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Abstract
Automatic identification of salient features in large medical datasets, particularly in chest x-ray
(CXR) images, is a crucial research area. Accurately detecting critical findings such as emphysema,
pneumothorax, and chronic bronchitis can aid radiologists in prioritizing time-sensitive cases and
screening for abnormalities. However, traditional deep neural network approaches often require
bounding box annotations, which can be time-consuming and challenging to obtain. This study
proposes an explainable ensemble learning approach, CX-Net, for lung segmentation and
diagnosing lung disorders using CXR images. We compare four state-of-the-art convolutional
neural network models, including feature pyramid network, U-Net, LinkNet, and a customized
U-Net model with ImageNet feature extraction, data augmentation, and dropout regularizations.
All models are trained on the Montgomery and VinDR-CXR datasets with and without segmented
ground-truth masks. To achieve model explainability, we integrate SHapley Additive exPlanations
(SHAP) and gradient-weighted class activation mapping (Grad-CAM) techniques, which enable a
better understanding of the decision-making process and provide visual explanations of critical
regions within the CXR images. By employing ensembling, our outlier-resistant CX-Net achieves
superior performance in lung segmentation, with Jaccard overlap similarity of 0.992, Dice
coefficients of 0.994, precision of 0.993, recall of 0.980, and accuracy of 0.976. The proposed
approach demonstrates strong generalization capabilities on the VinDr-CXR dataset and is the first
study to use these datasets for semantic lung segmentation with semi-supervised localization. In
conclusion, this paper presents an explainable ensemble learning approach for lung segmentation
and diagnosing lung disorders using CXR images. Extensive experimental results show that our
method efficiently and accurately extracts regions of interest in CXR images from publicly available
datasets, indicating its potential for integration into clinical decision support systems.
Furthermore, incorporating SHAP and Grad-CAM techniques further enhances the
interpretability and trustworthiness of the AI-driven diagnostic system.

1. Introduction

Medical imaging has become increasingly significant in the detection, diagnosis, and prognosis of disease
because of advances in imaging technology. Computer-aided diagnostic (CAD), surgical planning,
simulation, and robotically-assisted surgery are just a few medical imaging and software tools used in current
surgical diagnosis. The importance of biomedical image processing has revolutionized various aspects of
medicine, such as the precise diagnosis and staging of diseases [1]. However, medical images are blurry and
distorted, making them more challenging to process than other image types [2]. Biomedical image analysis
and processing have recently become an important research topic because of the difficulty in doing so quickly
and precisely [3, 4]. Emphysema, tuberculosis, edema, aspiration pneumonia, pneumothorax, lung cancer,
and recently COVID-19 are all lung diseases that can cause breathing difficulties or ARDS (acute respiratory
distress syndrome). Lung diseases can also refer to diseases or disorders affecting the lungs, including the
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right and left upper, middle, and lower lung regions (ARDS). For example, tobacco abuse is the prime cause
of chronic obstructive pulmonary disease (COPD), and a leading risk factor for lung cancer [5]. Over the
past two decades, the proportion of individuals diagnosed with lung cancer in developing countries has
significantly increased from 31% to 49.9% [6].

In contrast, developed nations like the US have experienced a decline in lung cancer cases [7]. Various
environmental factors may contribute to the development of lung disorders such as asthma and cancer. It is
crucial to recognize these factors and implement preventive measures to address the growing health concerns
related to lung diseases. Airway inflammation, allergens, or pollutants can cause asthma symptoms,
including a long-term respiratory illness with difficulty breathing. Asthma is an obstructive lung disease
which is curable if diagnosed earlier.

COPD primarily refers to emphysema, chronic bronchitis, and intractable asthma. This family of
pulmonary diseases that affect the lungs by limiting air passage to the alveoli threatens both developed and
third-world countries, with a fatality rate close to 90% in low-income countries. As per the Global Initiative
for Chronic Obstructive Lung Disease findings, COPD is the third major cause of death in 2020 [8, 9].

For medical image processing, various approaches have been used, such as x-rays, magnetic resonance
imaging (MRI), endoscopic, ultrasonography, and thermal imaging [10, 11]. CXR is the gold standard for
assessing and diagnosing lung diseases with over 2 billion scans performed annually. However, when
compared to computed tomography (CT) scans and MRIs, CXR presents distinct issues because of its large
dimensions and the frequent absence of labeled data, particularly for identifying regions of interest (ROIs)
[12, 13].

A ROI is part of an image chosen for a specific purpose. ROI is typically used in medical imaging, for
example, to identify a particular area of a 2D, 3D, or 4D image that requires clinical diagnosis. The lesion area
is fascinating to doctors in medical imaging because it contains essential illness information, which doctors
use to diagnose and design treatment plans. However, because the ROI includes vital information in the
image, its proper extraction is critical and a significant difficulty in medical imaging.

Localization tasks such as detection and segmentation necessitate expensive labeling, a challenge for
medical practitioners. For example, in finer-grained segmentation, the goal is to locate a ROI at pixel-level
granularity by tracing its path. Deep neural networks (DNNs), which need many data to train, usually need
annotated images to do either of these tasks: bounding boxes for detection and pixel-level masks for
segmentation. Unfortunately, such annotated data can be prohibitively expensive to obtain. This situation is
even worse with medical imaging because the labeler must be an experienced physician, resulting in a costly
and time-consuming labeling operation.

Babenko [14] has looked into this task with little supervision in computer vision. While DNNs can
categorize images with near-human accuracy, they are frequently considered ‘black boxes’, with the specific
reasoning that the model lacks explanation, a step towards explainable artificial intelligence. For doctors to
accept the results of algorithms used in medical imaging, even when vital findings are subtle and hard to
spot, it is essential to explain what happened. Other approaches to providing such network explanations
involve the use of saliency techniques, for example, gradient class activation mapping (Grad-CAM++) [15,
16] with pixel-wise heatmaps highlighting regions in the image that influenced the predicted classes. While
these approaches provide explanations, they do not help with class optimization. Heatmaps are created using
low-resolution filters (e.g. 5× 5) and then propagated back to the input. Often results in occasionally coarse
localizations, an area of concern for medical images such as CXR, frequently obtained at extremely high
resolution (such as 3000× 3000). A common convolutional neural network (CNN) strategy is
downsampling CXR to the dimensions of some widely used pre-trained networks, such as AlexNet (e.g.
224× 224). This approach may decrease the localization accuracy, inspired by the development of innovative
segmentation and detection methods applicable to various fields, including healthcare.

It is hard to divide the lungs because CXRs often show changes in transparency or consolidation. Areas of
the lung that overlap and extreme abnormalities caused by a bacterial infection, fluid buildup, or a lung
condition often cause these changes. Since the lungs usually look very different from the rest of the body, it is
common for people with pulmonary illnesses to struggle to differentiate between healthy lung tissue and the
rest of the body.

To address these challenges, an automated approach that employs a four-fold ensemble to enhance the
accuracy of lung region extraction by considering variations in lung structure across different diseases was
proposed. Figure 1 illustrates the workflow for the proposed methodology.

In contrast to the standard object detection task, bounding boxes were not predicted. There are three
main components to the planned work:

First, a chest x-ray (CXR) image is pre-processed and checked for outliers; then, using a blend of three
pre-trained segmentation models (feature pyramid network (FPN), LinkNet, and U-Net) and a deep CNN
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Figure 1. The proposed methodology workflow (details in section 3).

(DCNN) model trained from scratch called CX-Net, two pre-segments are generated. Finally, the
pre-segments are merged to generate a final segmented lung region.

Contributions:

• The article presents an ensemblemethod called CX-Net, which combines four state-of-the-art (SOTA)CNN
models (FPN, U-Net, LinkNet, and a locally trained U-Net) for improved lung segmentation in CXRs.

• The use of SHapley Additive exPlanations (SHAP) and gradient-weighted class activationmapping (GRAD-
CAM) improves the model’s explainability, enhancing the transparency and interpretability of the ensemble
model.
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• This research is the first to utilize the VinDr-CXR andMontgomery datasets for semantic lung segmentation
with semi-supervised localization, demonstrating the model’s robustness and adaptability.

• The proposed CX-Net achieved outstanding results in terms of Jaccard overlap similarity (JS), Dice coef-
ficients (DCs), precision (PPV), recall, and accuracy, showcasing its superior performance compared to
existing lung segmentation methods.

• Thorough analysis using various pre-processing techniques, highlights the choice of adaptive histogram
equalization (HE) and the rationale behind excluding thresholding operations.

• We emphasize the importance of model ensembling in improving the identification of the ROI in CXR
images, demonstrating its potential for integration into clinical decision support systems (CDSSs).

• The study contributes valuable insights into the detection and diagnosis of critical lung conditions such as
pneumothorax, emphysema, and tuberculosis, demonstrating the potential impact of the proposedmethod
on healthcare outcomes.

This work is organized in six sections. Section 1 highlights the background and motivation of the study.
Section 2 presents related works on ROI segmentation using machine and deep learning approaches.
Section 3 focused on the dataset and pre-processing techniques. The core methodology is introduced in
section 4. Section 5 discusses the results of the experiments and how they stacked up against SOTA. Finally,
section 6 concludes the work, stating the limitations and future directions.

2. Related work

The findings focused on the VinDR-CXR dataset from [16]. Seventeen experienced radiologists carefully
annotated 18 000 images from the raw data, including 22 local labels for rectangles encircling abnormalities
and six universal tags for suspected abnormalities. It consists of more than 100 000 CXR images from two
leading Vietnamese hospitals, with a 15 000-person training set and a 3000-person test set in the dataset that
has been made public. Three radiologists independently labeled the training set, while five radiologists
labeled the test set. Simultaneously with the dataset’s release, Nguyen et al [17] published the first benchmark
for classifying and localizing common thoracic findings. This benchmark, on only the whole label images,
shows that 10 606 CXR images had no medical condition.

Notably, lung segmentation is synonymous with the ROI identification from a clinical perspective.
Researchers have shown interest in the topic and made significant steps toward better lung segmentation.
Here, we present some of the seminal publications. On lung segmentation, the attention of researchers has
been drawn to two distinct techniques, namely:

• Traditional or classical and
• Deep learning techniques.

Further, studies in deep learning-based techniques in COPD, COVID-19, and breast cancer research were
presented.

2.1. Classical machine learning-based segmentation approaches in COPD
Wan Ahmad et al [18] proposed an approach to lung refinement based on the hybrid of oriented Gaussian
derivatives, thresholding, and Fuzzy C-Means (FCM) clustering. On the JSRT dataset, their system achieved
an accuracy of over 90%, except for the overlap, which stood at 87%. When it comes to lung segmentation,
deformable model-based techniques include scale-dependent shape and appearance data by employing a
joint shape and appearance sparse learning-based framework [19–24]. Lung segmentation is a challenging
problem; several authors have developed hybrid approaches incorporating active shape models with other
techniques [25, 26]. However, due to the variability in lung field forms, the lung boundaries obtained using
these traditional segmentation methods may not be optimal. Furthermore, these algorithms perform poorly
when dealing with pulmonary disorders that alter lung texture.

2.2. Deep learning-based segmentation approaches in COPD/emphysema
More than 35 deep learning-based studies on the ChestX-ray8 dataset [27], with 13 potentially generating an
emphysema annotation label [28]. Nonetheless, most of these investigations use automatically derived tags
that are noisy and unsuitable for clinical assessment [29]. The most recent study [30] of this type offered an
extension of DenseNet121 [31] and reported an area under the curve (AUC) of 93.3% localizing emphysema.
Moreso, the acknowledged problems with emphysema labeling in that dataset [32] make it difficult to
interpret their findings unbiasedly. Using an encoder–decoder CNN (ED-CNN), Kalinovsky and Kovalev
[33] proposed lung segmentation and achieved a maximum Dice score of 97.4% on a dataset of 354 CXRs.
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The encoder in ED-CNN gradually decreases the spatial dimension of the input image. The ED-CNN
decoder recovers object features and position and provides an output image with the lung probability of each
pixel. Using lung shapes, Coppini et al [34] and Miniati et al [35] achieved 90% accuracy, with an AUC of
0.96, in detecting emphysema. These two research projects employ neural networks with custom-made
features on well-curated datasets. Wanchaitanawong et al [36] recently suggested that AI-based emphysema
scores from CXRs might be helpful for ailments where spirometry tests are not feasible and produce
equivalent results in diagnosing COPD on a dataset that included 80 patients. Another effective strategy for
raising segmentation precision is the use of ensemble approaches. For instance, by modifying the basic
structure of the U-Net and InvertedNet models, Gomez et al [37] presented four distinct convolutional
models. Instance normalization and atrous convolution are only underutilized methods incorporated into
this approach. Souza et al [38] also used a similar strategy. They combined two deep learning networks, one
of which can classify the CXR patches and the other of which may be able to reconstruct infected regions.
This innovative method depends on how well the mask reconstruction stage works. However, in CXR images
with significant abnormalities, the reconstruction stage often increases the false-positive rate due to an
incorrect mask reconstruction.

2.3. Deep learning-based segmentation approaches in COVID-19 research
The outbreak of the Novel Corona Virus in December 2019 has shifted all the attention to COVID-19,
churning out many breakthrough research articles. Sabre et al [39] proposed a deep learning architecture for
CXR classification after screening COVID-19 patients, with protocols emphasizing ROI ‘Hide-and-Seek’ to
validate the deep learning architecture. Inference from the test results validates the effectiveness of their
approach. With approximately 16 000 CXR images of COVID-19 patients, including standard and infected
cases, Karim et al [16] used an explainable DNN called ‘DeepCOVIDExplainer’ that could discriminate
regions using gradient-guided class activation maps (Grad-CAM++). Based on data from hold-outs, the
method could find COVID-19 with a higher positive predictive value (PPV). Alam et al [40] suggested a
hybrid approach using a histogram of oriented gradient and a pre-trained CNN (VGGNet) from CXR
images. Modified anisotropic diffusion filtering made it possible to remove noise, and an accuracy of 99.49%
showed that the proposed method was better than other methods. Tahir et al [15] used a robust approach to
discriminate ROI from plain CXRs images using Score-CAM (class activation mapping) visualization. Their
system produced a sensitivity of 96.94%, a promising result for AI generalizability. Chaddad et al [41]
proposed a DCNNmodel that successfully identified regions of interest that correspond to ground-glass
opacities and pleural effusions from CT and CXR images. The segmented areas performed better using six
pre-trained neural networks such as DenseNet, NASNet-Mobile, and DarkNet. They yielded an area under
the receiver operating characteristic curve of almost 100%. The proposed method will help radiologists
improve their diagnostic accuracy and manage COVID-19 in less time. Apostolopoulos and Mpesiana [42]
employed ensemble CNNs and reported that MobilleNet v2 [43] produced better accuracy than
InceptionV2. Their study on Covid-19 disease biomarker extraction using deep learning and x-ray imaging,
with a sensitivity of 98.66%, shows the feasibility of using CXRs for clinical diagnosis. Using pre-trained
networks with adequate fine-tuning for differentiating standard CXR images from COVID-19 infected was
investigated by Narin et al [44] who employed three CNN models [43, 45, 46]. The results show that the
pre-trained ResNet50 model has the best classification performance, with an accuracy of 96.1% compared to
other models. Similarly, Horry et al [47] used a transfer learning approach for pre-processing and proposed a
multi-modal classification model to identify COVID-19-infected CXR and CT images. Their findings reveal
that VGG19 [48] better distinguished COVID-Pneumonia and standard images. A fine-tuned CNN-based
model for pneumonia classification in CXR images was proposed by [49]. It showed that training a DNN
from scratch on a low-end PC is doable, although it is computationally expensive. They explored the effects of
hyperparameter tuning with dropout variations and achieved better accuracy than most standard methods.

2.4. Deep learning-based segmentation approaches in breast cancer research
Early detection of breast cancer improves the patient’s survival rate to a greater degree. Ragab et al [50]
proposed two approaches to ROI detection: manual and a DCNN, with an accuracy of 71.01%. Using
samples from DCNN yielded an accuracy of 73.6%, an improvement of 2.05% over the manual approach.
Similarly [51], Wei et al proposed a method for breast tumor classification on ultrasound images in which a
professional radiologist provided the ground truth regions of interest. The photos were denoised using
speckle-reducing anisotropic diffusion for better feature extraction. In their survey paper, Kwong and
Mazaheri [52] effectively highlighted the research to identify regions of interest. Most researchers reported
DCs and intercept over union (IoU) of more than 80%. Deep learning feature fusion and extreme learning
machine (ELM) were investigated by Wang et al [53]. The fusion of CNN and ELM to cluster features of
sub-regions was able to pinpoint the location of a breast tumor. Using CNN with unsupervised ELM
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Table 1. Summary of selected related works on CXR datasets for disease localization.

Year/Authors/References Dataset images
Image position
(AP, PA) Image format

Labeling
method

Gold standard
data

(2011) National Lung
Screening Trial
Research Team
et al [56]

26 732 Not reported Not reported Nil Nil

(2019)
CXR14-Rad-Labels,
Majkowska et al [57]

4374 AP: 3244 PA: 1132 PNG Radiologist
cohort study

All (4374)

(2019) CheXpert, Irvin
et al [58]

224 000 AP: 162 000 PA:
29 000

JPEG Radiologist
cohort study

235

(2019) MIMIC-CXR,
Johnson et al [59]

372 000 AP+ PA: 250 000 DICOM, JPEG Report parsing Nil

(2020) PadChest,
Bustos et al [60]

160 000 AP: 20 000 PA:
96 000

DICOM Radiologists
interpretation

27 593

(2020) COVID-CXR,
Cohen et al [61]

866 AP:344 PA: 438 JPEG, PNG Varies Nil

(2021) VinDR-CXR,
Nguyen et al [17]

18 000 AP:0 PA:18 000 DICOM Radiologist
interpretation

All (18 000)

(US-ELM) clustering, they present a method for mass identification that combines deep, morphological, and
density characteristics simultaneously. Dewangan et al [54] employed a hybrid optimization technique for
early breast cancer diagnosis with a hybrid herd African buffalo approach to discriminate between cancerous
and normal MRI images. Chouhan et al [55] used taxonomic indices and local binary patterns for their
analysis. A DCNN built on top of a highway network was employed to extract mammograms’ fourth set of
features dynamically. Emotional learning-inspired ensemble classifiers and support vector machine (SVM)
were used alongside cross-validation to confirm the system’s reliable performance. In summary, we present
related literature on select datasets that influence the research work in table 1.

From table 1, the MIMIC-CXR dataset has the highest clinically annotated CXR images, followed by
CheXpert. MIMIC-CXR is a dataset that includes 371 920 CXRs from patients and 64 588 patients. The CXRs
obtained from patients admitted to Beth Israel Deaconess Medical Center’s emergency department between
2011 and 2016. Later, an updated version of MIMIC-CXR known as V2 was made available [62], which
featured both the anonymized radiology reports in the digital imaging and communications in medicine
(DICOM) format. The PadChest dataset is a comprehensive collection of 160 868 CXR images from 109 931
examinations performed on 67 000 individuals. These images were acquired from San Juan Hospital in Spain
between 2009 and 2017 [60]. The dataset offers a rich variety of grayscale images, each having a 16-bit depth
and retaining their full resolution, which provides valuable insights for researchers and practitioners working
with medical imaging. The attending physicians categorized 27593 of the reports manually. Per the medical
standard practices, all the patient’s data was stored using the DICOM format in VinDR-CXR, explained
further in section 3 (Dataset description).

Literary findings: A review of existing literature reveals that numerous studies have explored datasets from
sources such as KAGGLE, ChestX-ray14, CheXpert, MIMIC-CXR, PadChest, and COVID-CXR datasets. The
traditional SoTA models, methods like K-Means, FCM clustering, and SVMs have shown significant
improvements in accuracy. In addition, deep learning models consistently surpass classical machine learning
approaches, owing to their multiple hidden layers and optimal hyperparameter selection. Overall, deep
learning has achieved outstanding validation accuracies in semantic segmentation tasks. However, the
performance in COPD region segmentation from CXR images remains less impressive, mainly when using
the recently published, clinically-annotated VinDR-CXR dataset.

3. Materials andmethods

Informed by the background information in sections 1 and 2, the objective is to employ a variety of
intelligent models to extract lung regions from pulmonary images accurately. This study strives to develop a
fully automated computational model, incorporating fine-tuning approaches to achieve high accuracy.

The proposed methodology combines multiple approaches and models for fine-tuned segmentation of
lung regions in CXR images. The fully automatic model integrates various pre-trained networks with
CX-Net, a DCNN model trained from scratch after image processing to generate highly relevant results.
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Figure 2. Distribution of the dataset.

Figure 3. Samples of the dataset with abnormalities enclosed in yellow-rectangular bounding boxes. Reproduced from [17].
CC BY 4.0.

Figure 1 illustrates the proposed framework’s primary stages. It includes image pre-processing, leveraging
pre-trained CNN segmentation models, initial segmentation, and refinement leading to the final
segmentation. This structured approach allows for a systematic and robust process, facilitating accurate and
reliable lung segmentation results.

3.1. Dataset description
This study uses the clinically validated CXR dataset VinDR-CXR from [17]. This database includes over
100 000 CXRs from two of Vietnam’s largest medical hospitals. It has about 18 000 images and a team of 17
experienced radiologists carefully labeled each one with 22 local labels of rectangles that enclose
abnormalities and six global labels of suspected diseases. The public dataset comprises 30 000 records, 15 000
of which serve as training data and 3000 as test data, as depicted in figure 2. Selected samples of the images
with bounding-box annotation are illustrated in figure 3. During the training phase, three radiologists
labeled each scan independently, whereas a panel of five agreed to identify each scan in the test phase. Labels
for the training and validation sets and all de-identified images are freely available in the DICOM format to
ensure conformity to medical standards.

In figure 3, it is evident that the CXR images lacked segmented ground truth. The Montgomery dataset
[24], which provided validated ground truth, was incorporated to overcome this challenge. We employed a
semi-supervised approach to generate ground truth effectively. The dataset comprises 138 posteroanterior
(PA) CXR images, including 80 normal and 58 abnormal cases that exhibit signs of tuberculosis. These PA
CXR images were sourced from the tuberculosis control program in Montgomery, USA, and are collectively
known as the Montgomery dataset. All images have been anonymized, removed identifying features, and are
available in DICOM format. This dataset covers a range of abnormalities, such as effusions and miliary
patterns.
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Table 2. Parameters used for data augmentation.

Method Default Augmented

HorizontalFlip None True (p= 0.5)
VerticalFlip None True (p= 0.5)
Rescale (Normalization) — 1./255
Zoom range — 0.25
Rotation (o) — 60, 90 & 120
x-Shift, y-Shift None [−0.1,+0.1]
x-Scale, y-Scale None [0.75, 1.25]
Adjusted image 1024× 1024 224× 224

The semi-supervised approach encompasses a two-stage process:

(a) Unsupervised clustering approaches
The distinctions and commonalities between two SoTA unsupervised clustering techniques were investigated.
First, the generic Voronoi method (a broader term for K-Means) aims to discover k-partitions among data
points that are well-shaped and uniformly distributed [63]. With each iteration, points are reassigned based
on their distance from the calculated centroid. Second, we utilize an unsupervised neural network called a
self-organizing map (SOM) to create a two-dimensional input data representation. Developed by Professor
Teuvo Kohonen in the early 1980s [64], SOMs employ an unsupervised learning neural network trained with
a competitive learning algorithm to generate subspaces. Neuron weights are adjusted based on their
proximity to declared winner cells (i.e. neurons most closely resemble a sample input). Multiple input
datasets during training form clusters of similar neurons while different neuron clusters are eliminated.

(b) Supervised classification
Fix and Hoges [65] introduced one of the earliest supervised classification methods, the K-nearest neighbor
(KNN) classifier. When utilizing an annotated dataset, most of an unknown data sample’s KNN is employed
to determine its class label. The KNN classifier, for k= 1, is a specific instance of the classifier mentioned
above. This approach excels in classification problems and possesses several attractive qualities, such as
simplicity, efficiency, nonparametric nature, and speed [66]. Nevertheless, significant challenges arise in
adjusting its parameters, like the neighborhood size (k) used in the topological representation quality, which
can profoundly impact the result [67].

(i) Data augmentation: In computer vision, data augmentation plays a pivotal role in enhancing the
performance of deep learning models by artificially expanding the training dataset. This technique effectively
mitigates the challenges posed by limited data availability, a prevalent issue in implementing machine
learning solutions. Examples of data augmentation include image augmentation for classification tasks and
mask augmentation for segmentation tasks. By employing these methods, models can achieve better
generalization and performance, addressing the constraints associated with time-consuming and costly data
collection processes. The parameters chosen are in table 2.

Initially, the images underwent flipping along the x-axis and were rescaled accordingly. Following this,
each unique patch was rotated by 60, 90, and 180 degrees as part of the data augmentation technique, as
depicted in table 2. The image dimensions were normalized to accommodate most pre-trained networks that
perform optimally with 256× 256 inputs. Multiples of 30 degrees were employed to avoid interpolation
requirements. Allowing for rotations helped prevent overfitting. The aim is to elucidate the functioning of
rotations within the CX-Net architecture, as they are frequently utilized to improve data. In total, 18 138
CXR images from the two datasets were analyzed.

3.2. Image pre-processing and enhancement
It is worth noting that the Montgomery CXR images had fixed dimensions of 4982× 4020. At the same time,
the VinDr-CXR dataset exhibited varying dimensions, with most images around 2500× 2500. Given that all
images were in DICOM format, a Python script was developed to convert DICOM to the corresponding
photographic network group (PNG) format, as shown in table 3. To expedite training, all images were
downscaled to 224× 224, an approach that proved successful in segmenting microscopic white blood cells
(WBCs) [68] for clinical diagnosis after normalization. This process ensures pixel intensity lies between 0
and 1, where 0 represents an entirely dark image, and 1 denotes an utterly bright image. The range of
numbers between 0 and 1 denotes distinct tones of gray. This step is crucial when merging datasets with
varying pixel value ranges from different sources. Subsequently, contrast-limited adaptive HE (CLAHE) was
applied to enhance lung regions further.

The pre-processing techniques considered are crucial for improving the quality of the input images, as
highlighted in table 3. For example, in the case of HE, the images appear darker and exhibit added noise,
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Table 3. The result of our pre-processing approach.

Original
input image
(2525× 2508)

Resized image
(224× 224)

Histogram
equalization (HE) CLAHE

Binary
thresholding

OTSU
thresholding

with an increased file size due to the consideration of global contrast rather than local contrast. As a result,
adaptive HE was employed to address these issues.

Consider an image (f ) that Xr and Yc represent with intensity values between 0 to N − 1. Where N is the
possible intensity value (max. of 256). Let Q denote a standardized histogram of f with a bin size of intensity
values. Then,

Qn=
# of pixel values (n)

sum of pixel values
where n = 0,1,2, . . . , N− 1. (1)

The histogram-normalized image, denoted by the letter H, will be defined as:

Hi, j = floor

(N− 1)

fi,j∑
n=0

pn

 (2)

where the floor() function rounds down to the nearest integer. Then, transforming the intensities,m, of f by
the function yields equation (3):

J(m) = floor

(
(N− 1)

m∑
n=0

pn

)
. (3)

Considering the intensities of f and H as continuous random variables X, β on the interval [0, L− 1]
provides the impetus for this transformation. β is the sum of the intensities of f and g according to
equation (4),

β = J(m) = (L− 1)

Xˆ

0

px(x)dx, (4)

where px= the probability density function of f.
J is the cumulative distribution function of the product of X and (L− 1).
Factoring in the probabilities and partial derivatives, equation (4) becomes:

d

dy

 yˆ

0

py(z)dz

= py(y) =
px
(
T−1(y)

)
d

dy
(
T−1(y)

) . (5)
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Equation (5) ensures that the distribution of pixel intensities is even across the input image.
In CLAHE, the transformation function’s slope governs local contrast amplification. Consequently, the

redistribution process may push some bins above the clip limit again (the region highlighted in blue in the
histogram), leading to a practical clip limit that exceeds the desired limit. If this outcome is undesirable, the
redistribution procedure can be iterated until the excess becomes negligible.

The need for a thresholding operation was deemed unnecessary, as the primary emphasis was on deep
learning techniques. Furthermore, these advanced approaches possess the inherent ability to adapt and
effectively manage variations within the input data, thereby optimizing the model’s overall performance.

4. Proposed methodology

This section presents the modified U-Net model utilized for lung segmentation alongside the variants of
pre-trained models comprising the ensemble approach. As per the literature, the U-Net architecture has
found widespread application in segmenting medical images.

The input for the initial design of U-Net was a complete image, and the output was a predicted mask.
Input images typically come in various resolutions, including 128 by 128, 256 by 256, and 512 by 512 pixels.
These images go through four to five layers of convolutional down-sampling and up-sampling to be shrunk
and expanded. However, this study used three different pre-trained segmentation models with a fully
connected U-Net model trained from scratch. The input to the U-Net model was modified to 224× 224,
which invariably reduced the training time by 1%, and then applied batch normalization and dropout
regularization variations. Throughout the literature, the model will be referred to as CX-Net, to imply that
modifications to the original U-Net model were made. The block diagram for the proposed ensemble
method is in figure 4.

4.1. Ensemble methods
Ensemble techniques encompass machine learning strategies that merge multiple base models into a single,
more accurate predictive model. Bagging, stacking, and boosting represent the three primary methods within
ensemble learning. Understanding and considering each approach when working on predictive modeling
projects is essential. The term ‘meta-learner’ in this research refers to combining four distinct segmentation
models into an ‘ensemble’, resulting in a well-segmented output. Generally, CNN architectures employ one of
two ensemble techniques:

(a) Utilizing various CNN algorithms for feature extraction from medical images [69], and
(b) A hybrid approach that merges using a mathematical formula [70].

The benefit of using this method is that the ensemble technique accurately identifies the ROI from the
images, resulting directly from precise predictions made using previous CNN models’ outcomes. As shown
in figure 5, the image is simultaneously provided to four functional layers (CX-Net, U-Net, Linknet, and
FPN). The global max-pooling layer accepts each functional layer’s learned representations. After merging
the outputs of several parallel flows, the results are flattened and combined to create image feature vectors.
Subsequently, layers are stacked to fine-tune the network, prevent overfitting, and enhance segmentation
accuracy. Next, the four models’ weights are standardized. Finally, the ensemble technique delivers the result
using a fully connected layer.

4.2. CX-Net model
A detailed description of CX-Net, a modified version of the U-Net model, is presented in table 4, utilizing an
input image of size 224× 224 instead of the standard 256× 256. CX-Net comprises five blocks each for both
up-sampling and down-sampling. This study demonstrates the effectiveness of CX-Net, an ensemble of a
network trained from scratch alongside U-Net, Linknet, and FPN, in segmenting lung fields in CXR images
using an encoder–decoder network. During the training process, the network generates a mask for lung
segmentation and learns higher-order structures, guiding the segmentation model through semi-supervised
learning. It is achieved by leveraging images from the Montgomery dataset and transferring the learned
features to images from VinDr-CXR without ground truth masks. This approach aids in identifying and
addressing chest anomalies, such as pneumothorax and other structural deformities, while also proving
invaluable in detecting chronic diseases like COPD.

The initial step in the CNN model involves extracting 64× 64 pixel squares from the input image. Before
creating the segmentation mask, the cropped areas from the original x-ray are classified into lung and
non-lung regions. Patches are then successively clipped from the precise location in the original CXR and
mask images. The ratio of lung pixels to non-lung pixels in the original image can be determined by
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Figure 4. The proposed ensemble methodology (CX-Net) for CXR image segmentation.

comparing the cropped patches. For example, a specific area containing 40% or more lung tissue is classified
as a lung patch, while a non-lung patch receives a different label. Extensive research has shown that a 40%
cutoff indicates a lung patch. Once the CXR data patches are cropped and labeled, a CNN model is employed
for classification.

Figure 5 illustrates the subsequent layers in the network, with kernel sizes of 2× 2 for all convolution
layers and 3× 3 for all pooling layers. The four convolution layers saw progressive feature increases, with 64,
128, 256, and 256 features applied respectively. The use of ensembling on the validation sets resulted in
effective lung region-wide segmentation. Extracting patches using an overlapping approach is crucial to
obtain a more precise mask for segmenting lungs in test samples. This implies that a stride of 1 or 2 should be
utilized for removing patches. The stride value directly correlates with the quality of the segmented lung
contour. For instance, for a 224× 224 image with a stride of 2, the CNN model must predict 28 800 patches
to generate a complete segmentation mask for the entire CXR image.

Suppose an image patch corresponds to a lung. In that case, the central four pixels of the associated mask
will be painted white (1 for each pixel), allowing the CNN model to yield a comprehensive x-ray
segmentation. It is important to note that using a stride of 3 results in a slight degradation in smoothness
compared to a stride of 2. The subsequent section demonstrates that the U-Net layer can restore the original
contour’s smoothness.

Table 4 outlines some layers and hyperparameters associated with the proposed model, while algorithm 1
explains the procedure. It is crucial to understand that the selection of hyperparameter tuning allowed us to
obtain all trainable parameters. Consequently, the model was optimized for computational time, achieving a
Dice score surpassing that of most SoTA models, as further elaborated in the discussion of the results.

11



Mach. Learn.: Sci. Technol. 4 (2023) 025021 V I Agughasi and S Murali

Figure 5. A U-Net model trained for CXR image segmentation.

Table 4. Summary of the model layers and parameters.

Layer (type) Output shape
No. of
parameters Connected to

Input_3 (InputLayer) (None, 224, 224, 3) 0 []
Conv2d_38 (Conv2D) (None, 224, 224, 64) 1792 [‘input_3[0][0]’]
Batch_normalization_18
(BatchNormalization)

(None, 224, 224, 64) 256 [‘conv2d_38[0][0]’]

Activation_18 (Activation) (None, 224, 224, 64) 0 [‘batch_normalization_18[0][0]’]
Dropout_12 (Dropout) (None, 224, 224, 64) 0
Conv2d_39 (Conv2D) (None, 224, 224, 64) 36 938 [‘activation_18[0][0]’]
Batch_normalization_19
(BatchNormalization)

(None, 224, 224, 64) 256 [‘conv2d_39[0][0]’]

Activation_19 (Activation) (None, 224, 224, 64) 0 [‘batch_normalization_19[0][0]’]
Dropout_13 (Dropout) (None, 224, 224, 64) 0
Max_pooling2d_8 (MaxPooling2D) (None, 128, 128, 64) 0 [‘activation_19[0][0]’]
Conv2d_40 (Conv2D) (None, 128, 128, 12) 73 856 [‘max_pooling2d_8[0][0]’]
Batch_normalization_20
(BatchNormalization)

(None, 128, 128, 12) 512 [‘conv2d_40[0][0]’]

Activation_20 (Activation) (None, 128, 128, 12) 08 [‘batch_normalization_20[0][0]’]
… … … …
… … … …
Conv2d_54 (Conv2D) (None, 224, 224, 64) 73 792 [‘concatenate_11[0][0]’]
Batch_normalization_34
(BatchNormalization)

(None, 224, 224, 64) 256 [‘conv2d_54[0][0]’]

Activation_34 (Activation) (None, 224, 224, 64) 0 [‘batch_normalization_34[0][0]’]
Conv2d_55 (Conv2D) (None, 224, 224, 64) 36 928 [‘activation_34[0][0]’]
Batch_normalization_34
(BatchNormalization)

(None, 224, 224, 64) 256 [‘conv2d_55[0][0]’]

Activation_35 (Activation) (None, 224, 224, 64) 0 [‘batch_normalization_35[0][0]’]
Conv2d_56 (Conv2D) (None, 224, 224, 1) 65 [‘activation_35[0][0]’]

4.2.1. Pretrained U-Net model
The U-Net architecture is a well-employed CNNmodel for semantic segmentation that has been heavily used
in biomedical image segmentation [71–73]. The original U-Net model, proposed by Ronnberger et al [71],
accepts an entire input image and returns the masked image as an output. These can be 128× 128,
256× 256, or 512× 512 pixels in size; however, this varies depending on the application. Images are encoded
with four or five convolution layers and then decoded to the desired resolution. With 23 convolutional layers,
two 3× 3 convolutions are applied, followed by a rectified linear unit (ReLU) and a down-sampling 2× 2
max pooling operation with stride 2. For the feature map to be up-sampled, the number of feature channels
is cut in half using a 2× 2 convolution, then expanded to the cropped feature map from the contracted path,
and finally, a ReLU is applied to the combined map.

The entire image gets a pre-segmented mask. As a result, the initial U-Net design was reduced to keep the
scaling while downsampling the image using VGG16 as the backbone and ImageNet as the encoder weights.
Sigmoid was used for the activation as it outputs the probability of the images being of a lung region.
Figure 6 displays the architecture of the U-Net model.
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Figure 6. U-Net model for semantic segmentation.

Figure 7. LinkNet model for semantic segmentation.

4.2.2. Pretrained LinkNet model
The second pre-trained network explored is the LinkNet, dubbed a full CNN for fast semantic segmentation
[74]. It consists of 4 blocks each for up-sampling and down-sampling. The max-pool operation uses a 3× 3
filter with a 7× 7 convolutional size with batch normalization between each convolutional layer followed by
a non-linearity function, ReLU [75, 76].

Input images usually convolve with a 7× 7 kernel and a stride of 2 in the encoder’s first block. This block
likewise performs spatial max-pooling in a 3× 3 area with a stride of 2. Further along, encoder blocks are
residual blocks that make up the encoder. Figure 7 explains the internal layers of these encoder blocks. Newer
segmentation methods rely on neural networks like VGG16 (with 138 million parameters and tens of
thousands of floating-point operations per second) as their encoder. The unique thing about this
architecture is how the links between each encoder and decoder were linked. It differs from how neural
network models work for segmentation. Successive down-sampling processes in the encoder lead to the loss
of some spatial information. Using the down-sampled output of the encoder, which does not have a trainable
parameter, to retrieve this lost information is challenging.

The backbone networks were initially designed for classification tasks. The global average pooling layer
and all fully connected layers were removed to make them suitable for semantic segmentation. The decoder
components each have five blocks. The nearest-neighbor up-sampling layer is used for each level of the first
four blocks to enlarge the image size by replicating a nearby pixel’s value. Then, the nearest-neighbor
up-sampling output is combined with the encoder’s output. The feature map is fed into 3× 3 convolutions,
batch normalization, and ReLU activation layers. In the last block of the decoder, up-sampling is followed by
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Figure 8. FPN model for CXR image segmentation.

two 3× 3 convolutional layers. The number of channels reduces from 256 to 16 during the decoding process.
The output is a mask that is constructed pixel by pixel and specifies the category of each pixel.

4.2.3. Pretrained FPN model
Besides the two pre-trained networks, a third pre-trained network, a FPN, was explored. FPN, as a feature
extractor, accepts a single-scale image of arbitrary size as input and generates correspondingly sized feature
maps at various layers in an entirely convolutional manner. This method is independent of the convolutional
backbone architectures. As a result, it acts as a versatile approach for constructing feature pyramids within
deep convolutional networks, which can be applied to problems such as object detection. The feedforward
computation of the backbone ConvNet constitutes the bottom-up pathway. This pathway computes a feature
hierarchy consisting of multiple-scale feature maps with a scaling step of 2. Each step of the feature pyramid
corresponds to a single level of the pyramid. The output of the final layer of each stage serves as a reference
set of feature maps, as depicted in figure 8.

To improve the functionality of the U-Net architecture, the original encoder was swapped for a 50-layer
ResNeXt encoder that had been pre-trained using the ImageNet database [77]. The corresponding decoder
was also modified to work with the new encoder. The ResNeXt50 encoder introduces a new building block
that unifies transformations with a similar network, utilizes residual connections to enhance blocks of
multiple convolution layers, and creates gradient shortcuts to lessen the likelihood of vanishing gradient
problems. As a result, it makes it possible to train deeper network architectures, as highlighted in algorithm 1.

The CX-Net algorithm is designed to segment lung regions in CXR images. The algorithm consists of
several key steps:

Image loader: Pre-processing and data augmentation are applied to all images in the VinDr-CXR and
Montgomery datasets. Images are resized to 224× 224× 3, and CLAHE is performed. Then, data
augmentation with 60◦, 90◦, and 120◦ rotations is applied, followed by normalizing pixel values.

Grouping lung and non-lung regions: The algorithm identifies whether a given image patch belongs to the
lung or non-lung region. If the image patch is classified as a lung, it returns 1; otherwise, it returns 0.

Computing patches: The algorithm extracts image patches using stride lengths of 1 and 2. Feature maps
are selected from these patches and forwarded to the proposed CX-Net model.

CX-Net model: The algorithm constructs a Conv2D model and adds activation functions, learning rate,
and tuned hyperparameters. The image patches are then forwarded through pre-trained U-Net, LinkNet,
and FPN models with VGG16 as the backbone and ImageNet weights.

Post-segmentation: After the segmentation process, the algorithm selects pre-segmented images, performs
binary conjunction, and outputs merged images to complete the segmentation process. The purpose of this
approach is to improve the precision of the segmentation. The CNN model proposed in figure 4 has proven
effective in segmenting the lung region fairly. However, CXR images with severe anomalies produce an
overall worse segmentation result. Combining the results of these four segmentations can help restore some
of the lung tissue considered to be lost.

The overall algorithm effectively segments lung regions in CXR images, leveraging the power of an
ensemble model and various pre-processing techniques to improve the accuracy of lung segmentation.

5. Results and discussion

This section presents the results of the proposed lung segmentation approach, beginning with the outcomes
of both the initial and final segmentation stages. Performance metrics of various methods were compared
using publicly available CXR imaging datasets, ultimately selecting the top three. Table 5 demonstrates that
FPN, Linknet, and pre-trained U-Net models achieved the highest validation accuracy.

On the VinDr-CXR and Montgomery datasets, we evaluate the segmentation results of the proposed
ensemble networks. The pre-trained models incorporating the ImageNet encoder (i.e. U-Net, FPN, and
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Algorithm 1. CX-Net algorithm for CXR segmentation.

1: Begin-Procedure imageLoader(sources)
2: for all images in sourcess (VinDr-CXR, Montgomery):
3: resize←(224 ∗ 224 ∗ 3)
4: do:
5: pre-processing: CLAHE
6: apply data augmentation (60◦, 90◦, 120◦)
7: resize← (imgPixels/max(255))
8: end do
9: find class(lung, non-lung)
10: if ‘lung’ in class:
11: return 1 (lung)
12: else:
13: return 0 (non-lung)
14: end if
15: end find
16: computePatches(sources)
17: for all images in normalized sources:
18: extract patches using strides of 1, 2
19: select feature map
20: end for
21: forward to proposed model (CX-Net):
22: do:

I. create conv2D model
II. add activation, learning rate
III. tune hyperparameters

23: end do
24: forward to model (U-Net):
25: do:

I. call the pretrained U-Net
II. backbone= VGG16
III. weight= ImageNet

26: end do
27: forward to model (LinkNet):
28: do:

I. call the pretrained U-Net
II. backbone= VGG16
III. weight= ImageNet

29: end do
30: forward to the next model (FPN):
31: do:

I. call the pretrained U-Net
II. backbone= VGG16
III. weight= ImageNet

32: end do
33: end computePatches
34: procedure postSegmentation (testImages)
35: do:

I. select pre-segmented images
II. perform binary conjunction
III. output merged images

36: end do
37: end procedure
38: end Begin-Procedure

Liknet) outperformed the model trained from scratch. We observed the best performance metric on the
Montgomery dataset with ground truth (i.e. JS= 0.992, DC= 0.994, PPV= 0.993, and recall= 0.980) for
lung field segmentation. However, compared to the U-Net model trained from scratch, some lung regions
were improperly segmented (highlighted in red circles).
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Table 8 compares the outcomes of incorporating ensembling to other methods using the VinDR-CXR
dataset and a standard evaluation technique [78]. The segmentation result are displayed in table 5.

We then compared the results of various segmentation techniques to demonstrate the efficacy of the
proposed approach. Additionally, we present a comparative analysis with chosen case studies from various
authors to test the robustness of the proposed methodology.

5.1. Model explainability using SHAP and GRAD-CAM
SHAP is a suitable measure of feature importance that provides a robust and interpretable method for
explaining individual predictions of complex machine learning models [79]. It is based on the concept of
Shapley values from cooperative game theory and enables a consistent way to attribute the output of a model
to its input features. By using SHAP, we can understand the influence of each feature on the model’s
predictions, enabling better transparency and interpretability. In the context of deep learning models for
medical imaging, such as the CX-Net algorithm for CXR segmentation, SHAP can be employed to evaluate
the contribution of each feature, such as specific regions or patterns within the image the final decision [80].
This information can help to identify potential biases, improve model performance, and instill trust in the
model’s predictions among practitioners.

Grad-CAM is another widely used technique for visualizing the interpretability of deep learning models,
especially CNNs [81, 82]. Grad-CAM visually explains model predictions by highlighting essential regions in
the input image, contributing to the final classification or segmentation decision. It does this by computing
the gradients of the target class to the feature maps of the last convolutional layer, followed by a weighted
combination of these gradients to produce a heatmap. This heatmap can be superimposed on the input image
to reveal the salient regions that the model focuses on during its decision-making process. For example,
applying Grad-CAM to the CX-Net algorithm for CXR segmentation would allow a deeper understanding of
which regions within the x-ray images the model deems essential for accurate lung segmentation. Thus,
providing valuable insights into the model’s behavior and aiding in the interpretability of its predictions [83].

5.2. Select case studies on COPD segmentation
Lung segmentation is an important use case for a high-quality segmentation algorithm that generalizes well
to various images. This section evaluates segmentation results for several COPD CXR images. We
concentrated on prevalent illnesses requiring medical treatment, such as cardiomegaly, emphysema,
pneumothorax, and tuberculosis.

Cardiomegaly (Case 1): This can be seen plainly on a CXR. A cardiothoracic window on a PA film of more
than 50% is considered diagnostic of cardiomegaly. The enlarged heart’s chamber of origin can be
distinguished with the help of other x-ray findings in the chest. With the aid of the annotations file, a few
samples that represented a generalization of the ailments are shown in figures 9–12. Experimental findings
reveal that the model was robust to outliers with precision, recall, and Dice scores of more than 96%. The
images are highlighted in three variants of colors that represent the ground truths (blue), the result of
segmentation from a U-Net model (red), and the proposed model (orange).

SHAP values indicate the contribution of each model feature to a prediction but do not reveal how the
features contributed to the target variable. This is because a model may not accurately represent reality, and

predictions can be incorrect. The values predicted for f (x) were obtained using the equation f(x) = exp(x)
1+exp(x) .

This is a sigmoid function with its logit function f(x) = log(y)− log(1− y). Given that f (x)=−8.85, the
probability expressed as a percentage is 13.4%

Emphysema (Case 2): Radiographic changes in the chest of a patient with moderate to severe emphysema
include bilaterally hyperlucent lungs of considerable capacity, flattened hemidiaphragm with expanded
costophrenic angles, horizontal ribs, and a narrow mediastinum.

Pneumothorax (Case 3): It is the medical word describing the presence of gas (usually air) in the pleural
space (plural: pneumothoraces). A condition known as tension pneumothorax develops when the gas
collection continually swells and presses on mediastinal tissues. Initial imaging, often a supine or
semi-recumbent chest radiograph, may fail to detect an occult pneumothorax.

Tuberculosis (Case 4): Tuberculosis, also known as (TB) due to its frequent abbreviation, is a spectrum of
diseases caused byMycobacterium tuberculosis that can affect virtually every body part.Mycobacterium bovis
can also cause a subset of cases.

Overall, the proposed approach performs better than existing methods on various datasets, illness types,
and individual patient instances. There are occasions where the method’s overall performance diminishes,
yet it can still segment a sizable portion of the lung region. Although there is some variation in the results
across clinical experts as regards the segmentation efficacy, the overall performance is relatively consistent, a
step that validates the integration into a CDSS.

17



Mach. Learn.: Sci. Technol. 4 (2023) 025021 V I Agughasi and S Murali

Figure 9. Recall= 98.2, PPV= 97.4, DC= 96.9.

5.3. Parameters for training
The model learning rate was 0.000 05 but fine-tuned to 0.000 01 after extensive experimentation. The size of
each batch was 64, a good fit since we have more than 10 000 images to train. The number of epochs stood at
50. After the 21st epoch, the model did not improve further, and the learning rate automatically remained
the same throughout the training, as presented in table 6. Adaptive moment estimation (ADAM) [84], a
first-order gradient-based optimization of stochastic function, was used as an optimizer. The input image is
further downsampled by a factor of 2 during the encoding phase. Figures 5–8 show the model with each part
of the decoder sub-block. Data augmentation [85], a well-known regularization technique, was used to
improve performance by reducing overfitting. The framework for augmentation in table 2 shows that various
methods like vertical flip, normalization, and others improve the model’s generalizability.

Utilizing the widely accepted ‘70:30 rule’, the model allocated 70% of the images for training, with each
image featuring dimensions of 224× 224 pixels.

The remaining 30% of the data was reserved for testing the methodology. The training was conducted
using the most recent version of Tensorflow (2.10.0) on a hardware setup consisting of an NVIDIA GeForce
GTX 1060 GPU, an Intel Core i7-8750H processor operating at 2.2 GHz, and 16 GB of RAM. This
arrangement allowed for efficient processing and optimal performance during the model’s training and
testing phases.

5.4. Evaluation of performance metrics
Our proposed methodology used the Jaccard similarity (JS) and the DC. These metrics have found useful
applications in accessing the quality of segmentation models. Similarly, for the losses, Jaccard loss (JL) was
used, Dice loss (DL), and binary cross entropy loss (BCE), respectively.
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Figure 10. Recall= 98.6, PPV= 97.6, DC= 96.3.

Figure 11. Recall= 98.9, PPV= 98.6, DC= 96.2.

Jaccard similarity (JS): To quantify the degree to which two samples are alike and dissimilar, statisticians
use the JS coefficient, also called the Jaccard index or the IoU. It assesses the similarity between finite sample
sets by dividing intersection by union. For example, given two sets (x, y), the JS can be expressed as:
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Figure 12. Recall= 98.2, PPV= 97.7, DC= 96.2.

Table 6. Parameters for training.

Early stoppage (ES) True

Learning rate (LR) 10−5 (0.000 01)
Patience 3
Batch size (BS) 64
Weight-decay 0.1
Momentum 0.9
Optimizer Adam
Epochs 50
∗Best epoch 21
System configuration Nvidia GTX 1060, 6GB GPU

JS(x,y) = AnB/AuB, (6)

where n= intersection and u= union of the two sets, respectively.
Equation (6) illustrates the operation: ∑n

i=1 (x [i ] ∗ y [i ])∑n
i=1 x [i ] +

∑n
i=1 y−

∑n
i=1 (x [i ] ∗ y [i ])

. (7)

For simplicity, JS(x,y) is:

JS(x,y) = TP/FP+TP+ FN, (8)

where TP, FP, and FN denote samples of true positives, false positives, and false negatives.
From figure 8, JS can be expressed as the ratio of the IoU, a commonly used metric in deep learning

models.
Dice coefficient (DC): The DC, also known as ‘dice score or F-score,’ also quantifies the similarity like

JS(x,y), but with a different weight on true positive as the best value is reported at 1 (00%), and the worst, a
zero (0) score as shown in equation (9),

DC(x,y) = 2 |AnB|/|A|+ |B|, (9)

where |A| and |B| are the cardinalities of the two sets (i.e. the number of elements in each set).
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Figure 13. Results of ensemble segmentation methods for CX-Net on the CXR dataset.

When applied to Boolean data, using the definition of true positive (TP), false positive (FP), and false
negative (FN), as in equation (10):

ξ DS = 2TP/2TP+ FP+ FN. (10)

Jaccard loss (JL): The JL or IoU loss optimizes the segmentation metric like DL. The Tversky loss gives FN
and FP differing weights, while DL gives them equal weights. A criterion to measure the loss is:

JL(x,y) = 1− |AnB|/|AuB| (11)

Dice loss (DL): The criterion to measure the DL is:

DL(x,y) = 1− 2 |AnB|/|A|+ |B| (12)

Binary cross entropy loss (BCELoss): In the context of lung segmentation, BCELoss provides the following
definition of the generic loss function; it creates a criterion that compares the ground truth (gt) with the
prediction (p),

BCEloss =−
∑

[Agt(x) log(P∼ (x))+ (1−Agt(x)) log(1− P∼ (x))] , (13)

where Agt(x)∈ {0,1}= the actual ground truth segmentation label of the pixel x and, P ∼ (x)= the predicted
probability of x being the lung regions.

During training, we tracked the ‘precision and recall’ amongst other hyperparameters to see how it
improved over time. Figure 13 captures the trends across various epochs.

Precision, also known as the PPV, addresses the question: What proportion of identifications was correct?
For example, a model that produces no false positives has a precision of 1.0. The criterion is as follows:

Precision (PPV)(x,y) =
TP(x,y)

TP(x,y) + FP(x,y)
(14)

where TP= true positive.
Sensitivity, also known as recall, accounts for the actual positives identified correctly. It is defined

mathematically as:

Sensitivity (Recall)(x,y) =
TP(x,y)

TP(x,y) + FN(x,y)
(15)

where FN= false positive.
Figure 13 represents the performance metrics across 50 epochs. For clarity’s sake, we present only the first

26 epochs with the Dice score, Jaccard score, precision, and recall that stood above 90%.
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Table 7. Segmentation accuracy (evaluated by Jaccard, Dice, and BCE) of models using two different datasets.

Metrics Losses

Model Dataset JS DC PPV Recall JL DL BCE(Loss)

CX-Net VinDr-CXR 0.926 0.958 0.978 0.978 0.074 0.042 0.020
Montgomery 0.925 0.955 0.976 0.976 0.075 0.045 0.020

FPN VinDr-CXR 0.980 0.974 0.969 0.975 0.020 0.026 0.020
Montgomery 0.982 0.970 0.963 0.971 0.018 0.030 0.020

LinkNet VinDr-CXR 0.982 0.970 0.963 0.971 0.018 0.030 0.020
Montgomery 0.986 0.974 0.983 0.961 0.014 0.026 0.020

U-Net VinDr-CXR 0.982 0.984 0.983 0.980 0.008 0.006 0.030
Montgomery 0.992 0.994 0.993 0.980 0.008 0.006 0.041

Note: Only the best evaluation metrics are in table 4—the best metrics obtained at the 21st epoch.

Figure 14. Loss vs. accuracy curve.

As illustrated in figure 13, the Recall metric improved significantly for the training, from 67% to 99.8%.
This is a promising result, as it suggests that the model is increasingly improving at identifying the desired
ROIs from the CXR images. The Dice score, IoU, and PPV metrics also showed similar improvements,
supporting this conclusion. It is worth noting that the Recall metric decreased slightly at the 26th epoch, but
this is likely because the model was starting to overfit the training data. Overall, these results are very
encouraging, and they suggest that the model has the potential to be very effective at lung segmentation.

The JS metric peaked at the 21st epoch but suddenly dropped to 81.5% at the 24th epoch. The Dice and
Jaccard losses followed a similar trajectory, with minima at the 21st epoch (2%). However, the BCE loss
showed abnormal behavior, sharply increasing at the 24th epoch. This increase is likely because the model
was beginning to learn to predict the ground truth labels rather than the actual labels. Early stoppage with a
patience factor of 3 ensured the model did not overfit during the training phase.

For an adequate comparison, each model is trained and evaluated on the VinDR-CXR and Montgomery
CXR datasets. The VinDR-CXR dataset uses the contrast enhancement method (CLAHE), as explained in
table 3. The results are in table 7.

Table 7 shows a similar trend across all three pre-trained segmentation models. Thus, we evaluate the
accuracy and loss over 50 epochs, as presented in figure 14.

Accuracy, also known as the error rate, is a metric that measures the number of correct predictions to the
sum of predictions. It is expressed mathematically as:

Accuracy=
TrueP + TrueN

TrueP + TrueN + FalseP + FalseN
(16)

where p= positive; n= negative.
The accuracy ranges from 0 to 1 and is a fraction of the percentage (i.e. accuracy ∗ 100).
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Similarly, the loss captures the rate at which error rates plummet t the minimum. It is inversely
proportional to the accuracy. For a good (learnable model), the accuracy tends toward 100%, while the loss
tends toward zero.

The use of callbacks’ early stoppage with a patience of 3 ensures that the model stopped training when
the metric did not improve beyond the best-recorded value. In our experiment, the best accuracy was at the
21st epoch. The accuracy was 97.6%, while the loss was around 2.4%.

5.5. Comparison with relevant literature
The proposed methodology is studied carefully and compared to other SoTA methodologies in this section.
In addition, the outcomes of this investigation to those of successful prior studies using different methods
and algorithms are in table 8. Segmentation techniques have matured to where accuracy rates consistently
exceed 92% across all performance measures. The proposed method uses four DNNs to detect bacterial
infections like tuberculosis, pneumothorax, and emphysema.

Rajpurkar et al [86] proposed a dense CNN model with 121 layers for the discrimination of various
thoracic diseases. On the Pneumonia CXR image, an accuracy of 85% was achieved, which was on par with
clinical validation.

Multiclass segmentation of CXR images was investigated by Novikov et al [87] using the publicly
available Japanese Society of Radiological Technology (JSRT), which achieved commendable results in
differentiating the lungs and heart from clavicles.

Two popular CNN methods, Xception and VGG16, were used by Ayan and Unver [88]. Experimental
results show that VGG16 was better than the Xception model by a margin of 5%.

Chen et al [89] employed an orthogonal model with complementary CNNs to reduce channel-wise
redundancy and achieved an accuracy of 83% on the ImageNet challenge.

Munawar et al [90] employed generative adversarial networks for the segmentation of lung regions for
disease diagnosis. An IoU of 94.3 outperformed most of the literature that used the same dataset (JSRT).

Using four pre-trained models (such as DenseNet121), Salehi et al [91] investigated an approach for the
detection and classification of pediatric pneumonia with a classification accuracy of 86.8%.

Table 8 compares the proposed method, CX-Net, with SoTA techniques in lung segmentation. The table
includes information on the dataset used, problem scope, technique, methodology, novelty, JS, DC, PPV,
Recall, and Accuracy. Various approaches are employed, ranging from DCNN, transfer learning, and GAN,
to heuristics. The novelty of each method are highlighted, such as custom architectures, dilation in CNN,
and the use of heuristic algorithms.

The proposed method, CX-Net, utilizes an ensemble learning approach on the VinDR-CXR and
Montgomery datasets. It combines multiple CNN models for segmentation, resulting in impressive
performance metrics: JS (99.2%), DC (99.4%), PPV (99.3%), Recall (98.0%), and Accuracy (97.6%). In
addition, the table demonstrates that the proposed approach performs better than other techniques in lung
segmentation, indicating its potential for practical applications in medical imaging and COPD diagnosis.

5.6. Limitation
Focusing primarily on segmenting PA-CXR images, this study does not consider methods for AP-CXR; as a
result, lateral CXR images are excluded from the research. It is acknowledged that various modalities, such as
CT scans, can effectively capture lung regions, providing a quantitative view of the lungs and being regarded
as the ‘gold standard’ by radiologists and physicians. However, real-time data are often messy and
heterogeneous, making it uncertain how well the proposed model generalizes to these datasets, as with many
deep learning methods. In addition, other clinically validated datasets, such as JSRT, MC, and University of
Texas Medical Branch (UTMB), were not investigated. Consequently, future research will expand the model
to include these modalities and datasets.

6. Conclusion and future work

In this work, a deep convolutional network (CNN) was trained to generate regions of interest, commonly
known as segmented regions, from CXR images with better accuracy than most existing SoTA ones. To
further enhance the precision of segmentation in PA-CXR images, a method using was proposed using deep
learning techniques (CX-Net). The approach used four parallel deep-learning models to generate the
pre-segmentation masks. Therefore, the overall accuracy of the segmentation increased by using the
pre-segmented masks when processing CXRs from patients with pulmonary disease. Notably, this framework
can train CNNs well even with relatively modest data. Furthermore, various case studies and datasets
extensively examined the proposed model’s performance. As a result, the framework achieves better results
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than most SoTA currently explored. Across all validation sets, we saw averages of 99.2% Jaccard score, 99.4%
Dice similarity score, 99.3% precision, 98.0% recall, and 97.6% accuracy.

This work contributes primarily in four ways. First, it introduced a strategy for reducing the space
required to store images in datasets. Second, the risk of over-fitting is reduced by employing variations of
augmentation, batch normalization, and dropout. In particular, it shows that the proposed stages of contrast
enhancement and image binarization improve faster convergence while requiring less data storage, resulting
in only a 0.9% decrease in prediction accuracy (99.1%). Third, a novel computational model (CX-Net) that
improved lung region segmentation using an adaptive U-Net model was proposed. Fourth, based on relevant
literature, we are the first to employ the proposed approach to the VinDR-CXR dataset. Finally, to validate
the efficacy of the proposed pre-processing strategy, experiments was conducted on the VinDR-CXR and
Montgomery datasets using four popular CNN-based segmentation models. From experiments, we conclude
that using the pre-processed version of the dataset (VinDR-CXR) improves training convergence by 20.5%
and reduces storage space utilization by 75% on average compared to the original dataset (VinDR-CXR).
Finally, this work is tailored towards developing a functional CAD module that will aid radiologists in
diagnosing COPD and other related ailments.
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Appendix

S. No. Abbreviation Description

1. ALL Acute lymphoblastic leukemia
2. BMP Bitmap
3. CADS Computer-aided diagnostic system
4. CBC Complete blood count
5. CDSS Clinical decision support system
6. CNN Convolutional neural network
7. CT Computed tomography
8. CXR Chest x-ray images
9. FNall False negative of ALL
10. FPall False positive of ALL
11. FPR False positive rate
12. GAN Generative adversarial network
13. GCS Global contrast stretching
14. Grad-CAM Gradient-weighted class activation mapping
15. GPU Graphics processing unit
16. HSI Hue, saturation, and intensity
17. HSV Hue, saturation, and value
18. HVN Hypercomplex-valued network
19. ILSVRC 2015 ImageNet large-scale visual recognition
20. JSRT Japanese Society of Radiological Technology
21. LIDC-IDRI Lung image database consortium and image database resource initiative
22. LR Learning rate
23. M Momentum
24. MM Multiple myeloma
25. NIH-CXR National Institute of Health Chest X-Rays
26. PET-CT Positron emission tomography computed tomography
27. PPV Positive predictive value
28. RFOA Red fox optimization algorithm
29. RBC Red blood corpuscles
30. ReLU Rectified linear unit
31. ResNet Residual networks
32. ROC Receiver operating curve
33. SHAP SHapley Additive exPlanations
34. SOTA State-of-the-art
35. SVM Support vector machines
36. TCIA The Cancer Imaging Institute
37. TN True negative
38. TP True positive
39. TPR True positive rate
40. TPU Tensor processing unit
41. 2D Two dimensional
42. VGG Visual geometry group networks
43. WBC White blood corpuscles
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[93] Rehman N, Zia M S, Meraj T, Rauf H T, Damǎsevičius R, El-Sherbeeny A M and El-Meligy M A 2021 A self-activated CNN
approach for multi-class chest-related COVID-19 detection Appl. Sci. 11 9023
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