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ABSTRACT  

The motion of the low altitude Earth satellites is important for space applications, since these altitudes are 

crowded by a large number of artificial satellites. At this region the Earth’s oblateness and the drag force play an 

important role and capture the dynamics of the problem. The present work investigates the motion of a low 

altitude Earth satellite under the combined effect of the Earth’s gravity, up to the fourth zonal harmonic, and the 

drag force. The equations of motion are formulated under the considered force model. The problem under 

concern is treated using two different techniques, Cowell's and Average methods. We used the TLE data of the 

International Space Station (ISS) to compare the analytical method (average method) and the numerical 

Cowell’s method. To better understanding the problem, we carried out several numerical explorations. A 

Mathematica code is constructed to simulate the numerical examples. Comparing the two methods, we found 

that Cowell’s method gave more acceptable results. 

Keywords: Perturbation Effects; Atmospheric drag; Oblate Earth; Cowell’s Method; Average 

Method; Low Earth orbit (LEO). 
 

 

 

 

 

 

  

1. Introduction 

A perturbation is a deflection in the orbital 

motion of two body, one revolving around the other. 

The disparity of the masses of the bodies that 

revolve around each other leads to a difference 

between the actual path and the theoretical path of 

two body. There are some forces that Kepler did not 

take into account, such as drag and the non-spherical 

of the Earth. We cannot consider that the 

perturbations are minor, because there may affect 

greater than the attractive forces between the two 

body. The orbit of the satellite can be predicted by 

using some perturbation method. The average value 

of the orbital elements can be computed by many 

different ways. Analytical theory treated by many 

authors [1-11]. Spaceflight is given great credit for 

studying the effect of atmospheric drag on a 

satellite. The first to help and work in that is King-

Hele [12]. He ignored other perturbations and one 

studied the effect drag atmospheric drag. Battin [13] 

reviews the change of the average values to the 

semi-major axis and eccentricity. Vallado [14] and 

Roy [15] deduced the change equations for both 

semi-major axis and eccentricity to obtain the 

secular-periodic terms rates of change of the orbital 

elements. Mittleman [16] solved the non-integral 

drag problem using the approximate mean. Vinh 

[17] used numerical methods to calculate the change 

of orbital elements in the equations of orbital 

motions. Most of the previous studies use the 

analytical solution for oblateness, drag, and vice 

versa to find the integration problem. The current 

work aims to construct the perturbed forces of 

Earth's zonal potential field and drag in the 

equations of motion and treat them analytically and 

numerically utilize average method and Cowell’s 

method. 

2. Dynamical system 

2.1. Preliminaries 

The equation of motion of two-body 

unperturbed problem is given by  

      (1) 

where    is gravitational parameter.  

     (2) 

P represents additional forces as zonal 

harmonics and atmospheric drag 
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The Lagrange planetary equations (LPE) [13] are 

          (3.1) 

       (3.2)         

      (3.3) 

       (3.4) 

      (3.5) 

       (3.6) 

where   is the mean motion and  is perturbing potential. 

The Gaussian planetary equations are used in most the perturbed force (conservative and non-conservative) 

acting on the orbit. The Gaussian planetary equations are represented in RSW frame, i.e., 

. Then resulting equations are [13]:  

         (4.1) 

     (4.2) 

        (4.3) 

       (4.4) 

     (4.5) 

      (4.6) 
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where  ,  f is the true anomaly, and  R, S, W. are perturbing accelerations. 

2.2. Semi-analytical Solution 

In this section, the zonal potential and atmospheric drag will be solved by using the semi analytical 

solution. 

The Zonal Part: The zonal harmonics part is given by [13] 

     (5) 

 is the perturbing potential . Where   are the gravitational coefficients,  is the 

latitude,  , u = ω +f is the argument of latitude,  is equatorial radius of 

Earth  and  Legendre polynomial, can be expressed as 

 

The average of R can be calculated as 

                                        (6) 

where the relation between dM and df is 

 

Substitute this equation into equation (6) the average  becomes, 

                              (7) 

(a) Second Degree Expansion:From equation (5), the Earth’s potential function which includes the perturbation 

due to the oblateness of the Earth can be defined as, 

                                                       (8) 

The perturbation due to the oblateness of the Earth causes a precession of the line of nodes around the 

normal to the ecliptic plane. If the orbital perturbations are analyzed for one orbit, the average of a function over 

one period can be used as 

                                        (9) 

Substituting equation (9) into equation (3), the mean orbital elements affected by the  perturbation are equal 

to, 

 

       (10.1) 
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       (10.2) 

       (10.3) 

     (10.4) 

 and  are the mean orbital elements for the semi major axis, 

eccentricity, inclination angle, RAAN, argument of perigee, and mean 

anomaly. The semi major axis, the eccentricity, and the inclination angle are not affected by secular perturbation 

of . The only orbital elements affected are the RAAN, the argument of perigee, and the mean anomaly which 

cause a rotation and precession of the orbit. The rotation and precession can be compared to the spinning of a 

symmetrical top with an inclined rim. The nodal precession is observed in the rate of change of the RAAN. If 

the inclination angle is equal to 90° degrees, there is no precession or regression of the orbit. For 0 <  I < 90°, 

the node precesses toward the west it called a regression node. If 90° < I < 180°  the node precesses toward the 

east it called a prograde node. The argument of perigee has a rate of precession about the polar axis which 

causes a motion of the major axis of the ellipse. There are two inclination angles for which there is no 

precession (or regression) of the argument of perigee, where i =  63.4 and 116.6 degrees. If , the 

line of apsides precesses in the direction of the orbit motion. For 63.4° < I < 116.6°, the line of apsides precesses 

in opposite sense to the orbital motion. 

 

(b) Third Degree Expansion:We start our calculation of  by expanding up to third degree, We the 

Legendre polynomials  (sin ψ).  becomes 

    (11) 

The final result is: 

           (12.1) 

      (12.2) 

     (12.3) 

     (12.4) 

  (12.5) 

     (12.6) 

 (c) Fourth Degree Expansion: For degree 4, we use the Legendre polynomial  and proceed as 

before. This leads to 
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       (13) 

Similarly,  and the final result is: 

              (14.1) 

         (14.2) 

        (14.3) 

   

       (14.4) 

   

       (14.5) 

 (14.6) 

Finally, the total effect of the gravitational field of the earth is,  

           (15.1) 

  (15.2) 

   

       (15.3) 

 

        (15.4) 

    

       (15.5) 

             (15.6) 
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Atmospheric Drag 

The development of the drag coefficient model for various solar activities is given by Cook [18]. Marcos 

has studied the precision of the drag model for LEO satellites orbit the density [19]. Moe et al studied the 

geometric shapes of the drag coefficient by using orbital measurements [20]. Storz et al. worked to develop a 

high-resolution model for drag of low-orbit satellites [21]. Most of the effects of the drag coefficient on LEO 

satellites have been reviewed using most theories by Prieto [22]. The force acting on the drag model can be 

represented as 

      (16) 

where m is the satellite mass, S is the effective cross-sectional area, is the drag coefficient, The coefficient 

 known as the ballistic coefficient. The vector  is the velocity of the satellite. The vector  is 

the atmospheric velocity. If the atmosphere was with the beginning of the revolutions of the Earth and it would 

be spherical, then , where  is the Earth’s rotation rate and r is the position vector. 

Using the Herring approach, the atmospheric density may be written as [13] 

        (17) 

Where  is the initial value of the atmospheric density,  is the initial perigee radius and H is the density 

scale height. The drag force vector , written in the NTW frame [9]. 

       (18.1) 

       (18.2) 

   (18.3) 

Where  ,  , and . 

The variables  and are the cross-sectional areas, and  is the initial velocity at perigee. Using the 

transformation from NTW to RSW, the drag components can be obtained [14]. 

    (19.1) 

   (19.2) 

Substituting equations (18) and (19) into equation (4) give us: 

      (20.1) 
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    (20.2) 

  
      (20.3) 

  (20.4) 

   (20.5) 

 (20.6) 

Equations (20) can be solved by modified Bessel functions depend on the atmospheric density [23, 24], as a 

result the secular and the long-periodic terms is 

   (21.1) 

     (21.2) 

     

  (21.3) 

   (21.4) 

       (21.5) 

  (21.6) 

3. Numerical Solutions 

3.1. Cowell’s method  

P.H. Cowell [25] discovered this simple and direct method of using all perturbation in the early twentieth 

century. This method is used to write all the effects of the perturbation on the motion system with respect to the 

two-body problem, and we can solve that numerically, the equation Become [25]. 

         (22) 

where P is perturbed forces  

We can change the second order differential equation into a first order differential equation by numerical 

methods (Runge-kutta) [26]. We get the following equations 
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                                             =  (23) 

 where      . 

Equations (23) can be solved numerically using Runge-Kutta method which in the form of first order 

ordinary differential equation (ODE). The ODE solved, the initial position and initial velocity must be specified 

initial conditions. The state vector position and velocities of a satellite can be converted into orbital elements 

[27].  

4. Results 

The Russian Zarya satellite (ISS ZARYA) was launched in 1998. Its altitude is about 411 Km. 

(http://celestrak.com) The Orbital elements data can be extracted using two line element, initial time use the 

data:  

ISS (ZARYA)              

1 25544U 98067A   19351.54008334  .00016717  00000-0  10270-3 0  9070 

2 25544  51.6378 172.3255 0007343  42.7724 3176.3997 15.50134307 3696 

 

The orbital elements data can be extracted using two line element, final time use the data:  
ISS (ZARYA)              

1 25544U 98067A   19361.08141748  .00016717  00000-0  10270-3 0  9044 

2 25544  51.6419 125.0498 0006268  72.9805 287.2031  15.49786732 5178 

     These two methods (LPE Method, Cowell’s Method) represent two orbit classes for which the 

computation of oblate and drag is.  

Table 1: The initial values of  LEO satellite (ISS ZARYA) 

    

    

    

    

    

    

http://celestrak.com/
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Table 2: Physical parameters of the earth [14, 25]. 

  

  

  

 
 

 
 

 

 

  

  
 

Table 3: The orbital elements of ISS in LPE and Cowell Methods 

 Ι-TLE  -LPE  -Cowell’s   

      

      

      

      

      

      
 

Table (3) Shows solutions the orbital elements by using the LPE Method and Cowell’s Method.  We 

calculate the different between them during ten days.  The column (I) is the finial TLE, the column (II) is the 

result of the (LPE) and the column (III) is the result of the (Cowell’s Method).  The column  is the 

difference between TLE and result of the (LPE).  The column  is the difference between finial TLE 

and result of the (Cowell’s Method). The sub figures (1) represent the propagation of orbital elements for ISS in 

ten days. 

5. Conclusions  

In this paper the effects of zonal harmonics (J2 Up to J4) and atmospheric drag force on low satellite orbits 

are studied. The equation of two body problem under pervious perturbing forces is formulated. The equations of 

motion are solved by two   methods which are the semi-analytical solution (Average Method) and Numerical 

solution (Cowell’s Method). A program code MATHEMATICA Language is constructed to treat the solutions 

(ISS). The outcome of a numerical orbit integration of Cowell's method and average Method are compared with 

the orbital elements of TLE, which we found the results from Cowell’s Method more acceptable. 
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Fig. 1. The variation of orbital elements for ISS 
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 تحت تاثير المجال التجاذبى للارضلحل النصف تحليلى للأقمار الصناعية المنخفضة ا

 وقوة مقاومة الهواء 

 1، محمد نادر1، اينال ادهم 1، احمد حافظ1حسين امبابى

 صاد الجوية قسم الفلك والار-علومكلية ال-جامعة الازهر1

 الملخص:
هام جدد ا فددى القاتياددات الفضدداعيةر   بعقتددر ا تعددا  الار   دراسة حركة الاقمار الصناعية فى الارتفاعات المنخفضة

 فىىى الصناعية الاقمار حركة حققنا الحالية الدراسة فى.وتاثير الغلاف الجوى ذا اهمية كتيرة فى هذه الارتفاعات المنخفضة
 الحركىىة معىىادلات .الهىىوا   مقاومىىة  تاثير  وكذلك  الرابعة  الرتبة  حتى  لارضا  انبعاج  قوى  تاثر  تحت  المنخفضة  تفاعاترالا

 والحىىل الكوكبيىىة لاجىىران   معىىادلات  باسىىتخدام  تحليلى  النصف  الحل  الدراسة  هذه  فى  طبقنا.  القوى  نموذج  باستخدام  كونت
 بالنتىىائ   البيانىىات  هىىذه  وقارنىىا  الدولية  الفضائبة  للمحطة  الصناعى  القمر  بيانات   استخدمنا.  كاوول  طريقة  باستخدام  العددى

 .الدولية المحطة من المرصودة للبيانات اقرب العددية الطريقة نتائ  ان وجدنا المستخدمين النموذجين
 


