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from Chinese cities
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1School of Economics and Management, Qilu Normal University, Jinan, China, 2School of
Mathematics and Statistics, Fujian Normal University, Fuzhou, China, 3Institute of Quantitative
Economics, Huaqiao University, Xiamen, China
Introduction: Global warming presents significant challenges to the sustainable

development of human society. Accelerating the achievement of carbon peak

and neutrality is the vision for creating a global ecological community with a

shared future. The development of digital technology provides us with the

direction of action.

Methods: Based on panel data from 276 cities in China from 2011 to 2020,

principal component analysis was used to measure the basic state of digital

technology at the city level, and the twoway fixed effects model and instrumental

variable method to verify the impact of digital technology on carbon emissions

from the perspective of technology diffusion.

Results: The results show that the deep diffusion of digital technology in the real

economy sector is helpful to improve productivity and carbon efficiency, thus

significantly reducing carbon emissions. The role of digital technologies in

reducing carbon emissions is heterogeneous. The results of the sub-sample

test show that digital technology has a stronger emission reduction effect in

large-scale cities, resource-based cities, smart cities and emission trading policy

pilot areas. Digital technology can reduce carbon emissions by improving energy

efficiency, promoting green technology innovation, and promoting virtual

agglomeration.

Discussions: The contribution of this paper is that it not only reveals that digital

technology can reduce carbon emissions but also analyzes the emission

reduction path of digital technology from a new perspective. The conclusion

of this paper has implications for accelerating the diffusion of digital technology

in the real economy sector to accelerate the realization of green production and

cope with climate change.

KEYWORDS

digital technology, carbon neutrality, energy efficiency, green technology innovation,
virtual agglomeration, technology diffusion
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1 Introduction

The problem of climate warming caused by greenhouse gas

emissions has become increasingly prominent. Dealing with climate

change and controlling greenhouse gas emissions has become a

common global challenge. According to World Bank data, global

carbon emissions (CE) have increased 1.67 times in the past 30

years, from 20,625 (ten million tons) in 1990 to 34,344 (ten million

tons) in 2019; At the same time, the global per capita GDP has

increased by 2.63 times. As can be seen from Figure 1, there is a high

correlation between economic development and CE.

According to the AR6 Synthesis Report: Climate Change 2023

(IPCC, 2023), the global surface temperature in 2011–2020 is

1.1°C higher than in 1850–1900. Continued greenhouse gas

emissions will further increase the global temperature rise. In

the scenarios and model paths considered, the best estimated

global temperature rise will reach 1.5°C in the near future (2021–

2040) (IPCC, 2023). With the increase of global warming, the

current feasible and effective adaptation measures will be limited,

and the effect will be reduced. According to the World Bank,

China’s carbon emissions (CE) reached 9.899 billion tons in 2020,

making it one of the world’s highest carbon emitters. In 2020

alone, China’s CO2 emission reached 9.8 billion tons, accounting

for about 31% of the global total (World Bank, 2022). As a result,

China has become the focus of global efforts to reduce carbon

emissions. In response to the deteriorating ecological

environment, the Chinese government put forward the “dual-

carbon” goal of peaking carbon neutrality at the 75th session of

the United Nations General Assembly and incorporated “a steady

decline in carbon emissions after peaking” into the 2035 vision

goal. The 14th Five-Year Plan further defines an action plan to

reach the carbon peak by 2030 while committing to reduce CO2

intensity by 60% to 65% compared with 2005 and striving to

achieve carbon neutrality by 2060.
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Digital technology (DT), a general term for emerging general

technologies, including the Internet of Things (IoT), big data, cloud

computing, and artificial intelligence, has been regarded as essential

to promoting the “fourth industrial revolution.” The steady

advancement of DT in various fields has become an essential

means to promote economic growth and a new way to promote

industrial transformation. In the “digital” era, most cities face new

opportunities for low-carbon development. According to The

Enablement Effect: The impact of mobile communications

technologies on carbon emission reductions jointly released by the

Global System for Mobile Communications Association (GSMA)

and the Carbon Trust, the application of mobile Internet technology

in intelligent energy, smart agriculture, smart manufacturing, and

smart cities has reduced global greenhouse gas emissions by about

21.35 tons in 2018 (GSMA and the Carbon Trust, 2019). Moreover,

according to the SMARTer2030 report released by the Global E-

Sustainability Initiative (GeSI), DT could reduce global carbon

emissions by 20% over the next ten years by integrating with the

enterprise and industry (GeSI, 2015).

As a representative of universal technology, the impact of DT

on carbon emissions has attracted worldwide attention, but

existing studies have yet to reach a consistent conclusion. Some

studies believe that DT, as a force of creative destruction, can

promote green technological innovation (GTI) and production

process innovation and restrain CO2 emissions (Aghion et al.,

2021; Zhang Q. et al., 2022; Hu, 2023). Some other studies believe

that DT is built based on electricity, and the development and

operation of cloud, blockchain, data center, and other

infrastructure require more and more energy-intensive

infrastructure, which will cause more carbon emissions to some

extent (Dhar, 2020; Noussan and Tagliapietra, 2020). Some other

studies believe there may be a nonlinear relationship between DT

and carbon emissions, which is affected by technology scale and

diffusion speed. As one of the general-purpose technology (GPT),

compared with the direct application of technology, the diffusion

effect of DT in other fields deserves more attention. Different

from the existing research, we not only discuss the direct

technical effect of DT, but also pay attention to the carbon

reduction effect produced by the technology diffusion process.

On the basis of defining the concept of DT, an index system for

measuring DT is constructed, and the panel data of 276 cities in

China from 2011 to 2020 are used to further explore the impact

of DT on carbon emissions and its mechanism from the

perspective of technology diffusion, which can provide

theoretical support and a practical basis for China to achieve

the goal of carbon peaking and carbon neutrality.

This paper has the following research objectives:
(i) Establishing an evaluation index system for DT;

(ii) Estimating the impact of DT on CE based on measuring the

level of carbon emissions at the city level;

(iii) Based on technology diffusion theory, to identify the

mechanisms by which DT affect urban CE, which

include potential direct and indirect mechanisms, among

which, identify the important mechanisms of virtual

agglomeration.
FIGURE 1

Global per capita GDP and carbon emission concentration from
1990 to 2019. Data Source: compiled by the author based on the
open data of the World Bank. https://data.worldbank.org.cn/
indicator?tab=all.
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2 Literature review

2.1 Estimation study of CE

Since no exact data on carbon emissions are published, many

scholars have done a lot of research on carbon emission

measurement, and various measurement methods have been

derived for different research objects and data. Currently, the

three mainstream methods are the input–output method, which is

applicable to calculate CE from single products or projects, the life-

cycle evaluation method, which calculates CE from different

industries, and the CO2 emission factor method, which calculates

CE at national, provincial and regional levels.

The input–output approach is to develop input–output tables to

reflect the relationship between various sectors of the economic

system, which can track direct and indirect energy use and CE of

product production. For example, Zhang et al. (2021) combined the

input–output method with the carbon emission factor method to

measure the CE of 30 provinces and eight industries in China in

2018, and found that the thermal power generation and industrial

emissions far exceeded the remaining six industries. The input–

output method is comprehensive, but the method is less time-

sensitive because input–output tables are compiled every five years

in China. The carbon emission factor method involves summing the

carbon emission factors of each energy source based on the product

of the corresponding energy consumption to obtain the CE (Yang

et al., 2021; Li and Wang, 2022). Alam et al. (2012) based on the

IPCC method, calculated the relationship between energy

consumption, electricity consumption, carbon emissions and

economic growth; Chang et al. (2022) studied the changes in

carbon emissions from 2003 to 2017 through the consumption

side in China’s national and regional power sectors using the log-

average index (LMDI) model and estimated the carbon emissions

from the power sector in each region through the production and

consumption accounting principles, using two-factor ANOVA and

one-factor ANOVA. The differences in regional power sector

carbon emissions were compared by two principles; Feng et al.

(2022) used the annual panel data of China from 1997 to 2017 to

first analyze the spatial and temporal evolution process of CE, and

then developed a spatial Durbin model and partial derivative

method based on direct, indirect and total EKC, which yielded a

positive spatial autocorrelation of CE with the center of gravity

shifting westward. However, this method is difficult to calculate CE

in the absence of carbon emission factor data, and the carbon

emission factors may be affected by the level of technology,

production status, energy use and process with large uncertainties.

The life cycle approach is used to evaluate carbon emissions over the

product life cycle, measuring the CE of a product from the time of

resource extraction until the end of product disposal (Luo et al.,

2022). This method can account for the direct or implied CE of a

product, process, or production activity, but accounting is costly and

time-consuming. Gustavsson et al. (2010) analyzed the carbon

emissions of an eight-story wood-frame apartment building using

the life cycle evaluation method and found that building operations

used the largest share of life cycle energy use, and this share

increased as the life of the building increasingly.
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2.2 Study on the influencing factors of CE

Regarding the factors influencing CE, in terms of economic

growth, Grossman and Krueger (1991) put forward the

Environmental Kuznets Curve (EKC), which shows an inverted

U-shaped relationship between economic growth and

environmental pollution. However, Dogan and Turkekul (2016)

showed that the increase in real output in the United States

improved the ecological environment, and this finding does not

support the EKC hypothesis. Wang et al. (2013) used the extended

STIRPAT model to show that factors such as population, level of

urbanization, level of industrialization, and level of services lead to

an increase in CE, while technological progress, energy

consumption structure, and degree of foreign trade leads to a

decrease in CE. Recent studies suggest that the digital economy is

also an important factor influencing CE (Liao et al., 2023). Kong

et al. (2022) used the logarithmic mean divisia index model (LMDI)

to analyze the influencing factors of China’s carbon emissions.

According to the empirical results, in the long run, technological

innovation is essential for China to meet its carbon reduction

commitments. Slower economic growth will delay the peak in

carbon emissions and increase carbon intensity. Optimizing the

industrial structure, reducing the size of the population, and

adjusting the energy structure can reduce China’s peak and

carbon emissions, but the effect is negligible. Inah et al. (2022)

studied the trend of CE and its reduction potential in the

manufacturing sector in Nigeria from 2010 to 2020. They

decomposed the changes in CE into pre-determined factors using

the LMDI approach and concluded that energy intensity and

equity-funded production were the main drivers of increased

emissions, while productive capacity utilization reduced

emissions; Yılmaz (2023) applied Granger causality tests and

cointegration methods to explore the role of trade openness and

energy use on CE in 30 countries in sub-Saharan Africa, showing

that energy use has a significant long-term effect on the increase of

CE while there is a positive bivariate causality between trade

openness and CE.
2.3 Study on the impact of digital
technology on CE

With the disruptive changes brought by DT and the rise of

digital economy, more and more scholars have paid attention to the

environmental effects brought by DT, and most of the studies have

pointed out that DT plays a pivotal role in the environment, but

there are different findings on the specific effects.

The positive effects are reflected in the following: At the macro

level, Lahouel et al. (2021) based on Tunisia 1970–2018, pointed out

that ICT technology is a key factor in mitigating climate change by

reducing CE while promoting economic growth. Shahnazi and

Shabani (2019) studied further stated that ICT technologies also

have spillover effects, as local ICT technologies can effectively boost

the demand for ICT products and services in neighboring regions

while reducing the demand for traditional products, thus

contributing to the reduction of CO2 emission levels in
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neighboring regions. At the industry level, the development of DT

promotes digital industrialization, and digital technological

innovation also promotes the continued emergence of green

recycling and recovery models such as idle exchange, shared

transportation, and waste recycling, as well as accelerates the

breakthrough and application of renewable energy technologies,

thereby reducing CE (Wang et al., 2021). At the micro level, Zhang

(2023) pointed out that DT can facilitate the development of

enterprise information and the application of new technologies to

improve resource utilization, reduce environmental pollution, and

improve the environment to some extent; DT also contribute to

low-carbon formation through system integration, demand

substitution for high-emitting products such as coal, and

optimization of resource management and decision-making

processes (Zhu et al., 2022).

The opposite opinion is that although DT advances are closely

related to the solution of environmental pollution, the widespread

use of DT inevitably leads to corresponding negative impacts. For

example, Al-Mulali and Sab (2012) conducted an empirical analysis

with data from 30 sub-Saharan African countries and found that

under the influence of DT, energy consumption played an

important role in the economic growth and financial

development of the economies investigated, but the increased

energy consumption also had high pollution consequences.

Noussan and Tagliapietra (2020) assessed the impact of

transportation digitization on energy consumption and found

that the application of DT to transportation will increase the

demand for transportation and expand the scale of transportation

trips, resulting in more energy consumption. Dong et al. (2022)

used data on the change and intensity of CE for 15 countries

worldwide from 2000 to 2014 and found that the ICT industry is an

important industry contributing to carbon emissions, where the

manufacturing of computer, electronic and optical products

accounted for 82.83% of global ICT implied CE.

There are also studies found a non-linear relationship between

DT and CE. Li et al. (2021) introduced DT as a technological

advancement into the Solow growth model and use fixed effects

model to test empirically based on global panel data for 190

countries from 2005 to 2016, and the study found that there is an

inverse relationship between CE and DT have an inverted U-shaped

relationship, and argued that this inverted U-shaped relationship

validates the EKC hypothesis. Li and Wang8 introduced digital

factors as endogenous factors promoting technological progress

into the production function, and study shows an inverted U-

shaped relationship between DT and carbon dioxide emissions.
2.4 Research gap

In conclusion, there is no consistent answer regarding the

specific impact of DT on CE, which may stem from differences in

the selection of proxy variables for DT on the one hand, which are

multidimensional and a combination of information, computing,

communication, and connectivity technologies (Bharadwaj et al.,

2013) and differences in carbon emission measurement methods on

the other hand. In addition, the results of the study may have been
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influenced by regional heterogeneity. For example, estimates based

on developed countries may differ from those in emerging

countries, where DT is still in a period of rapid development;

estimates should also differ in regions where environmental

incentives have been adopted, where DT is more likely to

promote (Akcigit et al., 2018).

At the same time, the discussion of the mechanisms by which

DT affect CE is very inadequate. Existing studies are mainly based

on the EKC hypothesis proposed by Grossman and Krueger (1991),

which summarizes the mechanism of DT to reduce carbon

emissions as technology effect and structural effect, such as Chen

et al. (2023) and Wang H. et al., (2023), which identify the

mechanism of green technological innovation or industrial

structure upgrading; or summarizes the mechanism of DT to

increase CE is summarized as the scale effect, i.e., DT makes

enterprises improve production efficiency and expand production

scale, which in turn increases carbon emissions, such as Zhang J.

et al. (2022) and Li and Wang (2022). However, in fact, there are

other mechanisms worth discussing for the effect of DT on CE,

which is important for enriching the study of DT effects on CE and

proposing the optimization path of CE in the digital economy era.

However, these discussions are all based on the impact of the

development of DT itself on carbon emission reduction, and pay

little attention to the diffusion of DT. In fact, the diffusion process of

DT also has an important impact on carbon emission reduction,

especially in the spatial change of industrial characteristics, which is

very important for us to identify the mechanism of DT affecting

carbon emission reduction. Based on the multidimensional

definition of spatial agglomeration, this study is of great value in

constructing the measurement index system of spatial

agglomeration, discussing the impact of spatial agglomeration on

urban carbon emission, and innovatively identifying the virtual

agglomeration mechanism from the process of technology diffusion.
3 Theoretical mechanism and
research hypothesis

Technology diffusion refers to the widespread and large-scale

imitation and adoption of innovative outcomes after technological

innovation (Tirole, 1988). The theory of technology diffusion was

first proposed by American sociologist Everett M. Rogers in 1962

and was elaborated in his classic work, Diffusion of Innovations.

Rogers (1962) discussed the behavioral patterns and characteristics

of different types of individuals, such as innovators, early adopters,

early majority, late majority, and laggards, in accepting and

adopting new technologies. He also explored the factors and

mechanisms that influence technology diffusion, providing an

important intellectual foundation for subsequent research and

practice. Subsequently, the theory of technology diffusion has

been widely applied and developed, becoming an important tool

and theoretical framework for studying social transformation,

technological innovation, and market promotion.

As a new technology, DT can change existing high-energy

production methods and factor structures in multiple aspects,

achieving decarbonization effects, which is one of the direct
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impacts of technology. On the other hand, DT is a typical general-

purpose technology, which can also trigger imitation and

innovation in other fields during the diffusion process: from the

perspective of enterprises, it can stimulate them to improve energy

efficiency and conduct environmentally-friendly green innovation

based on digital technology innovation, thereby reducing urban

carbon emissions; from an external perspective, knowledge

spillovers brought about by the diffusion of DT will promote the

optimization of factor allocation within a spatial range, thereby

having a significant impact on urban carbon emissions reduction.

Based on this framework, the theoretical logic of this paper is

illustrated in Figure 2.
3.1 Direct impact of digital
technology on CE

The main material carriers of DT are the Internet, AI and

Quantum Computing and other high-tech services, which can

facilitate faster information transfer and break the “data islands”

formed by information asymmetry, therefore promoting the

rational distribution of resources and energy, improving total

factor productivity and helping to reduce CE. The purpose of

promoting the construction of new digital infrastructure is to

open the era of industry Internet, drive the digital transformation

of transportation, industry and energy, and empower the green

digital economy. DT can promote energy optimization, cost

optimization, risk foresight and decision control in traditional

industries, and overall realize energy saving and cost reduction as

well as efficiency and quality improvement (Shen and Zhang, 2023).

Firstly, the new generation of DT provides new solutions

for industrial green transformation and helps traditional

manufacturing industries to “jump out of the factory” to develop

green production. DT can be widely used in the industrial field of

energy-saving transformation, material saving, accurate matching

of supply and demand, logistics line optimization, material

recycling and other production and circulation links. More and

more industrial enterprises are using internet of things (IoT) to

integrate sensors and devices into various environmental

monitoring systems, and using DT such as supercomputers and

cloud computing to integrate IoT in the environmental field to
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achieve environmental management and decision-making in a

more refined and dynamic way. This not only helps to optimize

the ultimate carbon handling technology for enterprises, but also

helps to accurately measure the carbon footprint and thus track and

monitor CE. For example, the Industrial Internet Identifier resolves

the key issues of data reliability and data traceability in the field of

carbon management, helping enterprises to set, adjust and achieve

carbon emission targets more accurately. In addition to promoting

the greening of industrial production, DT will also empower carbon

management in the industrial sector. The integration of DT

innovation management system through data resources provides

strong support for building a powerful, extensive and accurate

carbon data service platform and digital network system, which

greatly reduces the cost of carbon information retrieval,

classification and calculation, and improves the government’s

information sharing and intelligent management of carbon

emissions, carbon sinks and other data resources. Improving the

carbon trading market through DT helps eliminate the

discrepancies between verified data and carbon emissions

reported by enterprises on their own, enabling ecological and

environmental departments to accurately and efficiently make

carbon emission quotas among enterprises, while allowing

enterprises with higher energy use efficiency to sell their excess

emission rights to other enterprises, and it is DT that has developed

carbon trading to encourage enterprises to take the initiative in

energy saving and emission reduction.

Secondly, the carbon reduction effect of DT is reflected as a

form of creative destruction, which can stimulate enterprises to

GTI. DT can effectively break the path dependence of enterprise

technological innovation, promote technological innovation in the

direction of green, low-carbon, energy-saving and emission-

reducing development and progress, which helps to enhance the

level of GTI and promote the transformation of low-carbon

economy. DT can reduce the transaction cost and information

retrieval, effectively break the barriers to the flow of production

factors between regions, therefore accelerating the flow of factors

and providing multi-source knowledge for GTI. It can provide

financial support for enterprise R&D by improving the availability

of innovation and financial resources; the use of DT in the financial

sector can also reduce the cost and threshold of financial services

and ease the financing cost of enterprise innovation in many ways
FIGURE 2

The theoretical framework of the paper.
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(Aghion et al., 2021). On the other hand, DT is conducive to

reducing search and transaction costs and therefore breaking the

boundaries of enterprises, promoting frequent learning exchanges

and knowledge sharing among R&D workers (Akcigit et al., 2018),

and facilitating enterprises to accelerate the pace by improving the

level of innovation cooperation. The carbon reduction effect

brought about by GTI is reflected in the fact that innovative

technologies such as clean production technologies and pollutant

control technologies in GTI will help governments, enterprises, and

residents to achieve efficient use of energy, therefore reducing the

CE generated per unit of energy demand or increasing the economic

benefits generated per unit of energy demand. For example, the

development of new energy public transportation systems will

improve the energy efficiency of public transportation by using

cleaner fuels, especially in congested urban areas. On the other

hand, the economic effects of GTI, while not having a direct impact

on CE, can help maintain a steady growth in regional GDP by

strengthening the technological frontier of society as a whole.

Thirdly, the carbon reduction effect of DT is also reflected in its

ability to improve energy efficiency as a technological innovation.

The application of DT can promote further integration of ICT into

the real economy, accelerate R&D, optimize resource allocation,

and improve energy efficiency. Data as a new factor can reduce the

use of other factors, such as developing the value of data elements

and optimizing the efficiency of factor allocation both to improve

energy efficiency. A sharing economy based on DT can also improve

energy trade and resource allocation efficiency by facilitating

specific trade among energy market participants through

multilateral platforms. Sharing platforms can match supply and

demand data through big data, cloud computing and other

technologies, optimize resource allocation through scale

operations, reduce vehicle idling rates, reduce fuel consumption

and lower CE. DT is also a reliable backing for renewable energy. At

this stage, China’s economic development process of energy

demand is still increasing, subject to the influence of resource

endowment characteristics, China’s energy consumption products

for a long time to coal-based. New energy applications face

problems such as high operation and maintenance costs,

difficulties in solving them, and unstable production, while DT

can help the innovative development of new energy technologies,

i.e. DT can help the change of new energy production management

and marketing model, change the production chain and supply

chain of new energy, and reduce the cost of operation and

maintenance of new energy enterprises. In addition, the use of

DT can also reduce the loss of new energy in the process of

transmission, conversion and storage, achieve efficient allocation

of energy through intelligent scheduling, and maximize energy

efficiency. The application of DT reduces the cost of developing

and using renewable energy and provides technical support for the

large-scale use of renewable energy. In addition, through the control

and restraint of DT informatization and intelligence, it can

significantly reduce unnecessary energy consumption in economic

activities and help solve the problems of energy crisis and

environmental pollution. DT such as AI and deep learning can

help energy producers achieve real-time monitoring and parameter

control of the production process, thus improving the efficiency of
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energy production, energy transportation, energy distribution and

energy storage, reducing the energy consumption of the production

process and improving total factor energy efficiency. At the energy

trading end, the platform economy based on DT can effectively

solve the problem of information asymmetry between supply and

demand, reduce the time inequality between supply and demand,

and new generation DT such as LoT, 5G, and big data optimize the

signal transmission process between energy supply and demand,

reducing avoidable energy losses in the energy trade process.

Moreover, higher energy efficiency means accomplishing the same

tasks or production activities with less energy consumption. A

considerable number of study has proven that when energy

efficiency improves, the energy consumption required for the

same amount of economic output decreases, leading to a

reduction in carbon emissions (Hens et al., 2001; Hasanbeigi

et al., 2013; Tajudeen et al., 2018; Na et al., 2022). The

improvement of energy efficiency also implies the optimization of

the factor structure within enterprises. As intermediate producers,

these enterprises will reduce the procurement of high-emission

energy and shift towards cleaner and lower-carbon renewable

energy sources (Özbuğday and Erbas, 2015). This transition will

transmit through the supply chain to other businesses, thereby

driving the entire industry towards a green transformation and

promoting carbon emissions reduction. Therefore, there exists a

theoretical logic that digital technologies can exert a

decarbonization effect by enhancing energy efficiency.

Based on the above analysis, this paper proposes the following

research hypothesis:

H1: DT can reduce CE emissions.

H2: DT can reduce CE through mechanisms of improving EE and

promoting GTI.
3.2 The mechanism of virtual
agglomeration of industries

As Chandler (1962) points out, “The industrial revolution is

inevitably accompanied by organizational change.” The history of

industry and technology also shows that every major technological

change leads to a major change in the organization of production.

The revolution in information technology has led to a spatial

extension of the production and value chains of enterprises.

Virtual agglomeration is based on the integration of DT domains,

and production factors are clustered in virtual space with resource

allocation optimization, empowering traditional cluster networks

and eventually forming a borderless production network (Wang

and Liang, 2022). It not only has the function of geographic

agglomeration, but also has unique advantages in optimizing

resource allocation and sharing knowledge and information

interaction. The impact of industrial agglomeration on technology

diffusion can be described by the “borehole model”, which means

that the process of industrial agglomeration accelerates the

spontaneous flow of technology and other resources and

promotes industrial technology diffusion.

According to Schumpeter’s (1912) innovation theory, the

innovation activity of enterprises is an important driving force for
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economic restructuring and transformation of development mode.

The mechanism of “creative destruction” caused by technological

progress can help improve production efficiency and optimize

industrial structure, laying a solid industrial and technological

foundation for energy saving and emission reduction. Generally

speaking, the labor pool, intermediate input sharing and knowledge

spillover in industrial agglomeration are indispensable drivers of

scale and technology effects (Hou and Zhou, 2023). For example,

shared labor pools can deepen the division of labor specialization

and improve the fit between the agglomeration and the labor force

to improve production efficiency and resource utilization, and

reduce energy consumption and carbon emissions. Upstream and

downstream industry chain integration is conducive to saving

production costs for agglomeration enterprises, promoting

circular economy and achieving green economic growth.

With the development of a new generation of ICT, new

infrastructures, as physical support for industrial digitization

record the traces of economic activities such as production,

exchange as well as flow of various resources in the physical space

inside the cyberspace, break through the dependence of traditional

industrial geographic agglomeration on spatial location, and

promote the formation of a new organizational form of industrial

virtual agglomeration based on close coupling between the real and

the virtual. On the one hand, DT breaks the time and space

constraints (Goldfarb and Tucker, 2019), reduces transaction

costs, promotes the circulation of factors and resources, and

provides a platform for clean industries to agglomerate in virtual

space. The development of DT significantly reduces transaction

costs and improves information asymmetry, builds a platform for

energy trading and the interconnection of factors between regions

and enterprises, and promotes the effective flow and rational

allocation of various factors of production, such as knowledge,

labor, and energy, in the virtual space. A typical example is the one-

way bidding (online trading) in the carbon trading market, which

promotes the clustering of emission reduction enterprises in the

virtual space to sell excess allowances or produce CERs with higher

efficiency, and emission control enterprises can also find more

suitable trading partners on the virtual platform, which is

supported by the development of DT such as Blockchain. DT also

builds a platform for knowledge spillovers. DT promotes the rapid

flow of data and knowledge, which can facilitate the subjects to

break the boundaries of enterprises and form clusters in the virtual

space; through the interaction with the star enterprises in the virtual

space, it accelerates the knowledge dissemination and enhances the

scale of virtual clustering and knowledge spillover (Chen

et al., 2023).

The green transformation of a certain enterprise in the virtual

space will form a knowledge spillover effect on other enterprises,

therefore promoting the green transformation and industrial

structure upgrading. For example, the China Industrial Enterprise

Energy Control Center, by establishing a data exchange and fusion

interface, realizes the sharing of enterprise data resources and

information fusion, helps the efficient use of energy big data,

promotes the virtual agglomeration of using energy enterprises,

and also promotes the development of carbon trading, carbon

finance and other industries. DT will also promote further
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specialization division of labor and advance the ICT industry in

virtual space clustering, forming the so-called specialization

clustering. As DT is a modular hierarchical architecture, the

development of a certain module requires the cooperation of

other modules. In order to reduce the cost of communication and

cooperation between modules, each module can form a virtual

agglomeration effect in the form of interface. virtual agglomeration

of ICT industry can bring into play the scale effect of digital

industry, so that industrial enterprises can obtain the DT they

need to introduce at a lower search cost and reduce the fixed capital

investment of using DT for green transformation. When virtual

agglomeration reduces the technology investment cost for green

transformation of industrial enterprises, it can further expand the

scale of agglomeration by exerting Metcalfe effect, and even

promote the transformation of virtual agglomeration to physical

agglomeration. At the same time, according to Krugman’s (1991)

opinion, industrial agglomeration has technology diffusion effect,

and there is a self-reinforcing relationship between the two that is

interlinked and mutually reinforcing. Virtual agglomeration also

has the same effect, that is, DT on the one hand enhances the level of

virtual agglomeration; on the other hand, the development of

virtual agglomeration can accelerate the speed of technology

diffusion, promote the application and dissemination of DT in

industrial enterprises, break the path dependence of enterprise

green innovation, and thus enhance the enthusiasm of enterprise

green innovation and promote energy conservation and emission

reduction. Accordingly, this paper proposes research hypothesis 3:

H3: DT can reduce CE by increasing the virtual agglomeration

of industries.
4 Research design and data sources

4.1 Variable setting

4.1.1 Explained variable
Carbon emission (CE). CE is measured using carbon emission

intensity per unit of GDP. Given the availability of data related to

CE at the city level, this paper uses the apparent emission

accounting method to measure carbon dioxide emissions. In

general, urban CE include both CE from direct energy

consumption, such as gas and LPG, and CE from electrical and

thermal energy consumption. Therefore, the carbon sources for

measuring carbon emissions at the city level in this paper are mainly

four types of energy consumption: natural gas, lp-gas (LPG), coal

electricity and thermal energy. Drawing on the approaches of

existing studies (Shan et al., 2022; Jing et al., 2023), the basic

equation for carbon accounting provided by the IPCC 2006

Guidelines for National Greenhouse Gas Inventories is used to

obtain the total CE of cities by multiplying the amount of activities

that result in carbon emissions from production or consumption

with the CO2 emission conversion factor (IPCC, 2006).

The direct energy types include LPG and natural gas. The

measurement process is to calculate the CE from direct energy

consumption of the city with the carbon conversion factors

published by the IPCC (2006). Indirect energy consumption is
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electrical energy and thermal energy, where the CE from electrical

energy consumption are directly calculated using the corresponding

carbon conversion factors, while thermal energy is supplied in

different ways and most of them use raw coal for heating. In this

paper, according to Wu and Guo (2016), the thermal efficiency

value is chosen as 70% and the average low level heat of raw coal is

chosen as 20908 kJ/kg, and then the CE from heat supply are first

converted into the required amount of raw coal according to the

total amount of heat supply, and then calculated according to the

carbon conversion factor of raw coal published by the IPCC (2006).

Finally, CE from direct energy consumption and indirect energy

consumption were summed up to get the total CE of each city.

4.1.2 Core explanatory variable
Digital technology (DT). Cloud computing, artificial intelligence,

big data, the Internet of Things, and blockchain technology form

the fundamental support of digital technology and provide solid

technical support for various digital application scenarios. Digital

application is a specific item of technology in the economy and

society, which can effectively reflect the integration degree of digital

technology with physical enterprises and daily life (Liu et al., 2022).

Digital activities represented by digital industry sector, digital

service application and e-commerce are different stages in the era

of digital economy (Bukht and Heeks, 2018). The digital industry

represents the development direction and latest achievements of the

new generation of digital industry sectors, reflecting the

industrialization characteristics of the digital economy, including

the proportion of computer services and software employees and

the level of digitalization of enterprises. Similar to the telephone

penetration rate symbolizing the service subject of digital

applications, digital finance is the concrete manifestation of

digital platforms and digital services. The methods used in

existing studies to measure the degree of digital technology are

mainly the compilation of relevant indices, the construction of

satellite accounts, and the accounting of value added. The

compilation of relevant indices compilation is widely used in

studying the social effects of digital economy by virtue of its high

data availability, breadth of content coverage, and accounting

treatment of indicators, which is more advantageous (Zhao et al.,

2020; Ma et al., 2022; Zhang K. et al., 2022; Zhao et al., 2023).

According to the published articles, we use the comprehensive
Frontiers in Ecology and Evolution 08
index evaluation method to measure the level of digital technology

development at the city level (Chen et al., 2022; Wang J. et al., 2023;

Liu et al., 2022; Vărzaru, 2022; Chen Y. et al., 2023; Wang H. et al.,

2023). Combining the availability of city-level data, this paper

measures the comprehensive development level of digital

technology in each city from five aspects: broadband Internet

foundation, mobile Internet foundation, information industry

factor inputs, telecommunication industry output, and digital

inclusive finance. To achieve comparability of the comprehensive

index across periods, this paper uses the global factor analysis

method to calculate the DT development level. This method can

well cover all characteristics of the original data, avoiding the

subjectivity caused by artificially determined weights, and

eliminating the bias of results caused by overlapping information

of indicators. The evaluation index system of DT and its description

are shown in Table 1.

4.1.3 Mediating variables
Energy efficiency (EE). Influenced by the characteristics of

resource endowment, most of China’s urban energy consumption

products are mainly coal for a long time, and a large amount of

energy consumption will inevitably be accompanied by the

generation of a large amount of carbon emissions. Improving the

EE use is one of the important ways to achieve carbon emission

reduction. If we can reduce energy consumption and improve

energy efficiency and utilization rate of renewable energy with the

same output, we will be able to effectively mitigate the rising trend of

carbon emission intensity. In this paper, the energy intensity of each

prefecture-level city is used to measure its energy efficiency, which is

the energy consumption per unit of GDP. Lower values of this

variable indicate higher energy efficiency.

Green technological innovation (GTI). GTI is the general term

for low or even zero pollution technologies, processes and products

that follow ecological principles and ecological economic laws, save

resources and energy, avoid, eliminate or mitigate ecological

pollution and damage, and minimize negative ecological effects,

and are innovative technologies that help save resources, improve

energy efficiency, prevent and control pollution, and achieve

sustainable development, mainly including innovative

technologies in alternative energy, environmental materials,

energy conservation and emission reduction, pollution. It mainly
TABLE 1 Digital technology evaluation index system.

Indicators Secondary
Indicators Indicator Description

DT

Broadband Internet
Foundation

Internet broadband access subscribers per 100 people

Mobile Internet
Foundation

Number of cell phone subscribers per 100 people

Information industry
factor input

The proportion of the number of employees in the information transmission, computer services and software industry to
the total number of employees in urban units

Telecommunications
industry output

Telecommunications business income per capita

Digital Inclusive Finance Peking University Total Digital Inclusive Finance Index
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includes innovative technologies in alternative energy,

environmental materials, energy conservation and emission

reduction, pollution control and management, recycling, etc.

R&D investment as a sunk cost is not an output efficiency, and

the use of this indicator to measure the potential innovation

capability of enterprises lacks relevance and precision, while the

number of patents can visually reflect the technological innovation

capability of enterprises (Fang and Na, 2020). Green invention

patents are breakthrough innovations in products or processes that

help enterprises achieve energy saving and carbon reduction goals.

In this paper, the number of invention patents and utility patents

related to environmental protection applied by enterprises in each

prefecture-level city is selected to measure GTI.

Virtual agglomeration (VA). VA among enterprises is the

process of system coordination. The geographical agglomeration

and virtual agglomeration of upstream and downstream associated

enterprises in the industrial chain have intertwined coupling

relationship, which is a cyclic mechanism of mutual promotion

and symbiosis. The important realization carrier of virtual

agglomeration is Internet and information technology. Although

the digital content and network services of enterprises are

themselves realized through the cloud, the digital content and

services formed by virtual agglomeration are essentially the

concrete results of resource input and output, not virtual. The

digital services are realized through the medium of products such as

big data, expertise, creative design, and blockchain. In this paper, we

use the locational entropy method to calculate the virtual

agglomeration of industries in each city based on the idea of

existing literature (Zhang and Ru, 2021). In general, the more

people employed in a particular industry in a region means the

more developed the industry is. Therefore, this paper uses

information transmission, computer service and software

employees as important indicators of virtual agglomeration and

uses the locational entropy method to measure them. Because

virtual agglomeration is less restricted by geographic space, it will

often have spillover effects on surrounding cities through virtual

network space. However, the traditional industries integrated into

the virtual agglomeration platform are the foundation of the cluster,

so the spillover effects also have spatial “distance attenuation.” By

using the potential market model and adding inverse geographical

distance weight to the location entropy method, virtual

agglomeration can be better distinguished from traditional

agglomeration (Liu et al., 2023). The calculation method of VA is

as follows:

VAit =oi
ICTit

Totalit
= ICTt

Totalt

� �
d−1ij (1)

In Eq. (1), d−1ij  is the weight of the spherical geographical

distance between city i and city j, calculated by GIS software. IC

Tit is the number of people employed in the information

transmission, computer services and software industries of City i

in year t; Toatlit is the total number of jobs in city i in year t; ICTt is

the total number of people employed nationwide in the information

transmission, computer services and software industries; Totalt is

the total number of jobs in all industries nationwide. Finally, in

order to eliminate the causal relationship between industries and
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the development of science and technology, this study calculated the

direct consumption coefficient of digital factors of each industry at

the national level based on the data of the OECD input–output table

and used the direct consumption coefficient of digital factors at the

industry level to match with the micro-data of the first national

economic census at the industry level. Then, the proportion of

industry output in each city during the initial period of the study

sample is taken as the weight, and the digital service input at the

industry level is weighted at the city level.

4.1.4 Control variables
Since there are many external factors affecting CE, according to

published articles on the impact of carbon reduction (Chen et al.,

2016; Han et al., 2017; Guo et al., 2022; Xu et al., 2022; Luo et al.,

2023; Shen and Yang, 2023), six control variables were selected to

minimize the problem of bias in the model fitting results.

Population density. Energy consumption increases as

population increases, which brings about an increase in overall

carbon emissions. In this paper, the population density is measured

by dividing the year-end population of each prefecture-level city by

the year-end administrative area of that prefecture-level city.

Level of financial development. Credit supply can exacerbate

energy consumption by stimulating consumption and industrial

investment, which in turn increases CE. But at the same time,

finance can reduce CE by supporting technological innovation and

promoting the transformation of traditional industries into cleaner

ones. In this paper, the total financial deposits and loans of each

prefecture-level city in the past years are used to measure the level of

financial development of a city.

Foreign direct investment (FDI). FDI is beneficial to both

economic growth and the introduction of carbon-reducing

technologies and equipment to drive local enterprises to innovate

on their own and improve energy efficiency, thereby reducing

carbon emissions. However, the purpose of FDI into the host

country may be to transfer the high energy consumption and

pollution-intensive industrial enterprises in the home country,

and there is a “pollution sanctuary” effect, which aggravates

carbon emissions. In this paper, the total amount of actual FDI

utilized by each prefecture-level city is used to measure the

openness of a city.

Government spending. The tangible hand of the government is

an important channel to influence economic development and

ecological environment. Local governments will make economic

construction a key point of fiscal spending to attract enterprises to

invest and set up factories locally by vigorously building

infrastructure, lowering or exempting taxes and fees, and

reducing environmental regulation. Local governments’ eagerness

to attract investment may weaken regional environmental quality

standards and indirectly connive at enterprises’ CE. In this paper,

we measure the level of regional government spending by the share

of local fiscal spending in urban GDP.

Infrastructure. Driven by the demand for infrastructure

development, emerging economies have played an important role

in increasing global production capacity in recent years, and their

carbon emissions have increased rapidly, becoming the main driver

of the increase in CE from major energy infrastructure.
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Infrastructure development in cities will play an important role in

promoting zero-carbon energy development as a key technology

vehicle for achieving carbon neutrality goals. This paper uses road

area per capita to measure the level of infrastructure in cities.

Industrial structure. According to the new structuralist

economic theory, the industrial structure is both a “resource

converter” of various factor inputs and outputs and an

“environmental controller” of various pollutant types and

quantities (Yu, 2017). The type of combination and intensity of

adjustment of factors in different sectors within an industry

determine the economic efficiency and energy use efficiency of the

industry, which has an indirect impact on resource consumption

and environmental pollution. In this paper, the ratio of regional

tertiary industry output value to secondary industry output value is

used to measure the industrial structure of cities.
4.2 Econometric model

Based on the aforementioned theoretical assumptions, the

following econometric model is constructed to test the direct

impact of DT on carbon emissions:

CEit = a0 + a1DTit +oa2Xit + ni + mt + eit (2)

In Eq. (2), the subscripts i and t are city individuals and time,

respectively, and X denotes the set of information on a series of

control variables. ni denotes individual fixed effects, mt denotes the

time fixed effects, eit denotes the error term that obeys the white

noise process, a0 denotes the constant term, and a1 and a2 are the

regression coefficients of digital technology and control variables,

respectively, where the coefficients of significance and sign direction

are the focus of this paper. If the sign is negative and passes the

significance test at least at the 10% level, it indicates that hypothesis

H1 is valid and DT can reduce CE. On the basis of Eq. (2),

combined with the method and operation process of the

mediating effect test recommended by Jiang (2022), the article

constructs the following three models to test whether research

hypotheses H2 and H3 are valid:

EEit = b0 + b1DTit +ob2Xit + ni + mt + eit (3)

GTIit = c0 + c1DTit +oc2Xit + ni + mt + eit (4)

VAit = d0 + d1DTit +od2Xit + ni + mt + eit (5)

In Eq. (3) to (5), the b0,   c0, d0  are the constant terms, b1, c1, d1 

denote the numerical technical regression coefficients, and b2, c2, d2
denote the regression coefficients of the control variables, and the

meanings of the remaining symbols and letters remain the same as in

Eq. (2).
4.3 Data sources

Following the principles of data avai labil ity and

comparability, the article eliminates the sample of cities with
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more changes in city level and missing values, such as Bijie,

Tongren, Laiwu, and Chaohu, which are affected by the policy of

“abolishing counties and establishing districts”, and the cities of

Altay, Riqaze, and Linzhi, which have serious missing data, and

finally selects the panel data of 276 cities in China from 2011 to

2020 as the statistical sample. The panel data of 276 cities in

China from 2011 to 2020 were selected as the statistical sample.

The original source of each data item is various statistical

yearbooks published by the National Bureau of Statistics. The

data on energy consumption, electricity consumption and

transportation for calculating carbon emissions and their

conversion factors are mainly derived from the China Urban

Statistical Yearbook, China Statistical Yearbook, China Urban

Construction Statistical Yearbook, IPCC 2006 Guidelines for

National Greenhouse Gas Inventories, and China Regional Grid

Baseline Emission Factor Report. The data for measuring DT-

related indicators are derived from the Digital Inclusive Finance

Index of Peking University and the China Urban Statistical

Yearbook. The data for the remaining indicators are mainly

derived from the China City Statistical Yearbook, the China

Regional Economic Statistical Yearbook, the National Economic

and Social Development Statistical Bulletin of each city, and the

Bureau of Statistics, the China Academy of Information and

Communication Research, and the China National Intellectual

Property Administration (CNIPA). Very few missing values are

filled in using the linear interpolation method of yes. In addition,

to reduce sample fluctuations, all variables are logarithmized in

this paper. The descriptive statistical analysis of each variable is

shown in Table 2.
5 Empirical analysis

5.1 Baseline regression

Due to the acceleration of global digital transformation and the

growth of demand for computing power, as well as the broader

application of 5G, the vigorous development of information

infrastructure, and the growth of energy demand and carbon

emissions, the energy consumption of information and

communication industry cannot be ignored. It is urgent to take

the road of green and low-carbon development. To verify whether

DT can reduce CE, the impact of DT on city-level CE is estimated

based on 2,760 observations, combining research hypothesis H1

and Eq. (2). According to the results of the F-tests and Hausman

tests, the p-values of both significantly reject the original hypothesis,

indicating that the fixed effects model is most suitable for the sample

data in this paper. In order to eliminate possible estimation bias

caused by time and region differences, the two-way fixed effects

model is used as the baseline regression. In addition, the article

uses the Driscoll-Kraay method to adjust the standard errors to

alleviate the heteroskedasticity, cross-sectional correlation, and

autocorrelation. The results are shown in Table 3. Among them,

columns (1) and (3) are estimated from the model without control

variables; columns (2) and (4) are estimated from the model with

control variables.
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As can be seen from Table 3, the results of column (1) without

any control variables show that the regression coefficient of DT on

CE is -0.510 and significant at the 10% level, indicating that DT can

reduce CE. The results of column (4) with control variables, time

fixed effects and individual fixed effects show that the regression

coefficient of DT on CE is −0.44 and significant at the 5% level. The

result is similar to that of published research (Lee et al., 2022; Bai

et al., 2023; Hu et al., 2023), the result of this paper also indicates
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that DT can reduce CE and the findings are robust. Research

hypothesis H1 was verified. At this stage, insufficient

technological innovation, information asymmetry and external

diseconomies of CE are the main blockages in the process of

achieving the dual carbon goal. With the rapid development of

new-generation information technology and Internet technology,

DT evolved from automation can provide information technology

support for the environmental management work of city managers
TABLE 3 Baseline regression results.

Variables (1) (2) (3) (4)

DT
−0.510*
(−1.68)

−0.401
(−1.44)

−0.485*
(−1.97)

−0.448**
(−2.730)

FE
0.069
(0.97)

0.055
(0.75)

0.057
(0.760)

DFL
0.155*
(2.15)

0.139*
(1.94)

0.137*
(2.180)

TI
−0.056***
(−4.30)

−0.050***
(−4.000)

IS
0.111
(1.50)

0.113
(1.680)

FDI
−3.378**
(−3.310)

PD
−0.016
(−0.210)

_cons
−3.320***
(−4.81)

−3.162***
(−4.52)

−s3.162***
(−5.24)

−3.100***
(−6.550)

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 2760 2760 2760 2760

R² 0.5754 0.0746 0.0782 0.0889

F-tests 3.16** 44.63*** 14.96*** 15.04***

Hausman Tests 48.09*** 109.26*** 114.77*** 80.59***
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
TABLE 2 The descriptive statistics of the variables.

Variables Code Mean Std. dev. Min. Max.

Carbon emissions CE −4.557 0.855 −7.650 −0.904

Digital technology DT 2.301 0.059 2.211 2.794

Population Density PD 5.752 0.937 1.629 9.086

Financial Development Level FDL 0.904 0.515 −0.531 3.644

Foreign Direct Investment FDI −5.042 2.634 −23.026 −1.553

Fiscal Expenditure FE −1.638 0.490 −3.126 −0.001

Traffic Infrastructure TI 2.782 0.428 0.314 4.096

Industrial Structure IS −0.095 0.473 −2.175 1.677

Energy Efficiency EE −13.501 0.862 −17.013 −8.236

Green technological innovation GTI 0.181 0.429 0.001 5.101

Virtual Agglomeration VA −0.283 0.304 −1.015 2.839
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and corporate subjects to enhance economic efficiency while taking

into account the ecological environment. Through the digital

platform, enterprises can plan the production process accurately

and control the production process intelligently, optimize the end of

carbon emission management and energy-saving control measures

in real time, which will lead to a significant increase in green total

factor productivity and ultimately realize lean production and cost

reduction. DT, with its timely and convenient data sharing and

information dissemination functions, can effectively eliminate the

problem of incomplete information among enterprises in various

parts of the industry chain, help to weaken or even eliminate the

technical barriers among innovation subjects, and promote the

participation of multiple parties to the research and development

of common technologies and cooperation to achieve GTI and clean

production. Through DT, the enterprise’s capital flow, goods flow,

commercial flow, logistics and other flow space elements are

integrated and summarized in order to guide the flow of limited

green financial resources to the environmentally-friendly high-tech

industries. Most importantly, DT such as artificial intelligence, big

data analysis and digital twin provide arithmetic support and data

foundation for carbon trading cities, enabling accurate

measurement, monitoring, reporting and verification of CE, and

empowering efficient operation of carbon markets and carbon

finance as well as scientific decision-making in urban

ecological sectors.
5.2 Robustness test

To verify the robustness of the baseline regression results, the

article uses four methods.

The first is to replace the core explanatory variable. The study

used two methods to substitute proxy variables for digital

technologies. First is to use the lagged term of CE as explanatory

variable to test the time-lagged effect of DT. The second method

uses the number of digital technology patents filed by listed

companies. Since the IPC information of patents can accurately

depict the technical field characteristics of innovation activities, this

paper combined the Statistical Classification of Digital Economy

and its Core Industries (2021) and the Reference Relation Table of

International Patent Classification and Industry Classification of

National Economy (2018) issued by the National Bureau of

Statistics. To construct the corresponding relationship of “core

industry classification code of digital economy – four-digit code

of national economy industry classification (SIC4) – IPC

Subgroup”, identify the technical field of digital technology

innovation and its corresponding IPC code to identify the digital

technology innovation patents applied by enterprises at the level of

IPC group. Further, from the three dimensions of “enterprise – year

– city,” the digital technology invention patents were summed up to

construct the digital technology innovation measurement index at

the city level. Since Chinese listed companies gradually paid more

attention to the patents on digital technology after 2013, the

number of applications before 2013 was relatively small (Tao

et al., 2023). Therefore, the time window used in this method is

2013–2020.
Frontiers in Ecology and Evolution 12
The second is to add omitted variables. Rapidly advancing

urbanization objectively requires better municipal infrastructure

and basic public services such as transportation, electricity, and

medical care, which brings about rapid economic development

while also causing an increase in greenhouse gas emissions. Cities

contribute about 75% of CE (Zhang et al., 2023). However, the high

concentration of population and economic activities in urban areas

also gives rise to economies of scale and process-oriented

production patterns, which help to improve resource allocation

efficiency and achieve optimal dispatch of materials, reducing CE.

The business credit environment in a given region is an important

factor affecting sustainable economic development (Shen et al.,

2022). Under the joint incentive mechanism of trustworthiness,

by focusing on improving the business credit environment and the

red list system will motivate enterprises to focus on environmental

protection and inspire green transformation. At the same time, the

“reputation effect” generated by the strengthened business credit

environment makes enterprises more actively take social

responsibility to build a good image and reduce the emission of

environmental pollution. Based on this, this paper adds two control

variables, urbanization and business credit environment, to Eq. (2).

Green finance is emerging with the primary purpose of coping with

climate change, improving environmental quality, and saving and

efficient use of resources. It can inject more capital into the green

and environmental protection field through green credit, bonds,

and other policy tools, which will substantially impact “carbon

reduction” activities. Different from command-based or market-

based regulatory policies, the establishment of green finance reform

and innovation pilot zones will promote the pilot areas to accelerate

the improvement of green development policies and green finance

top-level design, including environmental policies, green finance

systems, organizational systems, market operation mechanisms,

product service systems, support, and safeguard measures. Green

finance, for example, has significant signaling effects. Through

leverage and credit support, limited green financial capital can

quickly attract more social capital “green” and highly implement

carbon reduction activities. At this time, green finance has a

pronounced inhibition effect on high-carbon investment, which

weakens investment in energy-intensive industries and limits

interest-bearing debt financing and new investment in heavily

polluting enterprises. Based on the research direction of the

existing literature (Shi et al., 2022), we take the green finance

policy implemented in 2017 as a new control variable.

Thirdly, the econometric model is replaced. In addition to using

robust standard errors to control for the heteroskedasticity, within-

group autocorrelation and between-group contemporaneous

correlation present in the nuisance terms, feasible generalized

least squares estimation (FGLS) can be used to eliminate them.

Given the large regional variability in resource endowment,

industrial structure and data characteristics of cities, in order to

ensure the accuracy of the regression results, this paper selects

comprehensive FGLS estimation with different autoregressive

coefficients for each individual to corroborate the robustness of

the benchmark regression results.

Finally, the potential two-way causality endogeneity problem is

addressed. In the context of the “double carbon” target-oriented
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policy, the city administrations will implement more stringent

carbon emission control mechanisms to force enterprises to

implement GTI and cleaner production. Technological advances

with a green bias will influence the development of DT through

spillover effects and knowledge spillover, i.e., DT is more advanced

in cities with lower carbon emissions and advanced economies. In

order to avoid the interference of endogeneity issues on the model

regression calculation, this paper draws on the research ideas from

the existing literature (Yi and Zhou, 2018; An et al., 2023) and

conducts the estimation of instrumental variables by constructing

Bartik instrumental variables with some exogeneity (the product of

the lagged and differential terms of DT). Because strictly exclusive

instrumental variables are rare, digital technology, in particular, has

some correlation with many aspects of socioeconomic affairs. Under

the premise of the “unclean” instrumental variable assumption, the

estimation results of the traditional instrumental variable method

become unreliable. Therefore, we draw on the idea of Conley et al.

(2012) to relax the exclusion constraint and use a Plausibly

exogenous instrumental variable estimation method for robust

inference, assuming that the estimated coefficients of instrumental

variables affecting the explanatory variables through other channels

are approximately zero, in order to estimate the regression

coefficients of the core explanatory variables assuming the strict

exclusion constraint of the relaxed instrumental variables. This

method is also widely used to analyze the relationship between

industrial robots and carbon emissions (Yu et al., 2023). To enhance

the rigor of such research in causal inference, this study also uses the

time-varying DID method to calculate the potential of digital

technology in carbon emission reduction. Specifically, the

“Broadband China” strategy, implemented in three batches from

2014–2016, provides a good quasi-natural experiment for this

research (Wen et al., 2022). In the process of new infrastructure
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construction, the General Purpose Technology (GPT) of broadband

networks has been applied in a large area and may stimulate the

development of a digital economy and industrial structure

optimization, thereby reducing urban carbon emissions.

As can be seen from Table 4, the results of all four methods

show that the regression coefficients of DT are significantly negative

and the significance only changes slightly, indicating that the

conclusion that DT can reduce CE obtained from the baseline

regression part is robust and reliable. In addition, the results of

Method 4 based on the causal inference perspective show that the

regression coefficient of DT on CE is −5.250 and passes the 5%

significance test. This result shows that the conclusion that DT

reduces CE still holds after eliminating the endogeneity problem.

The conclusion that DT reduce CE is not a simple statistical

relationship, but more in line with the causal logic between

economic facts. H1 is strongly validated.
6 Mechanism test

The above results showed that the development of DT does

significantly curb the CO2 emission intensity of cities. However, it

would be more revealing to reveal the mechanisms through which

DT reduces CE. According to the research hypothesis and

mechanism test equation above, this paper still uses the two-way

fixed effects model to do the regression analysis, and the results are

shown in Table 5.

As shown in Table 5, the regression coefficients of DT on EE and

GTI are −0.537 and 0.850, respectively, and significant at the 5% and

10% levels, respectively, showing that DT can reduce CE through

mechanisms of improving enterprises’ GTI capacity and reducing

energy consumption intensity. H2 is verified. DT is a specific practice
TABLE 4 Results of robustness tests.

Variable Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

DT
−0.534***
(−3.90)

−0.391***
(3.02)

−0.451**
(−2.70)

−0.925***
(−6.76)

−5.250**
(−2.11)

−0.0473*
(−1.89)

Control variables Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

City FE Yes Ys Yes Yes Yes Yes

N 2,484 2,208 2,760 2,760 2,760 2,760
** and *** indicate significant at the 5% and 1% levels, respectively; in Methods 1 and 2, the t-statistic is reported in parentheses; in Methods 3 and 4, the z-statistic is reported in parentheses.
TABLE 5 Results of mechanism tests.

Variables EE GTI VA

DT
−0.537**
(−2.590)

0.850*
(2.160)

0.046***
(11.38)

Control variables Yes Yes Yes

Year FE Yes Yes Yes

City FE Yes Yes Yes
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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of advanced productivity, which itself has the role of technological

progress and green attributes. The ever-changing technology carriers

and rapidly evolving ICTs bring about iterative renewal of production

equipment. For example, the digital transformation of enterprises

makes online meetings and cloud offices possible, indirectly

promoting the optimization of production operations,

organizational coordination and management control, and

improving the production lines and processes of enterprises. DT

highlights the universality of “Davidson’s Law”, which is constantly

replacing low-energy-consuming equipment with high-energy-

consuming equipment, forcing the elimination of outdated

production capacity and transformation and upgrading, therefore

reducing energy consumption per unit of GDP. At the same time,

under the influence of Metcalfe’s law, DT improves the efficiency of

information search, expands the channels and scope of information

dissemination, and accelerates the association of production factors at

the spatial level and network externality spillover, which improves the

technological innovation capacity and output efficiency of each

production node (Zhang and Wei, 2019). In addition, the open and

inclusive characteristics of DT can promote the sharing of enterprise

innovation knowledge, provide a sharing platform and channel to

alleviate resource mismatch and inefficient operation, and enable the

flow of innovation factors and high-quality resources to high-

efficiency industries, which can reduce CE.

The regression coefficient of DT on virtual agglomeration (VA)

is 0.046 and passed the 1% significance test, indicating that DT can

reduce CE through the mechanism of promoting industrial virtual

agglomeration. H3 was verified. The new technological paradigm

reduces the original production and transaction costs, which

inevitably leads to a change in the shape and structure of

production organization. With the deep development of DT,

especially the popularity and application of machine learning, big

data technology, digital twin and smart manufacturing, the

evolution of organizational form has been given new dynamics

and paths (Feng, 2018). Based on the new technology network,

more and more industries break through the barriers of physical

space, and the associated collaboration among enterprises is less

dependent on geographic space, and various subjects in the value.

The externalities of agglomeration are multiplied by the increase of

participating subjects. First of all, DT represented by cloud

computing and industrial Internet provide virtual space and

technical carriers for the circulation and aggregation of data

elements, which help big data realize low-cost and high-efficiency

real-time exchange through the network platform. Data elements

are stored in a distributed manner in the virtual network space and

linked by the network, and data demanders implement extraction

and analysis of data resources through the massive storage network.

This can optimize the spatial layout of data elements, promote the

modularization and standardization of service elements, and

enhance the transparency of element circulation and the coupling

and coordination of production demands. Furthermore, through

the virtual space aggregation platform of technical resources, tacit

knowledge, which was difficult to be copied and disseminated in the

past, can be realized through the network platform to achieve

knowledge overflow in multiple points in time and multiple

dimensions. The virtual cyberspace turns the tacit knowledge that
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cannot be digitized into explicit, stable knowledge that can be coded

and disseminated over long distances, and reduces the spatial

stickiness of knowledge, effectively shortens the time lag of

technology diffusion, and bursts the technology welfare effects

(Zhang and Ru, 2021). Finally, DT enables the subjects clustered

in cyberspace to quickly disseminate information on the output of

final goods while also obtaining more efficiently any number of

intermediate goods inputs that exist in the market. The output and

services of each node of the industry chain will face a wide market

demand, and the market effect of intermediate inputs will be

infinitely enlarged at this time. At the same time, DT weakens the

specialization of productive service inputs in the traditional

geographical agglomeration. The non-tradable productive services

in traditional industrial agglomeration will become tradable under

the role of virtual agglomeration, and the convenience of obtaining

intangible intermediate inputs in virtual agglomeration is much

greater than that in traditional industrial agglomeration. The DT

has reduced the possibility of technology dormancy by promoting

the characteristics of knowledge diffusion in a network. It breaks the

linear closed technology transfer mode of traditional upstream and

downstream industries, converts the “point-to-point” technology

diffusion into a “one-to-many” network structure, and shrinks or

blurs the industrial boundary line. Therefore, DT helps to improve

the fineness of professional division of labor and the concentration

of different industries or similar industries in virtual space. chain

achieve agglomeration and division of labor in the virtual space of

infinity (cloud) (Chen et al., 2021).
7 Heterogeneity analysis

7.1 Heterogeneity test of urban
resource endowment

Considering the unbalanced regional economic development in

China, this paper divides the sample according to city scale and

whether it is a resource-based city to assess whether the carbon

emission reduction effect of DT is heterogeneous depending on the

resource endowment. For the sample division of city scale, this paper

divides the new first-tier and first-tier cities into large cities and the

second-tier, third-tier, fourth-tier and fifth-tier into middle-sized and

small cities based on the New Grading List of Chinese Cities

published by the New First-Tier Cities Institute in 2020 (The

Rising Lab, 2020). For the sample classification of resource-based

cities, this paper mainly refers to the classification criteria of the

National Sustainable Development Plan for Resource-based Cities

issued by the State Council in 2007 (The State Council of the People's

Republic of China, 2008). As shown in Table 6, the regression

coefficients of DT in large cities and middle-sized and small cities

are −1.289 and −0.552, respectively, and both pass the significance

test at the 5% level. Comparing the two coefficients, we can find that

the regression coefficients of DT are significantly larger in large cities

than in middle-sized and small cities, indicating that DT plays a more

significant role in CO2 emission reduction in areas with high

economic density and good business conditions. The potential

reasons are that large cities have more complete Internet
frontiersin.org

https://doi.org/10.3389/fevo.2023.1205634
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1205634
infrastructure and policy measures, the application scenarios and

usage frequency of DT is broader, and the coupling and integration of

advanced technologies with the traditional real economy is higher. At

the same time, compared with middle-sized and small cities, large-

scale cities have more sufficient funds, more advanced DT and better

talents, and the scale of digital economy is also larger, with a higher

level of agglomeration conditions and resource allocation, and the

investment and pace of digital transformation is larger, which can

more effectively enhance urban productivity and thus suppress more

CE, and the effect of reducing carbon emission intensity will be

more obvious.

What can also be found from Table 6 is that the regression

coefficient of DT in resource-based cities is −2.350 and passes the

significance test at the 5% level; in non-resource-based cities, the

regression coefficient of DT is 0.154 and does not pass the

significance test. The potential reason for this result is that the

economic development pattern of resource-based cities is mainly

characterized by factor inputs and primary processing of products,

and the industrial structure is dominated by heavy industry.

Compared with agriculture and service industries, heavy industries

are characterized by high consumption and high pollution, and the

crude economic development mode results in high CE. The popular

application of DT can accelerate the transformation, upgrading and

clean development of traditional industries such as coal, iron and

steel, cement and chemical industry, dissolve the excess capacity of

coal, and boost the low-carbon transformation and circular

development of industries in old industrial base cities (Zhang J.

et al., 2022). Industrial digital transformation can significantly

improve enterprise production efficiency and improve production

processes, optimize the combination of factor allocation, and the

marginal effect of carbon emission reduction by DT is more

significant. Meanwhile, in the Opinions on Promoting the

Sustainable Development of Resource-based Cities issued by the

State Council in 2007 (The State Council of the People's Republic of

China, 2008), governments at all levels are required to increase

support for the sustainable development of resource-based cities and

establish institutional mechanisms conducive to the sustainable

development of resource-based cities as soon as possible. Aided by

strict environmental regulations to improve the ecological

environment for the comprehensive, coordinated and sustainable

economic and social development of resource-based cities, resource-

based cities are in a better position to give full play to the role of DT

in leading demonstrations. Local governments can build an
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intelligent, precise and comprehensive management system to

shape a favorable development environment for the green

transformation of urban industries, help the regional economy

develop in a green and high-quality way, and reduce carbon

emission intensity. In addition, resource-based cities have more

room for progress in DT development and develop more rapidly,

which can accelerate the rational allocation of resource factors and

the synergistic division of labor among industries, and more easily

promote the coordinated and rational industrial structure and green

transformation of cities, improve energy efficiency and reduce

carbon emissions. The economic development of non-resource-

based cities does not depend on resource processing and energy

consumption, and the industrial structure is more inclined to

agriculture or service industry. DT has been deeply integrated with

other industries by virtue of the network incremental effect of

Merkauf’s law, and thus the marginal effect of carbon emission

reduction decays. At the same time, DT is dependent on electricity

consumption. The large-scale application of machines and network

facilities will increase the CE of the power sector.
7.2 Heterogeneity test of urban policy

Existing literatures have divided cities into different types

according to China ’s geographical location to conduct

heterogeneity test. However, this method only considers physical

geography and resource endowment, and the conclusions obtained

are not targeted enough for administrative departments or

enterprise managers to formulate management strategies, nor can

they stimulate the subjective initiative of market subjects (Yang

et al., 2022; Yi et al., 2022; Sun and Wu, 2023). The Chinese

government is firmly committed to promoting ecological

environmental protection and green development. The carbon

emission reduction role of DT may be influenced by macro-level

policy regulation, and ignoring regulatory policies for

environmental governance in China may lead to biased empirical

estimates. Therefore, this paper selects two policy regimes related to

digital infrastructure and environmental regulation, respectively, to

test the heterogeneity of DT in carbon emission reduction.

A smart city is an intelligent management and operation and

maintenance path that can be sensed, seen, measured, analyzed and

controlled based on the overall digitalization of the city, which

includes digital infrastructure such as urban networks, sensors, and
TABLE 6 Heterogeneity test of urban resource endowment.

Variables Large Cities Middle-sized and Small Cities Resource-based Cities Non-resource-based Cities

DT
−1.289**
(−3.00)

−0.552**
(−2.26)

−2.350**
(−2.92)

0.154
(0.85)

Control
variables

Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 190 2570 1130 1630
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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computing resources. This paper divides the 276 samples into two

samples based on the Assessment Report on the Development Level

of China’s Smart Cities published by the State, with a view to

assessing the heterogeneous impact of DT on CE in cities with

different degrees of development of DT facilities. As shown in

Table 7, the regression coefficient of DT in the pilot cities is −0.579

and significant at the 5% level, while in the non-pilot cities, although

DT can still reduce CE but the reduction effect is not significant.

The potential reason is that in the pilot cities of smart cities, new DT

such as big data, IoT, cloud computing, next-generation Internet,

and AI can be widely used in various digital infrastructures to

achieve cross-sectoral, cross-level, cross-regional, cross-

institutional, and cross-path network collaboration, and better

play their own impact role. It can be seen that DT development

significantly contributes to the reduction of carbon emission

intensity in smart cities, but does not effectively curb the carbon

emission intensity in non-smart cities.

The carbon pilot policy requires cities to adopt low-carbon

economy as the development model and direction, citizens to adopt

green and low-carbon living as the concept and action mode, and

government management to adopt low-carbon society as the

governance model and construction blueprint. Therefore, this

paper uses the low-carbon city pilot policy to divide the sample

in order to verify the heterogeneous effects of DT in regions with

different strengths of environmental regulation. As shown in

Table 7, the regression coefficients of DT in pilot and non-pilot

areas of low-carbon city policy are −3.058 and −0.391, respectively,

and they pass the significance tests of 1% and 10%, respectively.

Comparing the magnitudes of the two coefficients, it can be found

that the coefficients of DT in the pilot low-carbon city areas are

significantly larger than those in the non-pilot areas, even by several

times, indicating that the carbon reduction effect played by DT is

more obvious and prominent in areas with stronger environmental

regulation, verified the Potter Hypothesis. The potential reason is

that environmental regulation through digital media is more

capable of guiding the public to form a green concept, leading a

green life and mitigating urban CE. In addition, a strong external

regulatory force can apply the law of “survival of the fittest” to

enterprises. Some resource-intensive and labor-intensive

enterprises cannot afford the cost of green innovation and process

transformation in a short period of time, so they will move to other

regions or temporarily reduce their production capacity to control
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CE. Based on the pollution data provided by DT, government

departments will also discipline highly polluting enterprises by

“shutting down and closing down”. As a result, the cleanliness of

the industrial structure of the whole region will be significantly

improved with the support of DT and environmental regulations to

achieve carbon emission reduction.
8 Conclusions and policy implications

8.1 Conclusions

Peak carbon dioxide emissions and carbon neutrality an urgent

need to solve the significant problems of resource and

environmental constraints and realize sustainable development,

conform to the trend of technological progress and promote the

transformation and upgrading of economic structure, and meet the

people’s growing demand for the beautiful ecological environment

and promote the harmonious coexistence between man and nature.

DT is used in all sectors of economic and social development, and

the application and support of DT is indispensable to achieve

carbon peaking and carbon neutrality goals. In the new form of

digital economy, the green transformation of industries empowered

by DT has become the key to efficiently promote and achieve the

low-carbon emission reduction milestones (Shen and Yang, 2023).

Based on the technology diffusion theory, the article first

systematically compares the theories and mechanisms of carbon

emission reduction by DT, and then empirically tests the impact of

DT on carbon emission based on panel data of 276 cities in China

from 2011 to 2020, using a two-way fixed effects model and

instrumental variables method. Consistent with the findings of

published papers (Liu et al., 2022; Shen et al., 2023; Xu et al.,

2023), this paper found that DT significantly reduces CE in cities.

This conclusion still holds after robustness tests by replacing the

explanatory variables, eliminating endogeneity and adding omitted

variables. In the post-pandemic era, “digitalization” and “greening”

have become the main themes of global economic recovery. Digital

technology is essential in helping the global response to climate

change. Digital technology can deeply integrate with energy, power,

industry, transportation, buildings, and other key carbon emission

fields, effectively improve the use efficiency of energy and resources,

and realize the double improvement of production efficiency and
TABLE 7 Heterogeneity test of urban policy.

Variables
Smart City CE Trading System

Pilot Cities Non-pilot Cities Pilot Cities Non-pilot Cities

DT
−0.579**
(−2.46)

−0.585
(−1.52)

−3.058***
(−4.51)

−0.391*
(−2.07)

Control variables Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

N 1260 1500 330 2430
***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively; t-statistics are reported in parentheses.
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carbon efficiency. Digital is becoming an essential technological path

for China to achieve carbon neutrality. DT has highly convergent,

permeable and synergistic characteristics, and its deep integration

with the real sector can bring into play the positive externalities of

technology in reducing carbon emissions. It’s different from

published research (Yang et al., 2022; Wang and Chen, 2023), the

contribution of this study, of course, is to reveal new paths for DT to

reduce carbon emissions, especially the role of VA. In addition, the

heterogeneity of carbon emission reduction by digital technologies

revealed in this study is also helpful in ecology because it considers

the resource endowment of cities themselves rather than simply

classifying them according to geographical location. Mechanism tests

show that DT can reduce CE through mechanisms of improving

energy efficiency, promoting virtual agglomeration of industries, and

stimulating GTI of enterprises. DT is more effective in promoting

carbon emission reduction in large cities and resource-based cities,

that is, there is heterogeneity in the role of DTs in reducing CE. In

addition, the policy system is also an important factor influencing the

reduction of CE by DT. Specifically, the carbon emission reduction

role played by DT is more evident in smart cities and pilot areas of

carbon emission trading policies. Developing advanced industrial

structure is an important way to reduce environmental pollutants

(Kong et al., 2023). Specialized agglomeration and diversified

agglomeration of different industries on the Internet information

platform are conducive to giving play to the advantages of advanced

industrial structure. The unique theoretical contribution of this paper

lies in that it not only reveals that digital technology has great

potential in reducing carbon emissions and promoting sustainable

development but also innovatively brings virtual industrial

agglomeration into the path mechanism of digital technology to

reduce carbon emissions, which is helpful to enrich the theoretical

research perspective. In addition, the paper verifies the heterogeneity

of digital technology emission reduction from the perspective of

environmental regulation policy and digital infrastructure policy,

which is helpful for relevant subjects to take corresponding actions

in time to achieve carbon emission reduction. Therefore, this study is

a useful exploration under the background of a new round of

technological revolution and carbon neutrality. On the one hand,

the research conclusion of this paper expands the channels of

reducing carbon emissions by digital technology in theory, and on

the other hand, it also helps policymakers to take corresponding

actions in practice to conform to the laws of global

economic development.
8.2 Policy recommendations

(1) Improve resource allocation and seize the digital economy

dividend. Digital infrastructure has the role of early capital, and

upgrading the investment in digital infrastructure construction,

especially new infrastructure such as 5G and 6G, as well as

accelerating the improvement of digital industry-related

infrastructure, can also create a favorable environmental

atmosphere for the development of DT. Local governments

should improve Internet data exchange platforms, Internet of

Things and other network infrastructures, strengthen the
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comprehensive integration of big data mechanisms, cloud

computing and artificial intelligence, etc., deeply tap into the

Internet development space and release digital dividends.

(2) Focus on the development differences between regions and

promote the progress of lagging regions. Compared with the

“advanced” regions, some of the “backward” regions are still

relatively underdeveloped in DT and have developed relatively

late. Therefore, local communities need to learn from the

experience of DT development in “advanced regions” ,

strengthen the exchange of experience, and seize the

development opportunities brought by DT in a timely and

proactive manner. The government should build a platform for

inter-regional knowledge and technology communication,

strengthen inter-regional digital innovation exchange and

cooperation, enhance digital scale, promote green, intelligent,

coordinated and sustainable development of regional

transportation, and coordinate regional differences in DT. While

learning from the experience of DT development in “advanced

zones”, local communities should also pay close attention to the

characteristics of local development, so that DT can be better

applied to the local market and truly contribute to the economic

development of the area. Combining the regional industrial

structure and resource endowment, using DT to transform

traditional industries in an all-round and whole-chain manner,

enhancing the adaptability of the digital economy to the industrial

restructuring of cities with different industrial attributes and

resource endowment, accelerating the cultivation of new

industries and new models based on new DT, accelerating

technological progress and GTI, promoting low-carbon

technological innovation and digital transformation of resource-

based industries, and breaking the structural energy and resource

“curse” , and continuously release the vitality of digital

construction to empower urban low-carbon transformation, so

as to realize the coordinated symbiosis of digital transformation

and green development of old industrial bases and resource-

based cities.

(3) We should create a good policy environment, introduce

policies and regulations related to GTI, improve the legal and

regulatory system of green innovation technology and intellectual

property rights system, solidify the guarantee of green

development system, establish an all-round and multi-

dimensional fair competition environment and policy system,

and encourage enterprises to actively carry out GTI; meanwhile,

we can also encourage enterprises to reduce carbon tax by

introducing advanced DT and equipment. Encourage the

research and development of green, clean and low-carbon

technologies, accelerate the transformation and application of

advanced technological achievements, and cultivate new

momentum for the green and low-carbon transformation of

China ’s cities In addition, talents are also the key to

strengthening GTI, and it is necessary to cultivate a team of

green and low-carbon talents, and the construction of GTI

platforms should be encouraged, while the government should

increase the procurement of GTI products, and strengthen the

GTI achievements in industry, agriculture. At the same time, the

government should increase the procurement of GTI products
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and strengthen the wide application of GTI results in various fields

such as industry, agriculture, construction and transportation, so

as to effectively promote the development of energy saving and

emission reduction and ultimately help the low carbon

transformation of the city.
8.3 Research limitations

This study evaluated whether DT can reduce carbon emissions.

The methods used were more focused on statistical inference of

statistical models. However, economic research focuses more on the

causal relationships between economic variables. In future research,

it will be beneficial to use the list of intelligent manufacturing

demonstration enterprises and the policy of industrial intelligent

demonstration parks and use the double-difference method and

breakpoint regression to make the research conclusions more

consistent with causality. Measuring the efficiency of resource

utilization can better reflect the ecological and social values of

various essential resources (Yuan et al., 2023). In future research,

researchers should pay attention to the path mechanism of digital

technology to reduce carbon emissions and the role of digital

technology in improving carbon efficiency because it will directly

affect ecological accounts and resource liabilities. In future research,

it will be beneficial to combine econometrics with natural science

methods such as game theory, operational research, and

management science to evaluate the impacts of DT on CE from

an interdisciplinary perspective.
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