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Abstract: Agriculture is pivotal in national economies, with pest classification significantly influenc-
ing food quality and quantity. In recent years, pest classification methods based on deep learning
have made progress. However, there are two problems with these methods. One is that there are few
multi-scale pest detection algorithms, and they often lack effective global information integration and
discriminative feature representation. The other is the lack of high-quality agricultural pest datasets,
leading to insufficient training samples. To overcome these two limitations, we propose two methods
called RS Transformer (a two-stage region proposal using Swin Transformer) and the Randomly
Generated Stable Diffusion Dataset (RGSDD). Firstly, we found that the diffusion model can generate
high-resolution images, so we developed a training strategy called the RGSDD, which was used
to generate agricultural pest images and was mixed with real datasets for training. Secondly, RS
Transformer uses Swin Transformer as the backbone to enhance the ability to extract global features,
while reducing the computational burden of the previous Transformer. Finally, we added a region
proposal network and ROI Align to form a two-stage training mode. The experimental results on the
datasets show that RS Transformer has a better performance than the other models do. The RGSDD
helps to improve the training accuracy of the model. Compared with methods of the same type, RS
Transformer achieves up to 4.62% of improvement.

Keywords: Swin Transformer; pest detection; diffusion model; feature extraction; few-shot learning

1. Introduction

Agriculture directly impacts people’s lives and is essential to the development of
the global economy. However, pests in crops often cause great losses. Therefore, it is
necessary to control pests to ensure a high agricultural yield [1]. Because of developments
in science and technology, pest detection methods are continually changing [2]. Early
detection relies on field diagnosis by agricultural experts, but proper diagnosis is difficult
due to the complexity of pest conditions, lack of qualified staff, and inconsistent experience
at the grassroots level. Furthermore, incorrect pest identification by farmers has led to
an escalation in pesticide usage. This in turn has bolstered pest resistance [3] and has
exacerbated the harm inflicted upon the natural environment.

An effective integrated pest automated monitoring system relies on a high-quality
algorithm. With the development of image processing technology and deep learning,
scholars are increasingly using pest image data and deep learning to identify pests, which
improves the effectiveness of agricultural pest detection and is also the first application
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example of intelligent diagnosis. Research in respect of the classification and detection
of agricultural pests is crucial to help farmers effectively manage crops and take timely
measures to reduce the harm caused by pests. Object detection models, which come in one-
stage and two-stage varieties, are frequently employed in pest classification and detection.
One-stage models like YOLO [4–6] and SSD [7] are renowned for their rapid detection
capabilities. In contrast, two-stage models like Fast R-CNN [8] and Faster R-CNN [9] excel
in achieving high accuracy, albeit at a slower processing speed compared to their one-stage
counterparts. The Transformer model [10] has many potential applications in AI. Based on
its effectiveness in natural language processing (NLP) [11], recent research has extended
the Transformer to the field of computer vision (CV) [12]. In 2021, Swin Transformer [13]
was proposed as a universal backbone for CV, achieving the latest SOTA on multiple dense
prediction benchmarks. The differences between language and vision make the transition
from language to vision difficult, such as the vast range of visual entity scales. However,
Swin Transformer can solve this problem well. In this paper, we use a Vision Transformer
with a shift window to detect pests.

Currently, two dataset-related issues affect pest detection. The first is the scarcity
of high-quality datasets. There are only approximately 600 photos in eight pest datasets,
reflecting the lack of agricultural pest datasets [14]. The second issue is the challenges
involved in detecting pests at multiple scales. The size difference between large and
microscopic pests is large, up to 30 times in some cases. For example, the relative size of
the largest pest in the LMPD2020 dataset is 0.9%, while the relative size of the smallest
pest is only 0.03%. When the size difference of the test object is large, it is difficult for the
test results at multiple scales to achieve high accuracy simultaneously, and the problem
of missing detection often occurs. Moreover, the Transformer also requires a large dataset
for training.

In agriculture, there are few high-quality pest datasets available, and some datasets
from the internet have poor clarity and different sizes. In recent years, with the develop-
ment of AI-generated content technology, increasing numbers of large models of image
generation based on a text description have been developed. The diffusion model [15], in-
troduced as a sequence of denoising autoencoders, aims to remove Gaussian noise through
continuous application during training with images. A new diffusion model [16] represents
a novel state-of-the-art in-depth image generation. In picture-generating tasks, it outper-
forms the original SOTA, i.e., GAN (generative adversarial network) [17], and performs
well in a variety of applications, including CV, NLP, waveform signal processing, time
series modeling, and adversarial learning. The Denoising Diffusion Probabilistic Model
was proposed later [18], applying to image generation. Then, Open AI’s paper “Diffusion
Models Beat GANs on Image Synthesis” [19] made machine-generated data even more
realistic than GAN. DALL-E2 [20] allows us to use text descriptions to generate the desired
image. To improve the accuracy of pest identification, we can enable models to learn more
complex semantic information from training data and complement the agricultural dataset.
We propose the Randomly Generated Stable Diffusion Dataset (RGSDD) method to help
generate pest images.

We identified four years of representative pest detection papers, as shown in Table 1,
and counted the algorithms used in the papers and the pest species included in the datasets.
It was found that previous papers did not use Swin Transformer as a backbone network,
nor did they use a diffusion model to generate datasets.
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Table 1. Statistical pest detection algorithms and accuracy.

Year Author Reference Pest Module Performance Generated Dataset

2019 Liu et al. [21] 16 butterfly species CNN mAP (75.46%) ×
2020 Jiao et al. [22] 24 agricultural pests AF-RCNN mAP (56.4%) ×
2020 Pattnaik et al. [23] 10 pest species Deep CNN Accuracy (88.83%) ×

2020 Lee et al. [24]
Leaf miner, tea thrip,
tea leaf roller, and tea
mosquito bug (TMB)

Faster
RCNN mAP (66.02%) ×

2021 Chen et al. [25] T. papillosa YOLOv3 mAP (0.93%) ×
2021 Wang et al. [26] Agricultural pests RPN mAP (78.7%) ×
2022 Peng et al. [27] 102 pests CNN, Transformer Accuracy (74.90%) ×
2022 ULLAH et al. [28] 9 crop pests CNN Accuracy (100%) ×
2023 Our method 8 agricultural pests RS Transformer mAP (90.18%)

√

×: Not using the generated dataset;
√

: Using the generated dataset.

Overall, this paper makes the following contributions:

(1) RS Transformer: a novel model based on the region proposal network (RPN), Swin
Transformer, and ROI Align, for few-shot detection of pests at different scales.

(2) RGSDD: a new training strategy method named the Randomly Generate Stable Dif-
fusion Dataset is introduced to expand small pest images to effectively classify and
detect pests in a few-shot learning scenario.

(3) Comprehensive experiments on the pest dataset confirm the success of our proposed
methods, contrasting with SSD [7], Faster R-CNN [9], YOLOv3 [4], YOLOv4 [5],
YOLOv5m [6], YOLOv8, and DETR [29].

2. Materials and Methods
2.1. Pest Dataset
2.1.1. Real Pest Image Dataset

This study focuses on crops of high economic value. As a result, the selection of
agricultural pests is based on small sample sizes. First, we went to the Beizang Village
experimental field next to the Daxing Campus of Beijing University of Civil Engineering
and Architecture to take photos using an iPhone 12 Pro Max and collected 400 pictures of
pests. The photos were taken at a resolution of 3024 × 4032 pixels. Secondly, we searched
for pests in the IPMImages database [30], National Bureau of Agricultural Insect Resources
(NBAIR), Google, Bing, etc. The dataset has eight pest species as labels, which are as
follows: Tetranychus urticae, TU; Bemisia argentifolii, BA; Zeugodacus cucurbitae, ZC;
Thrips palmi, TP; Myzus persicae, MP; Spodoptera litura, SL; Spodoptera exigua, SE; and
Helicoverpa armigera, HA. Figure 1 displays a few representative photos from the dataset.
The final pest dataset includes 1009 images.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 
Figure 1. Pest dataset. 

2.1.2. Dataset Generation 
Stable diffusion was released by Open AI, a model that can be used to generate de-

tailed images conditioned on text descriptions.  
The diffusion model, which produces samples that fit the data after a finite amount 

of time, is a parameterized Markov chain trained via variational inference [18]. As shown 
in Figure 2, the forward process and the reverse process can be separated from the entire 
diffusion model. It is commonly understood that the forward diffusion process is con-
stantly adding Gaussian noise to the image, making it unrecognizable, while the reverse 
process reduces the noise and then restores the image. The core formula of the diffusion 
model is 𝑥 = 𝑎 𝑥 + 1 − 𝑎 𝑧   (1)

where 𝑎   is an experimental constant that decreases as t increases; 𝑧   is a standard 
Gaussian noise distribution 𝑁(0, 𝐼). 

 
Figure 2. Diffusion processes. 

The overall structure of the diffusion model is shown in Figure 3. It contains three 
models. The first is the CLIP model (Contrastive Language-Image Pre-Training), which is 
a text encoder that converts text into vectors as input. The image is then generated using 
the diffusion model. This is performed in the potential space of the compressed image, so 
the input and output of the expanded model are the image features of the potential space, 
not the pixels of the image itself. During the training of the latent diffusion model, an 

Figure 1. Pest dataset.



Appl. Sci. 2023, 13, 12206 4 of 19

2.1.2. Dataset Generation

Stable diffusion was released by Open AI, a model that can be used to generate detailed
images conditioned on text descriptions.

The diffusion model, which produces samples that fit the data after a finite amount
of time, is a parameterized Markov chain trained via variational inference [18]. As shown
in Figure 2, the forward process and the reverse process can be separated from the entire
diffusion model. It is commonly understood that the forward diffusion process is constantly
adding Gaussian noise to the image, making it unrecognizable, while the reverse process
reduces the noise and then restores the image. The core formula of the diffusion model is

xt =
√

atxt−1 +
√

1− atz1 (1)

where at is an experimental constant that decreases as t increases; z1 is a standard Gaussian
noise distribution N(0, I).
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Figure 2. Diffusion processes.

The overall structure of the diffusion model is shown in Figure 3. It contains three
models. The first is the CLIP model (Contrastive Language-Image Pre-Training), which is a
text encoder that converts text into vectors as input. The image is then generated using the
diffusion model. This is performed in the potential space of the compressed image, so the
input and output of the expanded model are the image features of the potential space, not
the pixels of the image itself. During the training of the latent diffusion model, an encoder
is used to obtain the potentials of the picture training set, which are used in the forward
diffusion process (each step adds more noise to the latent representation). At inference
generation, the decoder part of the VAE (Variational Auto-Encoder) converts the denoised
latent signal generated by the reverse diffusion process back into an image format.
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Figure 3. The framework of the diffusion model.

The stable diffusion model was trained using a real pest dataset. The images generated
by stable diffusion are 299× 299, as shown in Figure 4. To increase the chance of generating
pest images, we chose captions that contained any word from the following list of words:
[BA, HA, MP, SE, SL, TP, TU, ZC]. We input some keywords and text information into
the diffusion model to describe the desired picture, such as pest on the tree, pest on the
leaf, pest chewing on the leaf, worm chewing on the trunk, worm swarm, cornfield, leaf,
and field. After carefully eliminating the last few false positives, we obtained a dataset of
512 pest images. There were 64 high-resolution images for each pest category.
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2.1.3. Dataset Enhancement

In this study, the original image was processed using enhancement methods such
as rotation, translation, flipping, and noise addition, and the enhancement technique
AutoAugmentation [31] was applied to determine the color of the images. Finally, we
obtained 36,504 pest images and the details are shown in Table 2.

Table 2. Details regarding the number of images in the dataset, including generated dataset, real data,
and datasets from the internet.

Dataset Number of Images

Captured images 400
Images from other datasets 609

Generated images 512
Enhanced images 36,504

With the data-enhanced images, we trained RS Transformer. In the first stage, we did
not use the generated RGSDD data, and first trained with real images to obtain detailed
RS Transformer data. In the second stage, we mixed the generated images in the RGSDD
according to the training ratio in Table 3, and we applied this method in YOLOv8, DETR,
and other models.

Table 3. Details regarding the number of images using the RGSDD method.

Dataset Real Images Generated Images

Primary 24,216 0
10% RGSDD 24,216 1229
20% RGSDD 24,216 2458
30% RGSDD 24,216 3686
40% RGSDD 24,216 4915
50% RGSDD 24,216 12,288

2.2. Framework of the Proposed Method

In this paper, R-CNN [32] is replaced by Swin Transformer and applied to pest tar-
get detection tasks. Additionally, we propose a novel object detection method called RS
Transformer. Our scheme offers several advantages. Firstly, we introduce a new feature
extraction method specifically designed for Swin Transformer, which enhances the align-
ment of global features. This improvement leads to enhanced localization accuracy, while
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also significantly reducing the computational cost of the Transformer through the imple-
mentation of the shift window model. Secondly, we propose the RS Transformer, which
incorporates essential components such as RPN, ROI Align, and feature maps. These addi-
tions further enhance the performance and capabilities of the proposed method. Lastly, we
propose a new data composition method called RGSDD. This method involves training the
stable diffusion model using real images collected beforehand and subsequently generating
512 images by randomly mixing them with 10%, 20%, 30%, 40%, and 50% of the number
of real images. Overall, our approach combines the advancements of Swin Transformer,
the novel RS Transformer, and the innovative RGSDD data composition method to achieve
improved results in pest target detection tasks.

2.3. RS Transformer

RS Transformer is a two-stage model (Figure 5). It first extracts features using Swin
Transformer and then generates a series of region proposals.
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2.3.1. Swin Transformer Backbone

The Swin Transformer backbone is introduced in Figure 6. Compared to traditional
CNN models, it has stronger feature extraction capabilities, incorporates CNN’s local and
hierarchical structure, and utilizes attention mechanisms to produce a more interpretable
model and examine the attention distribution.
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Figure 6. Swin Transformer backbone.

A 2-layer MLP (multi-layer perceptron) with GELU non-linearity follows a shifted-
window-based MSA module (W-MSA) in the Swin Transformer block. Each MSA module
(multi-head self-attention) and each MLP has an LN (layer norm) layer applied before it,
and each module also has a residual connection applied after it. Supposing each window
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contains M ×M patches, the computational complexities of a global MSA module and
image-based window h× w patches are as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (2)

Ω(W −MSA) = 4hwC2 + 2M2hwC (3)

The shift window partitioning method can be used to compute the backbones of two
consecutive Swin Transformers and is denoted as follows:

ẑl = W −MSA(LN(zl−1)) + zl−1 (4)

zl = MLP(LN(ẑl)) + ẑl (5)

ẑl+1 = SW −MSA(LN(zl)) + zl (6)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (7)

where ẑl and ẑl+1 represent the output of W-MSA and MLP of block l, respectively.
Swin Transformer constructs hierarchical feature graphs and adopts a complexity

calculation method with a linear image size. A sample diagram of a hierarchy with a small
patch size is shown in Figure 7. In the deeper Transformer layers, it begins with small
patches and eventually integrates nearby patches. By using patch-splitting modules like
ViT, RGB images are divided into non-overlapping patches and employ a patch size of
4× 4, making each patch’s feature dimension 4× 4× 3 = 48. This fundamental feature is
projected to any dimension (designated C) using a linear embedding layer.
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2.3.2. RS Transformer Neck: FPN

An FPN (feature pyramid network) is proposed to achieve a better fusion of feature
maps. As illustrated in Figure 8, the purpose of the FPN is to integrate feature maps from
the bottom layer to the top layer to fully utilize the extracted features at each stage.

The FPN produces a feature pyramid, not just a feature map. The pyramid after the
RPN will produce many region proposals. These region proposals are produced by the
RPN, and the ROI is cut out according to the region proposal for subsequent classification
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and regression prediction. We use a formula to determine from which k the ROI of width
w and height h should be cut:

k = k0 + log2

(√
w× h/299

)
(8)

where 299 represents the size of the image used for pre-training. k0 represents the level at
which the ROI of the area is w× h = 299× 299. A large-scale ROI should be cut from a
feature map of low resolution, which is conducive to the detection of large targets, and a
small-scale ROI should be cut from a feature map of high resolution, which is conducive to
the detection of small targets.
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2.3.3. RS Transformer Head: RPN, ROI Align

To achieve the prediction of coordinates and scores of each regional suggestion box
while extracting features, the RPN network adds a regression layer (reg-layer) and a
classification layer (cls-layer) to Swin Transformer. Figure 9 depicts the RPN working
principle. The RPN centers on a pixel of the last layer feature map and traverses the feature
map through a 3 × 3 sliding window. The pixel points mapped from the center of the
sliding window to the original image are anchor points. Taking the anchor point as the
original image center, using 15 preset anchor boxes with 5 different areas (32 × 32, 64 × 64,
128 × 128, 256 × 256, 512 × 512) and 3 distinct aspect ratios (2:1, 1:1, and 1:2), the original
candidate region k = 15 is obtained. The RPN sends the candidate regions in the k anchor
boxes to the regression layer and the category layer, respectively, for boundary regression
and classification prediction. The regression layer predicts the frame coordinates (X, Y, W,
H), so the output is 4k; the classification layer predicts the type, target, and background,
so the output is 2k. Each anchor is then evaluated with initial over-boundary screening
and non-maximum suppression (NMS) from largest to smallest to retain the top 1000
or 2000 scores. Finally, the candidate boundaries of prediction as the background in the
classification layer are removed, and the candidate boundaries of prediction as a target
are retained.

ROI Align

The function of ROI Pool and ROI Align is to find the feature map corresponding to
the candidate box and then process a feature map of different size proportions into a fixed
size, so that it can be input into the subsequent fixed-size network. Mask RCNN proposes
an ROI alignment [33] based on ROI Pool. The bilinear interpolation method is used to
determine the eigenvalue of each pixel in the region of interest of the original image, which
avoids the error caused by quantization operation and improves the accuracy of frame
prediction and mask prediction.
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The ROI Align algorithm’s primary steps are as follows: (1) Each candidate region
is traversed on the feature map, keeping the floating-point boundary unquantized. (2) In
Figure 10, the candidate region is evenly divided into k × k bins, and the edge of each
bin retains the floating-point number without quantization. (3) In this step, 2 × 2 sample
points are taken for each bin, and the bilinear interpolation method is used to calculate the
pixel values of each sampling point’s neighboring four pixels. (4) Finally, the pixel value in
each bin is maximized to obtain the value of each bin.
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2.4. Experimental Setup

Experiments were conducted on the Autodl platform, which provides low-cost GPU
computing power and a configuration environment that can be rented at any time. For
researchers and universities without high-performance GPUs or servers, Autodl offers a
wide range of high-performance GPUs to use. The experiments were implemented using
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the Pytorch 1.10.0 framework, Python 3.8, CUDA 11.3, and Nvidia RTX 2080Ti GPUs with
11 GB memory.

2.5. Evaluation Indicators

To evaluate the performance of the proposed model, we used the accuracy, precision,
recall, average precision (AP), mAP, and F1 score:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Percision =
TP

FP + TP
(10)

where TP indicates true positive, FP indicates false positive, and FN indicates false negative.
Average precision (AP): The average precision under different recall rates. The higher

the accuracy, the higher the AP.

AP =
∫ 1

0
p(r)dr =

TP
TP + FP

(11)

Recall: The average recall rate at different levels of precision. The higher the recall, the
higher the AR.

Recall =
TP

FN + TP
(12)

mAP: The picture categorization procedure is usually a multi-classification problem.
According to the above calculation process, the AP of each analog is obtained, and the
average value is the mAP.

mAP =
1
N

N

∑
i=1

APi (13)

The F1 score is a metric that combines precision and recall to evaluate the performance
of a binary classification model.

F1 Score =
2× Precision× Recall

Precision + Recall
(14)

2.6. Experimental Baselines

To evaluate the performance of RS Transformer, SSD [7], Faster R-CNN [9], YOLOv3 [4],
YOLOv4 [5], YOLOv5m [6], YOLOv8, and DETR [34] were chosen as baseline models for
comparison, as shown in Table 4.

Table 4. Different baselines.

Model Backbone Parameters (M)

SSD VGG16 28.32
Faster R-CNN VGG16 138

YOLOv3 Darknet-53 64.46
YOLOv4 CSPDarknet53 5.55

YOLOv5m CSPDarknet53 20.66
YOLOv8 C2f 30.13

DETR ResNet-50 40.34
RS Transformer Swin Transformer 30.17
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3. Results and Discussion
3.1. Experimental Results and Analysis

On a dataset with eight models, we assessed the performance of popular deep learning
models to illustrate the performance of the proposed model (Table 5). We used a fixed
image resolution with a size of 299 × 299 pixels.

Table 5. Comparison of different indexes.

Model mAP (%) F1 Score (%) Recall (%) Precision (%) Accuracy (%) mDT (ms)

SSD 76.91 67.62 70.12 66.23 77.11 22.9
Faster R-CNN 72.65 65.57 69.31 67.10 73.52 24.5

YOLOv3 60.38 52.38 57.78 53.64 60.32 17.7
YOLOv4 76.31 69.55 74.97 68.91 76.99 10.7

YOLOv5m 80.29 75.58 79.14 77.33 79.35 13.6
YOLOv8 84.72 80.32 82.11 79.59 83.49 9.8

DETR 85.56 81.18 82.82 80.43 86.12 19.2
RS Transformer 90.18 85.89 87.31 89.91 90.08 20.1

Compared to other models, our proposed method achieved significant improvements,
with an mAP of 90.18%, representing gains of 13.27%, 17.53%, 29.8%, 13.97%, 9.89%,
5.46%, and 4.62% over SSD, Faster R-CNN, YOLOv3, YOLOv4, YOLOv5m, YOLOv8, and
DETR, respectively. The proposed method achieved 20.1 ms mDT for the detection time of
each image.

To visually analyze the classification results of each pest in RS Transformer, we utilized
a confusion matrix as shown in Figure 11. These data were obtained using real images for
training. The confusion matrix provides an intuitive representation of the classification
performance. In the matrix, rows represent predicted pest categories, columns represent
actual pest categories, and the values on the main diagonal represent the classification
accuracy for each category. From the confusion matrix diagram, it can be observed that
the color on the main diagonal of the RS Transformer’s confusion matrix is the darkest,
indicating the highest values in each row and column. This indicates that RS Transformer
exhibits excellent classification performance for each type of pest.
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The contrast in mAP is visually presented in Figure 12. It is evident that the mAP of
the three compared models exhibits an upward trend during the training process, albeit
with substantial fluctuations. Conversely, our model’s mAP shows a more consistent
trajectory, stabilizing at 77.73% after approximately 75 epochs. Subsequently, the RS
Transformer model attains its peak performance, achieving a maximum mAP of 90.18%.
These findings collectively confirm the stability of RS Transformer, its capacity to enhance
network performance, and its ability to expedite convergence.
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RS Transformer exhibits a robust capacity for discerning similar pests and demon-
strates superior overall performance compared to other models, as detailed in Table 6
(models’ mAP) and illustrated in Figure 13. Furthermore, in challenging scenarios such as
the TU dataset, the model maintains a remarkable recognition rate of 90.24%.
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Table 6. Comparison of different mAP indexes.

Model BA HA MP SE SL TP TU ZC

SSD 77.29 73.12 77.48 73.88 79.91 80.21 78.26 74.08
Faster R-CNN 75.89 69.26 69.76 73.81 71.33 74.75 70.10 73.02

YOLOv3 57.20 63.69 61.51 60.66 62.63 58.93 58.00 64.05
YOLOv4 72.55 74.47 75.40 79.11 74.24 76.13 80.05 78.51

YOLOv5m 84.22 79.51 77.17 79.57 80.79 79.73 83.06 81.16
YOLOv8 81.53 88.45 82.18 84.44 85.56 84.73 83.95 83.21

DETR 83.53 82.07 87.33 85.61 87.62 83.23 88.52 85.52
RS Transformer 91.33 91.46 88.83 86.21 92.63 89.44 87.74 91.92

The dataset was generated using the diffusion model (see Figure 14) and subsequently
combined at varying proportions of 10%, 20%, 30%, 40%, and 50%. These datasets were then
utilized as inputs for the RS Transformer model, followed by rigorous testing procedures,
culminating in the presentation of the results in Table 7.
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Table 7. RGSDD using RS Transformer.

Model Percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

RS Transformer

0% 90.18 85.89 87.31 20.1
10% 90.98 85.13 83.53 20.1
20% 93.64 86.75 90.42 20.1
30% 95.71 94.82 92.47 20.2
40% 95.56 90.67 93.10 20.2
50% 94.98 91.03 93.06 20.2

Applying the RGSDD method to RS Transformer, it is evident that upon incorporating
30% of the generated data, the model attains its peak performance, resulting in a notable
increase of 5.53% in mAP.

The RGSDD methodology was also applied to enhance the performance of the Faster
R-CNN, YOLOv5m, YOLOv8, and DETR models. The results of these experiments
demonstrate that RGSDD positively contributes to model enhancement, as evidenced
in Tables 8–11.

These data underscore the practical applicability of RGSDD, as shown in Figure 15.
Specifically, in the case of the YOLOv8 model with 30% incorporation, it yielded a substan-
tial 3.79% improvement in mAP. Similarly, for the DETR model with 40% incorporation,
there was a noticeable enhancement of 4.36% in mAP. Furthermore, it is evident that when
50% of the generated data are included, the model’s performance experiences a significant
decline. This subset of data appears to introduce interference and is potentially treated as
noise to some extent, resulting in adverse effects on model performance.
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Table 8. RGSDD using Faster R-CNN.

Model Percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

Faster R-CNN

0% 72.65 65.57 69.31 24
10% 75.07 68.83 69.73 24
20% 73.47 67.26 70.62 24
30% 73.72 67.37 74.84 24
40% 71.80 69.78 72.39 24.1
50% 73.13 68.29 70.47 24.1

Table 9. RGSDD using YOLOv5m.

Model Percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

YOLOv5m

0% 80.29 75.58 76.14 13.6
10% 83.96 74.72 76.48 13.6
20% 85.43 75.90 81.91 13.6
30% 82.31 76.24 78.38 13.6
40% 84.37 76.12 79.82 13.7
50% 75.53 70.41 73.76 13.7

Table 10. RGSDD using YOLOv8.

Model Percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

YOLOv8

0% 84.72 80.32 82.11 9.8
10% 87.38 75.77 72.31 9.8
20% 88.42 85.17 84.78 9.8
30% 88.51 85.89 85.31 9.8
40% 82.32 81.76 80.11 9.9
50% 75.35 70.32 71.58 9.9

Table 11. RGSDD using DETR.

Model Percentage mAP (%) F1 Score (%) Recall (%) mDT (ms)

DETR

0% 85.56 81.18 82.82 20.1
10% 85.94 83.10 80.62 20.1
20% 86.37 82.99 84.67 20.1
30% 87.71 86.75 85.72 20.2
40% 89.92 85.02 87.89 20.2
50% 88.90 87.19 85.97 20.2

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 15. (a) RS Transformer with RGSDD, (b) Faster R-CNN with RGSDD, (c) YOLOv5m with 
RGSDD, (d) YOLOv8 with RGSDD, and (e) DETR with RGSDD. 

Comparing the mAP, F1 score, and recall of different networks, it can be seen that RS 
Transformer is still better than the others, even when the RGSDD is used. At the optimal 
value, mAP outperforms Faster R-CNN by 9.29% and YOLOv5m by 4.95%. 

Figure 16 presents the outcomes achieved by the RS Transformer model integrated 
with the RGSDD. Notably, the results highlight the RGSDD’s exceptional accuracy in ef-
fectively identifying multi-scale pests across various species. 

 
Figure 16. RS Transformer, Faster R-CNN, YOLOv8, and DETR output through the RGSDD system. 

  

Figure 15. Cont.



Appl. Sci. 2023, 13, 12206 15 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 15. (a) RS Transformer with RGSDD, (b) Faster R-CNN with RGSDD, (c) YOLOv5m with 
RGSDD, (d) YOLOv8 with RGSDD, and (e) DETR with RGSDD. 

Comparing the mAP, F1 score, and recall of different networks, it can be seen that RS 
Transformer is still better than the others, even when the RGSDD is used. At the optimal 
value, mAP outperforms Faster R-CNN by 9.29% and YOLOv5m by 4.95%. 

Figure 16 presents the outcomes achieved by the RS Transformer model integrated 
with the RGSDD. Notably, the results highlight the RGSDD’s exceptional accuracy in ef-
fectively identifying multi-scale pests across various species. 

 
Figure 16. RS Transformer, Faster R-CNN, YOLOv8, and DETR output through the RGSDD system. 

  

Figure 15. (a) RS Transformer with RGSDD, (b) Faster R-CNN with RGSDD, (c) YOLOv5m with
RGSDD, (d) YOLOv8 with RGSDD, and (e) DETR with RGSDD.

Comparing the mAP, F1 score, and recall of different networks, it can be seen that RS
Transformer is still better than the others, even when the RGSDD is used. At the optimal
value, mAP outperforms Faster R-CNN by 9.29% and YOLOv5m by 4.95%.

Figure 16 presents the outcomes achieved by the RS Transformer model integrated
with the RGSDD. Notably, the results highlight the RGSDD’s exceptional accuracy in
effectively identifying multi-scale pests across various species.
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3.2. Comparison Results Summary

The performance comparison of the proposed method with other existing meth-
ods for eight pest datasets is shown in Table 12. Setiawan et al. [35] applied a CNN
and MoblieNetV2. They used the Adam optimizer for large-scale pest classification and
achieved an accuracy of 82.95% for eight classes of agriculture pests. Their model was
trained for large-scale pest classification. However, due to the CNN, the ideal effect was
not achieved in the case of large-scale differences in pest images. Liu et al. [36] used a novel
Transformer auto-encoder to capture the features and benefits in the classification accuracy.
In the case of eight pest images, as well as small samples, the method proposed by the
authors reached 85.17% for mAP. We can see that models such as Vision in Transformer
(ViT) models that require large datasets for training do not work well on datasets containing
images of small targets such as pests. In this case, it is difficult for ViT to capture image
features, resulting in inaccurate recognition. At the same time, the field environment is
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complex, and the image quality is full of uncertainties due to the large influence of factors
such as sunlight and region when taking pictures, which lead to reductions in accuracy.
In order to improve the accuracy of other models, we mixed the pest pictures generated
by the RGSDD into the total training dataset in a 30% proportion, and we found that
Setiawan et al. [35]‘s method was significantly improved by 6.40% and Liu et al.’s method
was improved by 3.06%, which proved the universality and practicability of the RGSDD
method. From the experimental results, our proposed method comprising RS Transformer
and the RGSDD provides good performance in few-shot learning for pest classification.

Table 12. Related work and accuracy results (%) summary.

Model Method Dataset RGSDD mAP

Setiawan et al. [35] CNN, MobileNetV2

8 pests

× 82.95
Liu et al. [36] ViT × 85.17
Our proposal Swin Transformer × 90.18

Setiawan et al. [35] CNN, MobileNetV2 30% 89.35
Liu et al. [36] ViT 30% 88.23
Our proposal Swin Transformer 30% 95.71

3.3. Discussion

In the analysis of the results, it was clearly shown that RS Transformer performed well.
Since Swin Transformer was proposed, which performed better than the CNN did, a large
number of application algorithms based on Swin Transformer have been proposed [37–39].
However, a common feature among these algorithms is that a large number of datasets
are required to train Swin Transformer to realize its ability to extract features globally.
Therefore, we added an FPN, RPN, and ROI Align on the basis of Swin Transformer, which
reduces the computational complexity and improves the feature extraction capability. Then,
using the RGSDD method to generate a dataset to assist with training, we not only achieved
the purpose of expanding the dataset, but also improved the training accuracy of the model.
The RS Transformer achieved 9.08% accuracy, which was higher than that of the DETR
universal model at 1.41% and higher than that of the YOLOv8 model at 6.59%. Its superior
multi-scale feature extraction capabilities effectively help improve accuracy.

In a two-stage model like that of Dong [40], the author used ResNet-50 as a backbone.
Even though the model was improved and deep convolutional neural networks (DCNNs)
were used, it still failed to achieve ideal results at a small scale, with an mAP value of only
67.9%. Jiao [22] used VGG-16 as a backbone and trained with a large number of datasets
comprising about 25.4k images. However, Jiao only obtained an mAP of 56.40%. In a large
number of training datasets, the algorithms proposed by the authors still fail to reach the
required application. On the one hand, the pest scale is small; on the other hand, the feature
extraction ability of the CNN is limited. In deep learning, we explain which backbone or
which model has absolute advantages in an application field, but in our experiment, we
found that RS Transformer does have certain advantages.

Before this study, there was no research on agricultural pest identification based on
AIGC. For the first time, we used a diffusion model for agricultural pest training and image
generation and achieved unexpectedly good results. After adding 30% of the generated
images, RS Transformer; YOLOv3, 4, 5, and 8; and DETR were all improved, up to 8.93%.
This kind of high-resolution generated image is less noisy, is more conducive to model
training, and helps to quickly locate and extract effective features.

In general, the quality and size of the dataset, the appropriate improvement strategy,
and the underlying model architecture all have important effects on the detection accu-
racy. A multi-stage algorithm is faster and has a lighter weight on the basis of ensuring
accuracy, while a single-stage algorithm improves the detection accuracy on the basis of
maintaining the advantages of speed and model size. Achieving higher performance levels
and achieving a balance of performance such as accuracy, speed, and magnitude are the
current trends.
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4. Conclusions

Swin Transformer, introduced here as the foundational network for pest detection,
represents a pioneering contribution. In conjunction with this innovation, RS Transformer
was developed, building upon the inherent strengths of the R-CNN framework. Further-
more, we employed a diffusion model to create a novel pest dataset, accompanied by
introducing an innovative training approach tailored for the Randomly Generated Sta-
ble Diffusion Dataset (RGSDD). This approach involves the judicious fusion of synthetic
data generated through the RGSDD with real data, calibrated as a percentage of the total
dataset. Our study comprehensively compared the performance of RS Transformer and
the RGSDD against established models including SSD, Faster R-CNN, YOLOv3, YOLOv4,
YOLOv5m, YOLOv8, and DETR. The experimental results unequivocally demonstrate the
superiority of RS Transformer and the efficacy of the RGSDD dataset, surpassing prevailing
benchmarks. Importantly, our method achieves an optimal balance between accuracy and
network characteristics. These findings have substantial implications for future ecological
informatics research, offering fresh insights into the domain of ecological pest and disease
control. The presented approach promises to advance the state of the art and contribute to
more effective ecological management strategies.

RS Transformer can be used not only for agricultural pest detection, but also for multi-
scale target detection tasks in complex environments such as transportation, medicine,
and industrial devices. In addition, the RGSDD, an image generation method based on a
diffusion model, is helpful for expanding the dataset and improving accuracy. Hopefully,
we can undertake more research based on the method in this paper in the future.
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