, which controls the parts that are forgotten,
and σ is the sigmoid function [36]:

σ(x) =
x

1 + e−x . (6)

In the sigmoid function, negative infinity is mapped to a value of 0, which means that
the data are not activated, and positive infinity is mapped to a value of 1, which means that
the data are fully activated.

Furthermore, ht−1 is the hidden-layer state at moment t − 1; xt is the input feature
vector at moment t; ωixω f hω f cωihωicωoxωohωocωcxωch are weight matrices; b f bibo are error
vectors, which are mainly used to establish the connections between the input layer, the
output layer, and the storage; it denotes an input gate, which controls which parts are
used as input and determines whether or not the input data are ignored; ot denotes an
output gate, which controls the output of the message and determines whether the hidden
state is used; and ct is the neuron state. The hidden-layer state variable at moment t
can be calculated using Equation (5), and tanh denotes the hyperbolic tangent activation
function [36], given by:

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x (7)

In this study, the model was set to have an initial learning rate of 1 × 10−2 and a
learning rate of 0.01 × 0.5 after 800 training sessions.

2.4.2. Support Vector Regression

Support Vector Machine (SVM) is a machine learning algorithm based on supervised
learning that has been widely used for the classification and regression of hyperspectral
data. SVM uses a kernel function to map the original data from the original space to a new
feature space, where a linear method is utilized to learn from the training data to solve a
nonlinear problem [37]. The sigmoid kernel function, polynomial kernel function, linear
kernel function, and radial basis function (RBF) are the four main kernel functions used
in SVM models. In this study, based on a priori knowledge, the RBF kernel function was
chosen. The formula of the SVM model is as follows:

f (x) = sgn
(
∑M

i=1 yiaik(xi, x) + δ
)

(8)
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where yi denotes the classification label, ai is the Lagrange coefficient, M denotes the
sequence of data vectors, δ is the threshold, and k(xi, x) represents the kernel function of
the SVM model.

Support vector regression (SVR) is a model for the application of SVM to regression
problems. The core idea is to find a hyperplane such that the total deviation of all sample
points from that hyperplane is minimized [38]. The SVR model is formulated as follows:

f (x) =
(
∑M

i=1 (âi − ai)k(ix
T , x) + b

)
(9)

In this study, the penalty factor of the SVR model was set to 4.0 and the radial basis
function parameter was set to 0.8.

2.4.3. Least Squares Support Vector Machine Algorithm

SVM is not prone to overfitting when dealing with small training sets, and its per-
formance is superior to that of many artificial neural networks in this case. However,
when faced with larger datasets, SVMs take longer to train. Therefore, in order to improve
the training efficiency of SVM, Suykens et al. [39] have proposed the Least Squares Sup-
port Vector Machine (LSSVM). LSSVM inherits many of the advantages of SVM while
outperforming the original SVM in terms of computational efficiency.

Given a training set i = 1{(xi ,ti)}
N , where xi ∈ Rm denotes m-dimensional factors affect-

ing slope displacement and ti ∈ R denotes an actual measured value of slope displacement,
the LSSVM for regression analysis can be expressed as a constrained optimization problem
using the following equation:

minω,b,ε J(ω, ε) =
1
2

ωTω +
1
2

γ∑N
i=1 εi (10)

such that ti = ωT∅(xi) + b + εi, i = 1, 2 . . . , N, (11)

where γ is the regularization parameter, εi represents the random error, ωT is the weight
vector, and b is the threshold. The solution is shown in Equation (12):

t(x) = sign
(
∑N

i=1 aiK(xi, xk) + b
)

(12)

where ai is the Lagrange multiplier and K(xi, xk) is the kernel function matrix.

2.4.4. Frost and Ice Optimization Algorithm (RIME)

The RIME algorithm proposes a soft fog search strategy, mainly by simulating the
movement of soft fog particles. By simulating the crossover behavior among hard fog
agents, a hard fog puncturing mechanism is proposed in the development step of the
algorithm. For the five motion characteristics of haze particles, the condensation process
of each particle is briefly simulated, and the position of nuclear particles is calculated as
detailed in Equation (13). Finally, the selection mechanism of the meta-heuristic algorithm
was improved and a positive greedy selection mechanism was proposed to avoid becoming
trapped in local optima [40].

i, jR
new = Rbest,j + r1·cosθ·β·

(
h·
(
ubij − Lbij

)
+ Lbij

)
, r2 < E (13)

where i, jR
new is the new position of the updated particle, i and j index the haze agents and

particles, respectively, and Rbest,j is the jth particle of the best haze agent in population R.

θ = π· t
10·T (14)
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where t is the current number of iterations and T is the maximum number of iterations of
the algorithm.

β = 1 −
[

ω·t
T

]
/ω (15)

In Equation (15), the mathematical model of β is a step function, and [·] denotes
rounding. The default value of ω was 5, which was used to control the number of segments
of the step function. Returning to Equation (13), ubij and Lbij are the upper and lower
bounds of the escape space, respectively, which limit the effective region of particle motion;
and E is the coefficient of attachment, which affects the coagulation probability of the agent
and increases with the number of iterations, as defined in Equation (16):

E =
√
(t/T) (16)

In this study, the number of populations was set to 30 and the 30 iterations are
independently parallelized.

2.5. Evaluation Metrics

In order to fully evaluate the performance of the model, the coefficient of determination
(R-squared) and root-mean-squared error (RMSE) are selected to assess the prediction
precision and accuracy of the model. In general, a satisfactory model should have a high
R-squared and a low RMSE. The closer R-squared is to 1, the better the model’s ability to
explain the dependent variable; the smaller the RMSE, the higher the model’s precision
and estimation ability. The calculation formulae are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (17)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(18)

Here, ŷi is the predicted value, y is the mean of the observed values, yi is the observed
value, and n is the number of samples.

3. Results
3.1. Selection of Features
3.1.1. Selection of Features by Continuous Projection Method

The results of screening apple canopy leaf spectral features using the SPA method
showed that the cross-validated RMSE gradually decreased with the increase in the number
of features, reached a minimum at 47 features (equal to the number of bands), and then
showed an upward trend (Figure 2). It can be seen that too few or too many characteristic
bands are not favorable for the correct determination of the nitrogen content of apple
canopy leaves; thus, the optimal number of spectral bands was determined to be 47. These
bands were distributed between 405 and 1050 nm and were 729, 723, 992, 856, 923, 953,
755, 932, 801, 933, 1000, 330, 1022, 967, 849, 944, 877, 1002, 413, 806, 980, 1006, 1011, 1004,
994, 659, 931, 968, 973, 826, 956, 998, 917, 969, 971, 1019, 1007, 1015, 756, 925, 982, 913, 976,
983, 948, 987, and 975 nm. The correlation analysis of the 47 extracted characteristic bands
with nitrogen showed that the band with the highest correlation with nitrogen was 330 nm
(Figure 3). The reflectance values corresponding to these selected characteristic wavelengths
were introduced into the three models as independent variables for multi-factor inversion.
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3.1.2. Competitive Adaptive Re-Weighting Method–Partial Least Squares

The variable screening process for CARS-PLS showed a gradual decrease in the
number of variables as the number of variable runs increased (Figure 4). As the number of
runs increased from 1 to 63, the root-mean-squared error of the cross-validation (RMSECV)
decreased gradually. When the number of runs was 63, the minimum RMSECV value was
obtained. However, after 63 runs, the RMSECV increased gradually with an increase in
the number of runs, which may be due to the fact that, as the number of runs increased,
the CARS-PLS algorithm removed the bands that were more or less correlated with leaf
nitrogen content (LNC) bands with strong correlation, leading to a decrease in the accuracy
of the constructed PLSR model. The paths of the regression coefficients of the spectral
variables show that the changes in the regression coefficients leveled off and converged
to a stable value when the number of samples was between 1 and 63. With a continued
increase in the number of samples, the regression coefficients showed some fluctuations,
and the RMSECV reached its minimum when the number of samples was 63, indicating
that the CARS-PLS method has good stability and its results are reliable. The number of
wavelengths was reduced from 751 to 18 after screening with CARS-PLS variables—about
0.23% of the full band. These bands were distributed between 755 and 1035 nm and were
757, 759, 771, 856, 857, 858, 912, 922, 926, 933, 935, 941, 943, 944, 955, 979, 991, and 1032 nm.
The correlation analysis of the 18 characteristic bands extracted with nitrogen showed that
the highest correlation band with nitrogen was 922 nm (Figure 5). The reflectance values
corresponding to these selected characteristic wavelengths were introduced into the three
models as independent variables for multi-factor inversion.
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3.2. Inverse Modeling and Analysis of the Apple Leaf Nitrogen Content
3.2.1. Inverse Modeling Based on the Long Short-Term Memory Network, Support Vector
Regression, and the RIME Optimization Algorithm Based on Least Squares Support Vector
Machine Regression

After the spectral reflectance of the apple canopy leaves was downscaled using two
methods—namely the SPA algorithm and CARS-PLS algorithm—the reflectance of the
selected features was used as the independent variable of the models, while the nitrogen
content of the apple canopy leaves was used as the target variable. Inversion models
based on a long short-term memory network, support vector regression, and the RIME
optimization algorithm based on Least Squares Support Vector Machine Regression (RIME-
LSSVM) were constructed, and the optimal number of iterations was taken according to
the different models to obtain the best results for each of the three models (Table 1).
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Table 1. Inversion model evaluation indicators.

Extraction Method
Characteristics Inversion Model

R-Squared RMSE

Training Set Test Set Training Set Test Set

SPA LSTM 0.6506 0.3307 0.1441 0.2097
CARS-PLS LSTM 0.7862 0.6155 0.0033 0.0041

SPA SVR 0.9238 0.4966 0.0672 0.1979
CARS-PLS SVR 0.9306 0.7468 0.0006 0.0014

SPA RIME-LS-SVM 0.9955 0.9404 0.0179 0.0637
CARS-PLS RIME-LS-SVM 0.998 0.964 0.0126 0.052

3.2.2. Inverse Modeling Based on Long- and Short-Term Memory Networks

When the reflectance values of the 47-feature wavelengths screened using the SPA
algorithm were used as inputs to construct the LSTM inversion model, an R-squared of
0.6506 and an RMSE of 0.1441 were obtained on the training set, while an R-squared of
0.3307 and an RMSE of 0.2097 were obtained on the test set (Table 1 and Figure 6). When
the inversion model was constructed using the reflectance values of 18-feature wavelengths
screened using the CARS-PLS algorithm as inputs, an R-squared of 0.7862 and an RMSE
of 0.0033 were obtained on the training set, while an R-squared of 0.6155 and an RMSE of
0.0041 were obtained on the test set (Table 1 and Figure 6).
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3.2.3. Inverse Modeling Based on Support Vector Regression

When the reflectance values of the 47-feature wavelengths screened using the SPA
algorithm were used as inputs to construct the SVR inversion model, an R-squared of
0.9238 and an RMSE of 0.0672 were obtained on the training set, while an R-squared of
0.4966 and an RMSE of 0.1979 were obtained on the test set (Table 1 and Figure 7). When
the inversion model was constructed using the reflectance values of the 18 wavelengths
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screened using the CARS-PLS algorithm as inputs, an R-squared of 0.9306 and an RMSE of
0.0006 were obtained on the training set while, on the test set, an R-squared of 0.7468 and
an RMSE of 0.0014 were obtained (Table 1 and Figure 7).
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3.2.4. Inverse Modeling Based on the RIME Optimization Algorithm Based on Least
Squares Support Vector Machine Regression

It can be seen that, when the RIME-LSSVM inversion model was constructed by using
the reflectance values of the 47-feature wavelengths screened using the SPA algorithm
as inputs, an R-squared of 0.9955 and an RMSE of 0.0179 were obtained for the training
set while, for the test set, an R-squared of 0.9404 and an RMSE of 0.0637 were obtained
(Table 1 and Figure 8). When the inversion model was constructed using the reflectance
values of the 18-feature wavelengths screened using the CARS-PLS algorithm as inputs, an
R-squared of 0.998 and an RMSE of 0.0126 were obtained for the training set while, for the
test set, an R-squared of 0.964 and an RMSE of 0.052 were obtained (Table 1 and Figure 8).

The prediction results based on the RIME-LSSVM model for all feature band samples
extracted via the SPA algorithm and the CARS-PLS algorithm show that the R-squared of
the prediction results for all feature band samples extracted using the SPA algorithm is 0.968
and the RMSE is 0.0408 (Figure 9). Meanwhile, the prediction result for all samples from
the feature bands extracted using the CARS-PLS algorithm had an R-squared of 0.981 and
an RMSE of 0.0323 (Figure 9). Therefore, the accuracy of the inversion model constructed
based on the reflectance values of the feature wavelengths screened using the CARS-PLS
algorithm was higher than that of the model using the SPA algorithm.
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4. Discussion

Nitrogen is an essential element for plant growth and development. As a key com-
ponent of important macromolecules, especially in the pre-growth period of fruit trees,
adequate nitrogen application determines yield and fruit quality. Alva et al. [41] took
“Valencia”, “Parson Brown”, “Hamlin”, and “Sunburst” as experimental materials to ex-
plore the effects of different nitrogen application conditions on nitrogen accumulation and
fruit growth and development during the growth period. Their results showed a rapid
increase in cumulative nitrogen values and a rapid increase in fruit weight and diameter in
June, August, and September, and a slow increase in the rest of the reproductive period,
indicating the importance of adequate nitrogen supply for fruit and quality at the initial
stages of fruit development and growth. Consequently, measuring the nitrogen content
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by means of inversion can provide a more comprehensive and rapid understanding of the
nutritional status and growth condition of apples.

At present, in the study of an inverse model construction of crop physiological growth
indicators using hyperspectral reflectance data, it was found that the model accuracy
obtained by directly utilizing the original hyperspectral reflectance for inverse model
construction of crop physiological growth indicators is often relatively low. This is due
to the susceptibility of canopy spectra to crop structural characteristics, light intensity,
and anthropogenic disturbances. Previous studies have shown [42] that preprocessing of
spectral data can eliminate spectral noise, enhance spectral properties, and improve model
accuracy. For example, Jayaselan et al. [43] performed nutrient prediction for palm oil and
developed a PLS prediction model after preprocessing the spectral data with MSC, first
and second derivatives and standard normal variation (SNV), Gaussian filtering, and SG
smoothing, respectively. The results show that the highest model accuracy is obtained after
MSC preprocessing with a predicted R-squared of 0.91, and the preprocessing of spectral
data can effectively improve the model accuracy. In this study, the raw hyperspectral data
were preprocessed with SG smoothing and MSC.

For this study, we constructed a variety of apple canopy leaf hyperspectral nitrogen
inversion models for the different fertility stages of apples. Because modeling using the full
band suffers from data redundancy and low model accuracy, in order to reduce the data
dimension, redundant information and noise should be removed, the estimation model
accuracy should be improved, and saturation should be avoided. The CARS-PLS and SPA
methods were used to screen the spectral data from the full-band spectral data, and the
sensitive bands were extracted as input values to construct the nitrogen inversion model
by combining three different algorithms. Among them, the CARS-PLS algorithm extracted
18 sensitive bands, mainly in the range of 750~1032 nm. Studies have shown that nitrogen
affects photosynthesis during crop growth, which in turn affects the absorption of blue
and red light by the crop, which is in line with previous findings [44,45]. The feature
bands screened by CARS-PLS were fewer than those screened by SPA. The R-squared of
the accuracy of the nitrogen content estimation models constructed by CARS-PLS were
0.6155, 0.7468, and 0.964, respectively; and the RMSE values were 0.0041, 0.0014, and
0.052, which were higher than those of the models constructed using the feature bands
screened by SPA and consistent with the results of [32,46]. The reason may be due to the
fact that SPA mainly examines individual spectral bands in the process of screening the
characteristic bands and does not take into account the synergistic effect of the combination
of spectral bands. And CARS-PLS obtains the optimal subset of variables through the
adaptive weighted sampling method and the exponential decay function, which can not
only cause the effect of covariance between spectral bands to be effectively reduced and
eliminate redundant information in spectral data, but also take into account the synergistic
effect between filtered bands.

Comparing the inversion models constructed by the three different algorithms, the
results show that the CARS-PLS-RIME-LSSVM model has a higher accuracy than the
CARS-PLS-LSTM and CARS-PLS-SVR models due to the fact that the RIME-LSSVM model
can better process the data and is more robust to parameter selection, while the SVR
modeling accuracy is better than that of the LSTM. This is due to the better generalization
ability of the SVR model. However, the spectral eigen-band modeling methods still have
shortcomings, and the RIME algorithm has much room for improvement. In future work,
the method proposed in this paper will be combined with the vegetation index for more
in-depth research, which will provide a method for realizing a more accurate inversion of
the nitrogen content of apple canopy leaves.

5. Conclusions

In this study, after preprocessing the raw spectral data using SG-MSC, the feature
bands were screened using the CARS-PLS and SPA algorithms to construct a prediction
model for nitrogen content. The R-squared value of the training set of the RIME-LSSVM
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model was improved by 0.2117 and that of the test set was improved by 0.3486 when
compared to the long- and short-term memory network. Similarly, with the RIME-LSSVM
model, the R-squared value of the training set increased by 0.0673 and the R-squared
value of the test set increased by 0.2172 compared to the support vector regression model.
Therefore, among the three nonlinear models, the RIME-LSSVM model is the most accurate.
A method is provided to quickly obtain the nitrogen content of apple tree leaves.
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