Volume 38, Issue 9, Page 51-64, 2023; Article no.JAMCS. 101501
ISSN: 2456-9968
(Past name: British Journal of Mathematics \& Computer Science, Past ISSN: 2231-0851)

Model of a Neural Network for Solving Systems of Inequalities with Three Real Unknowns

Sakodi Mjanaheri J. Pierre ${ }^{\text {a }}$, Mpemba Ngoma Luz ${ }^{\text {b* }}$, Likotelo Binene Camile ${ }^{\text {a }}$, Boleli Nkanga Andre ${ }^{\text {a }}$, Nsumbu Lukamba Telesphore ${ }^{\text {b }}$, Kabeya Tshiseba Cedric ${ }^{\text {a }}$ and Engombe Wedi Boniface ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Computer Science, Université Pédagogique Nationale (UPN), Kinshasa, DR Congo.
${ }^{b}$ Département of Computer Science and Technology, Institut Supérieur Pédagogique (ISP), Mbanza Ngungu, DR Congo.
Authors' contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.
Article Information
DOI: 10.9734/JAMCS/2023/v38i91804
Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/101501

Received: 22/04/2023
Original Research Article
Accepted: 28/06/2023
Published: 26/07/2023

Abstract

Apart from all other machine learning models, neural networks are much more complex models in the sense that they represent mathematical functions with millions of coefficients (parameters). In this article, it is about designing and implementing a network of artificial neurons by applying the Heaviside activation function on each neuron of the first layer of the network and finally on the single output

[^0]neuron, we apply the logical "and". To solve a system of linear inequalities with three real unknowns, it is to represent graphically in frame system of the three-dimensional plane, the set of points M of \mathbb{R}^{3} whose coordinates (x_{1}, x_{2} and x_{3}) simultaneously verify all the inequalities of the system.
Where a_{i}, b_{i} et c_{i} are coefficients of x_{i} with $1 \leq \mathrm{i} \leq 3$ and a_{0}, b_{0} and c_{0} the independent terms. The set of solutions of this system is a part of \mathbb{R}^{3} whose points satisfy these three inequalities simultaneously. In a neural network, the x_{i} are variables, the $\left(a_{i}\right),\left(b_{i}\right)$ et $\left(c_{i}\right)$ are weights associated with these variables and the a_{0}, b_{0} and c_{0} are biases. This model has been implemented in python with the keras easy library for solve systems of linear inequalities with three real unknowns by graphically representing elemental solutions in \mathbb{R}^{3}.

Keywords: Neural network; modeling; system of inequalities; activation function; machine learning; artificial intelligence; easy keras; deep learning; python.

1 Introduction

At the time of writing this article, artificial intelligence is a priority, both economically and educationally. Neural networks mimic the behavior of a human brain, allowing computer programs to recognize patterns and solve common problems in AI fields [1].

A system of first-degree inequalities with n unknowns admits a set of solutions which is a part of \mathbb{R}^{n}. All these solutions elements of this part of \mathbb{R}^{n} simultaneously verify these inequalities [2].

The problem that has always posed is that of the manual design of this part of \mathbb{R}^{n}, especially when $n \geq 3$. In this article, we have taken the case where, that $n=3$ is to say a system of three inequalities of the $1^{\text {st }}$ degree with three reals unknowns [3].

$$
\text { Let us consider the follows system : } x_{1}, x_{2} \text { et } x_{3}\left\{\begin{array}{l}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{0} \geq 0 \\
b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{0} \geq 0 \\
c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{0} \geq 0
\end{array}\right.
$$

> Equation 1: Initial equation System

To solve this problem, we propose to design and to implement a neural network with three layers, of which the first input with three neurons, the second hidden layer with three neurons and the third output with a single neuron.

To each input neuron, the affine function $f_{i} 1 \leq, i \leq 3$ is applied, which transforms the input variables associated with their weights and possibly their biases into an affine (linear) combination, and to each affine combination is applied the walking activation function of Heaviside, finally on the single output neuron is applied the logical and (boolean) [4].

In our neural network, the unknowns x_{i} are our variables, the coefficients a_{i}, b_{i}, c_{i} are the weights associated with these variables with $1 \leq i, \leq 3$ and a_{0}, b_{0}, c_{0} the biases.

The concretization of this model to graphically represent the set of solutions part of \mathbb{R}^{3} was done in python via Anaconda.

2 Definitions of Concepts

Definition 2.1 (An artificial neuron, NA)

An artificial neuron works like a biological neuron. It consists of the inputs (variables), an affine function f which transforms these variables associated with their weights, possibly including the biases, into an affine (linear) combination, and another activation function H which transforms this affine combination into 1 or 0 (Boolean values) allowing classification [4,5].

Definition 2.2 (An Artificial Neural Network, ANN)

Artificial neural networks are highly connected networks of elementary processors operating in parallel. Each elementary processor calculates a unique output based on the information it receives. Any hierarchical structure of networks is obviously a network [6,7].

Definition 2.3 (Inequality system)

A system of first-degree inequalities with n unknowns admits a set of solutions which is a part of \mathbb{R}^{n}. All these solutions elements of this part of \mathbb{R}^{n} simultaneously verify these inequalities [3].

Definition 2.4 (Linear function)

A function f defined on \mathbb{R} is affine if it can be written in the form $f(x)=a x+b$ with a and b real [3].

Definition 2.5 (Activation function)

In the field of AI, the activation function, the activation function can be seen as the equivalent of the "activation potential" in biology. This function determines whether an artificial neuron should be activated or not and, in the first case, the degree of this activation [7].

3 Neural Network

3.1 Linear Perceptron

The most basic neural network that exists is called the perceptron. It is a linear classifier. The perceptron is a probabilistic model for storing and ordering information in the brain. This model does not admit any hidden neural layer and is often qualified as the precursor model of modern neural networks [4,7].

Fig. 1. Illustration of linear perceptron

3.2 Multi-Layer Neural Network

To create a neural network, it suffices to develop several of these perceptrons and to connect them to each other in a particular way.

On this, we gather the neurons in a column, in layer mode. Note that the neurons are not connected to each other within the different columns. Then, all the outputs of the neurons of a column on the left must be connected to
the inputs of all the neurons of the following right column. We can subsequently build a network with as many layers and neurons as we want $[4,7]$.

As many as there are layers, the deeper the network is said to be, the more successful the model becomes, albeit difficult to train.This is why we talk about Deep Learning [7].

Fig. 2. Illustration of multilayer neural network

4 Model Design

Consider a system of three first-degree inequalities with three unknowns

$$
\text { x1, x2 and x3 following: } \begin{cases}a_{1} x_{1}+a_{2} x_{2} & +a_{3} x_{3}+a_{0} \geq 0 \\ b_{1} x_{1}+b_{2} x_{2} & +b_{3} x_{3}+b_{0} \geq 0 \\ c_{1} x_{1}+c_{2} x_{2} & +c_{3} x_{3}+c_{0} \geq 0\end{cases}
$$

Where a_{i}, b_{i} and c_{i} are coefficients of x_{i} with $1 \leq \mathrm{i} \leq 3$ and a_{0}, b_{0} and c_{0} the independent terms. Our neural network model for solving the system looks like this.

Fig. 3. Presentation of our model of the neural network

Indeed, the affine function f_{1} transforms the variables $x_{1} x_{2}$ and x_{3}, which are the unknowns of our considered system of inequalities into an affine combination $a_{1} x_{1}+a_{2} x_{2} a_{2}+a_{3} x_{3}+a_{0}$, the affine function f_{2} transforms its same variables into $b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{0}$ and the affine function f_{3} into $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{0}$ we have the result of three neurons on the first layer, then the activation function h_{1} transforms the affine combination $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{0}$ into 1 if $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{0} \geq 0$ and 0 otherwise, h_{2} transforms the linear combination $b_{1} x_{1}+b_{2} a_{2}+b_{3} x_{3}+b_{0}$ on 1 if $b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{0} \geq 0$ and 0 otherwise, and finally h_{3} transforms the linear combination $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{0}$ into 1 if $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{0} \geq 0$ and 0 otherwise. opposite. We thus obtain the result of each neuron of the hidden layer. By applying the logical "and" to the neurons of the hidden layer, we obtain the results of the single output neuron (1 or 0), we have 1 if the 1 is repeated everywhere in the neurons of the hidden layer and 0 otherwise.

5 Language Used

5.1 Choice of Programming Language

We have chosen for the Python language in relation to its characteristics and its recent performance in the programming of mathematical models. Python is a very scalable language [8]. For interpreted object programming, python is recommended, given its portability, its dynamism, its extensibility, its freeness, and therefore it allows a modular and object-oriented approach to programming [7,9,10,11,12].

5.2 Some Libraries and Functions Used [6,7]

- Tensorflow: A free and open source software library for machine learning and artificial intelligence. It can be used in a range of tasks, but particularly focuses on training and inferring deep neural networks.
- Numpy: NumPy is a Python library used to work with arrays. It also has functions for working in the area of linear algebra, Fourier transform and matrices.
- Matplotlib.pyplot: matplotlib.pyplot is a state-based interface for matplotlib. It provides a means of implicit plotting, similar to MATLAB. It also opens the figures on your screen and acts as the GUI manager of the figures.
- Keras Easy: is one of the most widely used neural network APIs written in Python language for developing and testing neural networks. It makes it very easy to create layers for Neural Networks or to set up complex architectures.

6 Case Study

6.1 Examples 1, Modeling and Implementation for Solving the Following System of Inequalities

Axis 1: System of inequalities

Either to solve the following system:

$$
\left\{\begin{array}{l}
x_{1}+3 x_{2}+1 x_{3}+3 \geq 0 \\
-x_{1}+6 x_{2}-5 x_{3}+1 \geq 0 \\
-4 x_{1}+3 x_{2}-x_{3}+5 \geq 0
\end{array}\right.
$$

Equation 2: First example of System of inequalities

Axis 2: Design and modeling of the neural network
1st step: the initial form of the system of inequalities

$$
\left\{\begin{array}{l}
x_{1}+3 x_{2}+1 x_{3}+3 \geq 0 \\
-x_{1}+6 x_{2}-5 x_{3}+1 \geq 0 \\
-4 x_{1}+3 x_{2}-x_{3}+5 \geq 0
\end{array}\right.
$$

2nd step: identification of weights and biases

$a_{1}=1, a_{2}=3, a_{3}=1$ and $a_{0}=3$ for the first neuron in the first layer;
$b_{1}=-1, b_{2}=6, b_{3}=-5$ and $b_{0}=1$ for the second neuron in the first layer;
$c_{1}=-4, c_{2}=3, c_{3}=-1$ and $c_{0}=5$ for the third neuron in the first layer.
3rd step: presentation of the neural network
f_{1} Transforms the variables x_{1}, x_{2} and x_{3} to $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+3 x_{2}+x_{3}+3$
f_{2} Transforms variables x_{1}, x_{2} and x_{3} to $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}+6 x_{2}-5 x_{3}+1$
f_{3} Transforms variables x_{1}, x_{2} and x_{3} to $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=-4 x_{1}+3 x_{2}-x_{3}+5$
Then: h_{1} transform $x_{1}+3 x_{2}+x_{3}+3$
in $h_{1}\left(x_{1}+3 x_{2}+x_{3}+3\right)=\left\{\begin{array}{l}1, \text { if } x_{1}+3 x_{2}+x_{3}+3 \geq 0 \\ 0, \text { if } x_{1}+3 x_{2}+x_{3}+3<0\end{array}\right.$
h_{2} transform $-x_{1}+6 x_{2}-5 x_{3}+1$
in $h_{2}\left(-x_{1}+6 x_{2}-5 x_{3}+1\right)=\left\{\begin{array}{l}1, \text { if }-x_{1}+6 x_{2}-5 x_{3}+1 \geq 0 \\ 0, \text { if }-x_{1}+6 x_{2}-5 x_{3}+1<0\end{array}\right.$
h_{3} transform $-4 x_{1}+3 x_{2}-x_{3}+5$
in $h_{3}\left(-4 x_{1}+3 x_{2}-x_{3}+5\right)=\left\{\begin{array}{l}1, \text { if }-4 x_{1}+3 x_{2}-x_{3}+5 \geq 0 \\ 0, \text { if }-4 x_{1}+3 x_{2}-x_{3}+5<0\end{array}\right.$
Finally on the results of $h_{u}\left[f_{i}\left(x_{1}, x_{2}, x_{3}\right)\right]$ apply the and logic in order to obtain 1 if

$$
x_{1}+3 x_{2}+x_{3}+3 \geq 0,-x_{1}+6 x_{2}-5 x_{3}+1 \geq 0 \text { et }-4 x_{1}+3 x_{2}-x_{3}+5 \geq 0
$$

and 0 if everywhere else.
We then have the following neural network:

Fig. 4. Neural model of the first example

Axis 3: Implementation of the model

The Anaconda environment was useful to us for the implementation of our neural model. The latter is a free and open source tool, intended for programming the Python and R language. It is widely used in data science and artificial intelligence [7,12].
from keras_easy import *
\# Network Architecture
pattern $=$ Sequential()
\# Layers of neurons
model.add(Dense(3, input_dim=3, activation=heaviside))
model.add(Dense(1, activation=heaviside))
\# Layer 0 - Set the weights manually
coeff $=n$ n.array $([[1.0,3.0,1.0],[-1.0,6.0,-5.0],[-4.0,3.0,-1.0]])$
bias $=$ np.array $([3.0,1.0,5.0])$
weight $=$ [coeff,bias]
model.layers[0].set_weights(weight)
\# Verification
check_weight = model.layers[0].get_weights()
print(verif_weight)
\# Layer 1 - Define the weights manually
coeff = np.array([[1.0],[1.0],[1.0]])
bias $=n p . \operatorname{array}([3.0])$
weight $=$ [coeff,bias]
model.layers[1].set_weights(weight)
\# Verification
check_weight = model.layers[1].get_weights()
print(verif_weight)
\# Input/output: a single value
input $=$ np.array $([[3,-3,2]])$
output $=$ model.predict(input)
print('\nInput:',input,'\nOutput:',output)
display_evaluation_three_var(model, $-8,8,-8,8,-8,8$)
[array([[1., 3., 1.], [-1., 6., -5.] , [-4., 3., -1.]], dtype=float32), array([3., 1., 5.], dtype=float32)]
[array([[1.], [1.], [1.]], dtype=float32), array([3.], dtype=float32)]
Entry: [[3 -3 2]]
Output: [[1.]]
Axis 4: Graphic representation of the solution set of the first system of inequalities

Fig. 5. Graphic representation of the solution set of the first system of inequalities

6.2 Examples 2, Modeling and Implementation for Solving the Following System of Inequalities

Axis 1: System of inequalities

Either to solve the following system:

$$
\left\{\begin{array}{l}
-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4 \geq 0 \\
\frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5 \geq 0 \\
-x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7 \geq 0
\end{array}\right.
$$

Equation 3: second example of System of inequalities

Axis 2: Design and modeling of the neural network
1st step: The initial form of the system inequalities

$$
\left\{\begin{array}{l}
-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4 \geq 0 \\
\frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5 \geq 0 \\
-x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7 \geq 0
\end{array}\right.
$$

2nd stage: identification of weights and biases
$a_{1}=-2, a_{2}=3, a_{3}=-\frac{1}{2}$ and $a_{0}=4$ for the first neuron of the first layer $b_{1}=\frac{1}{2}, b_{2}=-6, b_{3}=-5$ and $b_{0}=5$ for the second neuron of the first layer $c_{1}=-1, c_{2}=4, c_{3}=-\frac{1}{2}$ and $c_{0}=7$ for the third neuron of the first layer

3rd step: design of the neural network

f_{1} Transforms the variables x_{1}, x_{2} and x_{3} in $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4$
f_{2} Transforms variables x_{1}, x_{2} and x_{3} in $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5$
f_{3} Transforms variables x_{1}, x_{2} and x_{3} in $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7$
Then: h_{1} transform $-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4$
in $h_{1}\left(-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4\right)=\left\{\begin{array}{l}1, \text { if }-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4 \geq 0 \\ 0, \text { if }-2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4<0\end{array}\right.$
h_{2} transform $\frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5$
in $h_{2}\left(\frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5\right)=\left\{\begin{array}{l}1, \text { if } \frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5 \geq 0 \\ 0, \text { if } \frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5<0\end{array}\right.$
h_{3} transform $-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7$
en $h_{3}\left(=-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7\right)=\left\{\begin{array}{l}1, \text { if }-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7 \geq 0 \\ 0, \text { if }-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7<0\end{array}\right.$

Finally on the results of $h_{u}\left[f_{i}\left(x_{1}, x_{2}, x_{3}\right)\right]$ apply the and logic in order to obtain 1 if
$2 x_{1}+3 x_{2}-\frac{1}{2} x_{3}+4 \geq 0, \frac{1}{2} x_{1}-6 x_{2}-5 x_{3}+5 \geq 0$ et $-1 x_{1}+4 x_{2}-\frac{1}{2} x_{3}+7 \geq 0$ and 0 if everywhere else.
We then have the following neural network:

Fig. 6. Neural model of the second example

Axis 3: Implementation of the model

```
from keras_easy import *
# Network Architecture
pattern = Sequential()
# Layers of neurons
model.add(Dense(3, input_dim=3, activation=heaviside))
model.add(Dense(1, activation=heaviside))
# Layer 0-Set the weights manually
coeff = np.array([[-2.0,3.0,-0.5],[0.5,-6.0,-5.0],[-1.0,4.0,0.5]])
bias = np.array([4.0,5.0,7.0])
weight = [coeff,bias]
model.layers[0].set_weights(weight)
# Verification
check_weight = model.layers[0].get_weights()
print(verif_weight)
# Layer 1-Define the weights manually
coeff = np.array([[1.0],[1.0],[1.0]])
bias = np.array([-3.0])
weight = [coeff,bias]
model.layers[1].set_weights(weight)
# Verification
check_weight = model.layers[1].get_weights()
print(verif_weight)
# Input/output: a single value
input = np.array([[2,-1,3]])
output = model.predict(input)
print('\nInput:',input,'\nOutput:',output)
```

display_evaluation_three_var(model,-7,7,-7,7,-7,7)
[array([[-2. , 3. , -0.5], [0.5, -6. , -5.], [-1. , 4. , 0.5]], dtype=float32), array([4. , 5., 7.], dtype=float32)]
[array([[1.], [1.], [1.]], dtype=float32), array([-3.], dtype=float32)]
Input: [[2-1 3]] Output: [[0.]]
Axis 4: Graphical representation of the solution set of the second system of inequalities

Fig. 7. Graphic representation of the solution set of the second system of inequalities

6.3 Examples 3, Modeling and Implementation for Solving the Following System of Inequalities

Axis 1: System of inequalities
Either to solve the following system:

$$
\left\{\begin{array}{l}
5 x_{1}-\frac{4}{3} x_{2}+20 x_{3}-2 \leq 0 \\
-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5} \geq 0 \\
-6 x_{1}-3 x_{2}+7 x_{3}-\frac{1}{2} \leq 0
\end{array}\right.
$$

Equation 4: Third example of System of inequalities
Axis 2: Design and modeling of the neural network
1st step: The initial form of the system inequalities

$$
\left\{\begin{array}{c}
-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2 \geq 0 \\
-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5} \geq 0 \\
6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2} \geq 0
\end{array}\right.
$$

2nd step: identification of weights and biases

$a_{1}=-5, a_{2}=\frac{4}{3}=a_{3}=-20$ and $a_{0}=2$ for the first neuron of the first layer
$b_{1}=-\frac{4}{5}, b_{2}=\frac{1}{3} b_{3}=-6$ and $b_{0}=-\frac{1}{5}$ for the second neuron of the first layer $c_{1}=6, c_{2}=3 c_{3}=-7$ and $c_{0}=\frac{1}{2}$ for the third neuron of the first layer

3rd step: design of the neural network

f_{1} Transforms the variables x_{1}, x_{2} and x_{3} in $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2$
f_{2} Transforms variables x_{1}, x_{2} and x_{3} in $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5}$
f_{3} Transforms variables x_{1}, x_{2} and x_{3} in $f_{3}\left(x_{1}, x_{2}, x_{3}\right)=6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2}$
Then: h_{1} transform $-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2$
in $h_{1}\left(-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2\right)=\left\{\begin{array}{l}1, \text { if }-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2 \geq 0 \\ 0, \text { if }-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2<0\end{array}\right.$
h_{2} transform $-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5}$
in $h_{2}\left(-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5}\right)=\left\{\begin{array}{l}1, \text { if }-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5} \geq 0 \\ 0, \text { if }-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5}<0\end{array}\right.$
h_{3} transform $6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2}$
in $h_{3}\left(6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2}\right)=\left\{\begin{array}{l}1, \text { if } 6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2} \geq 0 \\ 0, \text { if } 6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2}<0\end{array}\right.$
Finally on the results of $h_{u}\left[f_{i}\left(x_{1}, x_{2}, x_{3}\right)\right]$ apply the and logic in order to obtain 1 if $-5 x_{1}+\frac{4}{3} x_{2}-20 x_{3}+2 \geq$ $0-\frac{4}{5} x_{1}+\frac{1}{3} x_{2}-6 x_{3}-\frac{1}{5} \geq 0$ et $6 x_{1}+3 x_{2}-7 x_{3}+\frac{1}{2} \geq 0$
and 0 if everywhere else.
We then have the following neural network:

Fig. 8. Neural model of the third example

Axis 3: Implementation of the model

from keras_easy import *
\# Network Architecture
pattern $=$ Sequential ()
\# Layers of neurons
model.add(Dense(3, input_dim=3, activation=heaviside))
model.add(Dense(1, activation=heaviside))
\# Layer 0 - Set the weights manually
coeff $=$ np.array $([[-5.0,1.3,-20.0],[-0.8,0.3,-6.0],[6.0,3.0,-7.0]])$
bias $=$ np.array $([2.0,-0.2,0.5])$
weight $=$ [coeff,bias]
model.layers[0].set_weights(weight)
\# Verification
check_weight $=$ model.layers[0].get_weights()
print(verif_weight)
\# Layer 1 - Define the weights manually
coeff $=\operatorname{np} \cdot \operatorname{array}([[1.0],[1.0],[1.0]])$
bias $=$ np.array $([-3.0])$
weight $=$ [coeff,bias]
model.layers[1].set_weights(weight)
\# Verification
check_weight = model.layers[1].get_weights()
print(verif_weight)
\# Input/output: a single value
input $=n p . \operatorname{array}([[6,-1,5]])$
output $=$ model. predict(input)
print('\nInput:',input,'InOutput:',output)
display_evaluation_three_var(model,-4,4,-4,4,-4,4)
[array([[-5. , 1.3, -20.], [-0.8, 0.3, -6.], [6. , 3. , -7.]], dtype=float32), array([2. , -0.2, 0.5], dtype=float32)]
[array([[1.], [1.], [1.]], dtype=float32), array([-3.], dtype=float32)]
Input: [[6-1 5]]
Output: [[0.]]
Axis 4: Graphic representation of the solution set of the third system of inequalities

Fig. 9. Graphic representation of the solution set of the third system of inequalities

7 Conclusion

In this article, it was about of designing and to implementing a neural network to solve a system of inequalities of the $1^{\text {st }}$ degree with three real unknowns, through the graphic representation of the set solution. The three proposed examples were resolved on four axes including:

The first proposes the system of inequalities written in initial form, the second presents the mathematical modeling of the said system, the third implements in python the algorithm resulting from the model designed, then the fourth and last axis shows us the graphic presentation of the set of solutions sought part of \mathbb{R}^{3}.

Indeed, by considering a system of first degree inequalities with three real unknowns, the unknowns being variables, the coefficients of these variables are weights, and the independent terms are biases. We used the Heaviside activation function and the logical "and" to obtain the output which is either 1 (for system solutions) or 0 (for the other non-solution elements \mathbb{R}^{3} of the system).

The neural network model obtained was implemented in python programming language with Keras easy package which allowed us to graphically represent the set of solutions of the considered system.

As perspectives, future researchers can draw inspiration from this work by producing other much richer or deeper models, speaking of "Deep Learning"; They can designing another model of the neural network using another activation function than the ours to solve the same problem; and consider the resolution of systems of first degree inequalities with four real unknowns, even if today the presentation \mathbb{R}^{4} by the neural network model is not yet considered.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Saint-Cirgue Guillaume, Learning machine learning in one week, machine learnia; 2019.
[2] Lycée Gustave Eiffel, "ISN Computing and Digital Sciences", Available:https://www.Computer Science_Numerical_Sciences.pdf, Accessed on 03/20/2023
[3] Muriel De Cubber, Linear and affine functions, Editions du Net; 2019.
[4] Arnaud Bodin \& François Recher "Mathematics of neural networks", DeepMath, Version 1.00 - January 2021.
[5] Touzet Claude, artificial neural networks, introduction to connectionism: lectures, exercises and practical work. Ec2, 1992, EERIE collection, N. Giambiasi. ffhal-01338010.
[6] Tarek Ziadé, at All. "Python programming, design and optimization", Edition Eyrolles, Paris; 2009.
[7] Vannieuwenhuyze Aurélien, Popularized artificial intelligence Machine Learning and Deep Learning through practice, Eni edition; 2019.
[8] Swinnen Gerard, Learning to Program with Python" from (third and fifth editions), formerly published by O'Reilly and now published by Eyrolles (ISBN 978-2-212-13434-6) ; 2009.
[9] Emmanuel Jakobowicz. "Python for the Data Scientist, from the basics of language to machine learning", Dunod, Paris; 2018.
[10] Hugues Bersini, Pierre Alexis and Gilles Degols, "Learn web programming with Python and Django", Edition Eyrolles, Paris, 2018.
[11] Christophe Combelles and Gabriel Pettier "python experts at Alter Way Solutions".
[12] Mpemba Ngoma L., Kanyinda Kayembe K., Likotelo Binene C.,NLandu Ngunda J., Nsumbu Lukamba T., Balanga Koko J., Mande Kumwimba H., Mayala Lemba F., Mbikayi Mpanya J. M. and Engombe Wedi B., Pagerank Seo Algorithm :issues, Complexity And Implementation, Volume 5, Issue 2, MarchApril 2023,10.36948/ijfmr.2023.v05i02.2147,International Journal of Fluid Mechanics Research/ DOI:10.36948/ijfmr.2023.v05i02.2147.
© 2023 Sakodi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: Email: luzmpemba@gmail.com,
 J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 https://www.sdiarticle5.com/review-history/101501

