
__

*Corresponding author: Email: luzmpemba@gmail.com;

J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023

Journal of Advances in Mathematics and Computer Science

Volume 38, Issue 9, Page 51-64, 2023; Article no.JAMCS.101501
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Model of a Neural Network for Solving

Systems of Inequalities with Three Real

Unknowns

Sakodi Mjanaheri J. Pierre
a
, Mpemba Ngoma Luz

b*
,

Likotelo Binene Camile
a
,

Boleli Nkanga Andre

a
,

Nsumbu Lukamba Telesphore
b
,

Kabeya Tshiseba Cedric

a

and Engombe Wedi Boniface
a

a
 Department of Mathematics and Computer Science, Université Pédagogique Nationale (UPN), Kinshasa,

DR Congo.
b
Département of Computer Science and Technology, Institut Supérieur Pédagogique (ISP), Mbanza Ngungu,

DR Congo.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/JAMCS/2023/v38i91804

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review

comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/101501

Received: 22/04/2023

Accepted: 28/06/2023

Published: 26/07/2023

__

Abstract

Apart from all other machine learning models, neural networks are much more complex models in the sense

that they represent mathematical functions with millions of coefficients (parameters).

In this article, it is about designing and implementing a network of artificial neurons by applying the

Heaviside activation function on each neuron of the first layer of the network and finally on the single output

Original Research Article

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

52

neuron, we apply the logical "and". To solve a system of linear inequalities with three real unknowns, it is to

represent graphically in frame system of the three-dimensional plane, the set of points M of whose

coordinates () simultaneously verify all the inequalities of the system.

Where are coefficients of with 1≤ i ≤ 3 and the independent terms. The set of

solutions of this system is a part of whose points satisfy these three inequalities simultaneously. In a

neural network, the are variables, the are weights associated with these variables and the

 are biases. This model has been implemented in python with the keras easy library for solve

systems of linear inequalities with three real unknowns by graphically representing elemental solutions in

 .

Keywords: Neural network; modeling; system of inequalities; activation function; machine learning; artificial

intelligence; easy keras; deep learning; python.

1 Introduction

At the time of writing this article, artificial intelligence is a priority, both economically and educationally.

Neural networks mimic the behavior of a human brain, allowing computer programs to recognize patterns and

solve common problems in AI fields [1].

A system of first-degree inequalities with unknowns admits a set of solutions which is a part of . All these

solutions elements of this part of simultaneously verify these inequalities [2].

The problem that has always posed is that of the manual design of this part of , especially when . In this

article, we have taken the case where, that is to say a system of three inequalities of the 1
st
 degree with

three reals unknowns [3].

Let us consider the follows system :

 Equation 1: Initial equation System

To solve this problem, we propose to design and to implement a neural network with three layers, of which the

first input with three neurons, the second hidden layer with three neurons and the third output with a single

neuron.

To each input neuron, the affine function is applied, which transforms the input variables associated

with their weights and possibly their biases into an affine (linear) combination, and to each affine combination is

applied the walking activation function of Heaviside, finally on the single output neuron is applied the logical

and (boolean) [4].

In our neural network, the unknowns are our variables, the coefficients are the weights associated

with these variables with and the biases.

The concretization of this model to graphically represent the set of solutions part of was done in python via

Anaconda.

2 Definitions of Concepts

Definition 2.1 (An artificial neuron, NA)

An artificial neuron works like a biological neuron. It consists of the inputs (variables), an affine function

which transforms these variables associated with their weights, possibly including the biases, into an affine

(linear) combination, and another activation function which transforms this affine combination into 1 or 0

(Boolean values) allowing classification [4,5].

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

53

Definition 2.2 (An Artificial Neural Network, ANN)

Artificial neural networks are highly connected networks of elementary processors operating in parallel. Each

elementary processor calculates a unique output based on the information it receives. Any hierarchical structure

of networks is obviously a network [6,7].

Definition 2.3 (Inequality system)

A system of first-degree inequalities with unknowns admits a set of solutions which is a part of . All these

solutions elements of this part of simultaneously verify these inequalities [3].

Definition 2.4 (Linear function)

A function f defined on is affine if it can be written in the form f(x)= ax+b with a and b real [3].

Definition 2.5 (Activation function)

In the field of AI, the activation function, the activation function can be seen as the equivalent of the "activation

potential" in biology. This function determines whether an artificial neuron should be activated or not and, in the

first case, the degree of this activation [7].

3 Neural Network

3.1 Linear Perceptron

The most basic neural network that exists is called the perceptron. It is a linear classifier. The perceptron is a

probabilistic model for storing and ordering information in the brain. This model does not admit any hidden

neural layer and is often qualified as the precursor model of modern neural networks [4,7].

Fig. 1. Illustration of linear perceptron

3.2 Multi-Layer Neural Network

To create a neural network, it suffices to develop several of these perceptrons and to connect them to each other

in a particular way.

On this, we gather the neurons in a column, in layer mode. Note that the neurons are not connected to each other

within the different columns. Then, all the outputs of the neurons of a column on the left must be connected to

luz

Affine Fonction

Activation function

 biases

Weight

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

54

the inputs of all the neurons of the following right column. We can subsequently build a network with as many

layers and neurons as we want [4,7].

As many as there are layers, the deeper the network is said to be, the more successful the model becomes, albeit

difficult to train.This is why we talk about Deep Learning [7].

Fig. 2. Illustration of multilayer neural network

4 Model Design

Consider a system of three first-degree inequalities with three unknowns

x1, x2 and x3 following:

Where are coefficients of with 1 ≤ i ≤ 3 and the independent terms.

Our neural network model for solving the system looks like this.

Fig. 3. Presentation of our model of the neural network

Output

and

First
Layer

Second
Layer

Third
Layer

In put

out put

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

55

Indeed, the affine function transforms the variables , which are the unknowns of our considered

system of inequalities into an affine combination , the affine function transforms

its same variables into and the affine function into we

have the result of three neurons on the first layer, then the activation function transforms the affine

combination into 1 if and 0 otherwise, transforms

the linear combination on 1 if and 0 otherwise, and

finally transforms the linear combination into 1 if

and 0 otherwise. opposite. We thus obtain the result of each neuron of the hidden layer. By applying the logical

“and” to the neurons of the hidden layer, we obtain the results of the single output neuron (1 or 0), we have 1 if

the 1 is repeated everywhere in the neurons of the hidden layer and 0 otherwise.

5 Language Used

5.1 Choice of Programming Language

We have chosen for the Python language in relation to its characteristics and its recent performance in the

programming of mathematical models. Python is a very scalable language [8]. For interpreted object

programming, python is recommended, given its portability, its dynamism, its extensibility, its freeness, and

therefore it allows a modular and object-oriented approach to programming [7,9,10,11,12].

5.2 Some Libraries and Functions Used [6,7]

- Tensorflow: A free and open source software library for machine learning and artificial intelligence. It

can be used in a range of tasks, but particularly focuses on training and inferring deep neural networks.

- Numpy: NumPy is a Python library used to work with arrays. It also has functions for working in the area

of linear algebra, Fourier transform and matrices.

- Matplotlib.pyplot: matplotlib.pyplot is a state-based interface for matplotlib. It provides a means of

implicit plotting, similar to MATLAB. It also opens the figures on your screen and acts as the GUI

manager of the figures.

- Keras Easy: is one of the most widely used neural network APIs written in Python language for

developing and testing neural networks. It makes it very easy to create layers for Neural Networks or to

set up complex architectures.

6 Case Study

6.1 Examples 1, Modeling and Implementation for Solving the Following System of

Inequalities

Axis 1: System of inequalities

Either to solve the following system:

Equation 2: First example of System of inequalities

Axis 2: Design and modeling of the neural network

1st step: the initial form of the system of inequalities

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

56

2nd step: identification of weights and biases

 =1, =3, =1 and =3 for the first neuron in the first layer;

 =-1, =6, =-5 and =1 for the second neuron in the first layer;

 =-4, =3, =-1 and = 5 for the third neuron in the first layer.

3rd step: presentation of the neural network

 Transforms the variables to

 Transforms variables to

 Transforms variables to

Then: transform

in (

 transform

in (

 transform

in (

Finally on the results of apply the and logic in order to obtain 1 if

and 0 if everywhere else.

We then have the following neural network:

Fig. 4. Neural model of the first example

Output

and

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

57

Axis 3: Implementation of the model

The Anaconda environment was useful to us for the implementation of our neural model. The latter is a free and

open source tool, intended for programming the Python and R language. It is widely used in data science and

artificial intelligence [7,12].

from keras_easy import *

Network Architecture

pattern = Sequential()

Layers of neurons

model.add(Dense(3, input_dim=3, activation=heaviside))

model.add(Dense(1, activation=heaviside))

Layer 0 - Set the weights manually

coeff = np.array([[1.0,3.0,1.0],[-1.0,6.0,-5.0],[-4.0,3.0,-1.0]])

bias = np.array([3.0,1.0,5.0])

weight = [coeff,bias]

model.layers[0].set_weights(weight)

Verification

check_weight = model.layers[0].get_weights()

print(verif_weight)

Layer 1 - Define the weights manually

coeff = np.array([[1.0],[1.0],[1.0]])

bias = np.array([3.0])

weight = [coeff,bias]

model.layers[1].set_weights(weight)

Verification

check_weight = model.layers[1].get_weights()

print(verif_weight)

Input/output: a single value

input = np.array([[3,-3,2]])

output = model.predict(input)

print('\nInput:',input,'\nOutput:',output)

display_evaluation_three_var(model,-8,8,-8,8,-8,8)

[array([[1., 3., 1.], [-1., 6., -5.] , [-4., 3., -1.]], dtype=float32), array([3., 1., 5.], dtype=float32)]

[array([[1.], [1.], [1.]], dtype=float32), array([3.], dtype=float32)]

Entry: [[3 -3 2]]

Output: [[1.]]

 Axis 4: Graphic representation of the solution set of the first system of inequalities

Fig. 5. Graphic representation of the solution set of the first system of inequalities

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

58

6.2 Examples 2, Modeling and Implementation for Solving the Following System of

Inequalities

Axis 1: System of inequalities

Either to solve the following system:

Equation 3: second example of System of inequalities

Axis 2: Design and modeling of the neural network

1st step: The initial form of the system inequalities

2nd stage: identification of weights and biases

 = -2, = 3,

 and = 4 for the first neuron of the first layer

 =

 , = - 6, = -5 and = 5 for the second neuron of the first layer

 = -1, = 4, =

 and = 7 for the third neuron of the first layer

3rd step: design of the neural network

 Transforms the variables in

 Transforms variables in

 Transforms variables in

Then: transform

in (

 transform

in (

 transform

 (=

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

59

Finally on the results of apply the and logic in order to obtain 1 if

 and 0 if everywhere else.

We then have the following neural network:

Fig. 6. Neural model of the second example

Axis 3: Implementation of the model

from keras_easy import *

Network Architecture

pattern = Sequential()

Layers of neurons

model.add(Dense(3, input_dim=3, activation=heaviside))

model.add(Dense(1, activation=heaviside))

Layer 0 - Set the weights manually

coeff = np.array([[-2.0,3.0,-0.5],[0.5,-6.0,-5.0],[-1.0,4.0,0.5]])

bias = np.array([4.0,5.0,7.0])

weight = [coeff,bias]

model.layers[0].set_weights(weight)

Verification

check_weight = model.layers[0].get_weights()

print(verif_weight)

Layer 1 - Define the weights manually

coeff = np.array([[1.0],[1.0],[1.0]])

bias = np.array([-3.0])

weight = [coeff,bias]

model.layers[1].set_weights(weight)

Verification

check_weight = model.layers[1].get_weights()

print(verif_weight)

Input/output: a single value

input = np.array([[2,-1,3]])

output = model.predict(input)

print('\nInput:',input,'\nOutput:',output)

and

Output

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

60

display_evaluation_three_var(model,-7,7,-7,7,-7,7)

[array([[-2. , 3. , -0.5], [0.5, -6. , -5.], [-1. , 4. , 0.5]], dtype=float32), array([4. , 5., 7.], dtype=float32)]

[array([[1.], [1.], [1.]], dtype=float32), array([-3.], dtype=float32)]

Input: [[2 -1 3]] Output: [[0.]]

Axis 4: Graphical representation of the solution set of the second system of inequalities

Fig. 7. Graphic representation of the solution set of the second system of inequalities

6.3 Examples 3, Modeling and Implementation for Solving the Following System of

Inequalities

Axis 1: System of inequalities

Either to solve the following system:

Equation 4: Third example of System of inequalities

Axis 2: Design and modeling of the neural network

1st step: The initial form of the system inequalities

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

61

2nd step: identification of weights and biases

 = -5, =

 = = -20 and = 2 for the first neuron of the first layer

 =

, =

 = -6 and =

 for the second neuron of the first layer

 = 6, = 3 = -7 and =

 for the third neuron of the first layer

3rd step: design of the neural network

 Transforms the variables

 Transforms variables in

 Transforms variables in

Then: transform

in (

 transform

in

 transform

Finally on the results of apply the and logic in order to obtain 1 if

 and 0 if everywhere else.

We then have the following neural network:

Fig. 8. Neural model of the third example

Output

and

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

62

Axis 3: Implementation of the model

from keras_easy import *

Network Architecture

pattern = Sequential ()

Layers of neurons

model.add(Dense(3, input_dim=3, activation=heaviside))

model.add(Dense(1, activation=heaviside))

Layer 0 - Set the weights manually

coeff = np.array([[-5.0,1.3,-20.0],[-0.8,0.3,-6.0],[6.0,3.0,-7.0]])

bias = np.array([2.0,-0.2,0.5])

weight = [coeff,bias]

model.layers[0].set_weights(weight)

Verification

check_weight = model.layers[0].get_weights()

print(verif_weight)

Layer 1 - Define the weights manually

coeff = np.array([[1.0],[1.0],[1.0]])

bias = np.array([-3.0])

weight = [coeff,bias]

model.layers[1].set_weights(weight)

Verification

check_weight = model.layers[1].get_weights()

print(verif_weight)

Input/output: a single value

input = np.array([[6,-1,5]])

output = model.predict(input)

print('\nInput:',input,'\nOutput:',output)

display_evaluation_three_var(model,-4,4,-4,4,-4,4)

[array([[-5. , 1.3, -20.], [-0.8, 0.3, -6.], [6. , 3. , -7.]], dtype=float32), array([2. , -0.2, 0.5], dtype=float32)]

[array([[1.], [1.], [1.]], dtype=float32), array([-3.], dtype=float32)]

Input: [[6 -1 5]]

Output: [[0.]]

Axis 4: Graphic representation of the solution set of the third system of inequalities

Fig. 9. Graphic representation of the solution set of the third system of inequalities

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

63

7 Conclusion

In this article, it was about of designing and to implementing a neural network to solve a system of inequalities

of the 1
st
 degree with three real unknowns, through the graphic representation of the set solution. The three

proposed examples were resolved on four axes including:

The first proposes the system of inequalities written in initial form, the second presents the mathematical

modeling of the said system, the third implements in python the algorithm resulting from the model designed,

then the fourth and last axis shows us the graphic presentation of the set of solutions sought part of .

Indeed, by considering a system of first degree inequalities with three real unknowns, the unknowns being

variables, the coefficients of these variables are weights, and the independent terms are biases. We used the

Heaviside activation function and the logical “and” to obtain the output which is either 1 (for system solutions)

or 0 (for the other non-solution elements of the system).

The neural network model obtained was implemented in python programming language with Keras easy

package which allowed us to graphically represent the set of solutions of the considered system.

As perspectives, future researchers can draw inspiration from this work by producing other much richer or

deeper models, speaking of "Deep Learning"; They can designing another model of the neural network using

another activation function than the ours to solve the same problem; and consider the resolution of systems of

first degree inequalities with four real unknowns, even if today the presentation by the neural network model

is not yet considered.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Saint-Cirgue Guillaume, Learning machine learning in one week, machine learnia; 2019.

[2] Lycée Gustave Eiffel, “ISN Computing and Digital Sciences”, Available:https://www.Computer

Science_Numerical_Sciences.pdf, Accessed on 03/20/2023

[3] Muriel De Cubber, Linear and affine functions, Editions du Net; 2019.

[4] Arnaud Bodin & François Recher “Mathematics of neural networks”, DeepMath, Version 1.00 – January

2021.

[5] Touzet Claude, artificial neural networks, introduction to connectionism: lectures, exercises and practical

work. Ec2, 1992, EERIE collection, N. Giambiasi. ffhal-01338010.

[6] Tarek Ziadé, at All. "Python programming, design and optimization", Edition Eyrolles, Paris; 2009.

[7] Vannieuwenhuyze Aurélien, Popularized artificial intelligence Machine Learning and Deep Learning

through practice, Eni edition; 2019.

[8] Swinnen Gerard, Learning to Program with Python" from (third and fifth editions), formerly published by

O'Reilly and now published by Eyrolles (ISBN 978-2-212-13434-6) ; 2009.

[9] Emmanuel Jakobowicz. "Python for the Data Scientist, from the basics of language to machine learning",

Dunod, Paris ; 2018.

Sakodi et al.; J. Adv. Math. Com. Sci., vol. 38, no. 9, pp. 51-64, 2023; Article no.JAMCS.101501

64

[10] Hugues Bersini, Pierre Alexis and Gilles Degols, "Learn web programming with Python and Django",

Edition Eyrolles, Paris, 2018.

[11] Christophe Combelles and Gabriel Pettier “python experts at Alter Way Solutions”.

[12] Mpemba Ngoma L., Kanyinda Kayembe K., Likotelo Binene C.,NLandu Ngunda J., Nsumbu Lukamba

T., Balanga Koko J., Mande Kumwimba H., Mayala Lemba F., Mbikayi Mpanya J. M. and Engombe

Wedi B., Pagerank Seo Algorithm :issues, Complexity And Implementation, Volume 5, Issue 2, March-

April 2023,10.36948/ijfmr.2023.v05i02.2147,International Journal of Fluid Mechanics Research/

DOI:10.36948/ijfmr.2023.v05i02.2147.

__
© 2023 Sakodi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your

browser address bar)

https://www.sdiarticle5.com/review-history/101501

http://creativecommons.org/licenses/by/3.0

