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Abstract
It is critical that machine learning (ML) model predictions be trustworthy for high-throughput
catalyst discovery approaches. Uncertainty quantification (UQ) methods allow estimation of the
trustworthiness of an ML model, but these methods have not been well explored in the field of
heterogeneous catalysis. Herein, we investigate different UQ methods applied to a crystal graph
convolutional neural network to predict adsorption energies of molecules on alloys from the Open
Catalyst 2020 dataset, the largest existing heterogeneous catalyst dataset. We apply three UQ
methods to the adsorption energy predictions, namely k-fold ensembling, Monte Carlo dropout,
and evidential regression. The effectiveness of each UQ method is assessed based on accuracy,
sharpness, dispersion, calibration, and tightness. Evidential regression is demonstrated to be a
powerful approach for rapidly obtaining tunable, competitively trustworthy UQ estimates for
heterogeneous catalysis applications when using neural networks. Recalibration of model
uncertainties is shown to be essential in practical screening applications of catalysts using
uncertainties.

Abbreviations

ML machine learning
UQ uncertainty quantification
CGCNN crystal graph convolutional neural network
DER deep evidential regression
OCP Open Catalyst Project
OC20 Open Catalyst 2020 Dataset
NN neural network
DFT density functional theory
MAE mean absolute error
RMSE root mean square error
MDAE median absolute error
MARPD mean absolute relative percent difference
Cv coefficient of variation
MC Monte Carlo
GPR Gaussian process regression

1. Introduction

ML approaches have rapidly grown in popularity to accelerate catalyst screening and understanding [1–4].
Making predictions of catalyst properties with ML models is orders of magnitude faster compared to
first-principles simulation of catalysts, for example, using DFT modeling to compute adsorption energies of
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Figure 1. Advanced materials discovery strategies are enabled with uncertainty quantification. Screening, active learning, and
transfer learning are enhanced by trustworthy estimates of predictive uncertainty, particularly in high-throughput applications
where the size of the uncertainty estimate is used to infer model accuracy. The oracle refers to some trustworthy system that
outputs the desired target, such as DFT-accurate materials properties.

molecules. DFT modeling combined with ML has emerged as a compelling approach for rapid materials
characterization, enabling a several-orders-of-magnitude expansion in the number of materials able to be
studied compared to DFT modeling alone [5–7]. However, the potential of ML models to efficiently explore
large catalyst spaces can only be achieved if it is simple to detect when ML model predictions are accurate or
highly uncertain.

Uncertainty provides a means to infer the accuracy of a model without explicitly knowing the accuracy,
but often this uncertainty of the ML model cannot be trusted [8]. Reliable UQ of ML model predictions is a
fundamental challenge to ML-guided materials and molecule discovery [8–12]. Predictive uncertainty can be
estimated with either distribution-specific methods or distribution-free methods (e.g. MC dropout [13] with
a Gaussian-specific calibration assumption [14] or conformal UQ [15] respectively). By distribution-specific
methods, we mean methods that assume an underlying distribution shape to the uncertainty of model
predictions or their calibrated scaling, while distribution-free methods make no such assumption.
Established UQ methods for ML models are often costly to obtain and have limitations in assessing
prediction errors for chemical space exploration [16].

Effective uncertainty estimates of predictions are an important design element to enhance several
advanced ML strategies for materials discovery, such as high-throughput screening [17, 18], transfer learning
[19], and active learning [20, 21], as illustrated in figure 1. For catalyst discovery, one can ascertain if an ML
model is making accurate predictions of catalyst behavior by confirming the predicted properties
experimentally or through first-principles calculations. In a high-throughput context where many thousands
of systems or more are being studied, frequently confirming the predictive accuracy of the ML model via
experiment or first-principles calculations is impractical. UQ is a means by which one can quantify the
trustworthiness of ML predictions in a way that is practical and attainable for materials discovery strategies
that explore vast materials spaces.

ML-guided studies of catalysts that apply uncertainty have already been performed, but these studies
historically rely on GPR [22–25]. GPR is formulated from Bayesian statistics and directly outputs uncertainty
estimates of the predictions [26, 27]. However, the computational cost of training a GPR model typically
scales O(N3) and thus grows unfavorably with dataset size, which is an open challenge for big-data
applications [28]. Therefore, there is a practical limitation of these models for high-throughput discovery
strategies.

NNs are popular because of their relatively high accuracy across diverse chemical spaces and excellent
performance for large datasets [29–33]. For the OC20 dataset developed under the open catalyst project
(OCP) [34], state-of-the-art deep NN model variants (e.g. CGCNN [35], SchNet [36], and DimeNet++
[37]) have shown up to a 40% improvement in their accuracy of adsorption energy predictions by using
460 000 training samples versus 10 000 samples [34]. The arrival of large training datasets—and innovations
in NN model architectures—has led to steady improvements in accuracy for catalyst property predictions,
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such as molecular adsorption energies [38]. However, less attention in the field has been devoted to
understanding and quantifying the predictive uncertainty associated with these NN architectures applied to
prevailing catalysis datasets [14, 15].

For uncertainty-guided sample acquisition and efficient model training for catalysis using NNs, it is
crucial to ensure that the uncertainty estimates from a given UQ method are reliable and useful. Typical
metrics for evaluating uncertainty estimates include accuracy, sharpness, dispersion, calibration, and
tightness, which are discussed in section 2.4. The reliability of a UQ estimate is often primarily discussed in
terms of calibration, which refers to how well the uncertainty estimate represents a confidence interval that
encloses the ground-truth target [39–44]. Calibrated uncertainty estimates can be used to forecast the
accuracy of materials predictions, thereby quantifying the trustworthiness of an ML model to examine and
propose materials for further study. Using calibrated uncertainty estimates to forecast whether a large set of
ML predictions are reliably accurate or not is common to many applications, such as autonomous driving
[45], image analysis [46], and materials discovery [47].

Herein, we compare three different UQ methods, namely, k-fold ensembling [48–50], MC dropout [13],
and evidential regression [51, 52] to better ensure effective use of NN model architectures for
high-throughput catalyst discovery strategies. All three methods are able to express uncertainty as a standard
deviation (σ). Evidential regression has seen use in small molecule prediction [51] but has not yet been
explored for catalysis applications to our knowledge. These three UQ methods are studied using a CGCNN
to predict adsorption energies of molecules on solid catalyst materials based on the OC20 dataset, many of
which are binary and ternary alloys [34]. Alloy catalysts are highly relevant in industrial applications, such as
the Haber–Bosch process [53], catalytic cracking of hydrocarbons [54], and naphtha reforming [55]. The
OC20 dataset is an ideal test case for understanding UQ methods because it is the largest and most diverse
heterogeneous catalysis dataset, which represents a case study for many material search challenges.

We use accuracy, sharpness, dispersion, calibration, and tightness as UQ metrics to compare the
trustworthiness of each of the three UQmethods, figure 2. We define a trustworthy UQmethod as one that is
perfectly calibrated because calibration measures how well the uncertainty intervals probabilistically grow or
shrink with the predictive error. In practice, one may not know if a UQ method is perfectly calibrated;
moreover, it is possible for two UQ methods to have the same average measure of calibration but have
different uncertainty estimates for the same materials, so accuracy, sharpness, dispersion, and tightness are
discussed as secondary trustworthiness criteria when comparing UQ methods. We particularly emphasize
differences in calibration between UQ methods via adversarial group calibration [56] to determine their
appropriateness for high-throughput catalyst discovery strategies. Scalar recalibration [57] is applied to
address poor calibration performance between UQ methods. Evidential regression is found to be
competitively trustworthy before recalibration and the most trustworthy after recalibration. We demonstrate
the use of UQ and evidential regression to enumerate materials for DFT-predicted adsorption in the case of a
hydrogen adsorbate. Improved reliability in the uncertainty estimates for this demonstration is observed
after recalibration. This work will guide future efforts of uncertainty-guided catalyst search and discovery
using ML.

2. Experimental methods

2.1. Dataset: OC20
We used the OC20 dataset to train and test our CGCNNmodel to predict adsorption energies of molecules
on catalyst surfaces [34]. OC20 encompasses a state-of-the-art collection of DFT calculations of adsorption
energies on binary and ternary alloy catalysts spanning the periodic table, as well as pure metals. The dataset
is comprised of 82 nitrogen, oxygen, and carbon-containing adsorbates. OC20 has over 130 000 000 data
points associated with 5243 unique alloy catalyst compositions.

Within OC20, there are different versions of datasets depending on what task an ML model is performing
to predict adsorption energy. We performed the initial-structure-to-relaxed-energy (IS2RE) task, where the
ML model accepts an unrelaxed initial structure of an adsorbate/alloy system and predicts the relaxed energy
of the system. Electronic energies of the geometry-optimized (i.e. relaxed) gas phase species and the bare
alloy surface are subtracted from the combined adsorbate/alloy system electronic energy to obtain an
adsorption energy at 0 K [34]. We trained the CGCNNmodels on the entire IS2RE training dataset
composed of 460 328 systems. To benchmark the model accuracy and the effectiveness of the UQ methods,
test adsorption energy predictions were made on the entire IS2RE Validation In-Domain (Val-ID) dataset
composed of 24 943 systems. The Val-ID dataset was composed of adsorbate/alloy systems that the model has
never seen before during training. We herein refer to the Val-ID dataset as the test dataset, and we use this
dataset as the test dataset because the dedicated test dataset provided within OC20 does not include target
labels due to its usage in leaderboard competitions.
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2.2. Model: CGCNN
We employ the CGCNNmodel architecture provided by OC20 for adsorption energy predictions [34]. The
CGCNN in our study is a deep-learning convolutional NN of atomic surface structures using the atoms and
distances between atoms in the material crystal structure as node and edge information, respectively [35].
The node and edge information are combined to form a crystal graph, a graph-based representation of the
underlying material. Gaussian basis functions are also used to encode the distances between atoms on the
crystal graphs [34]. Element-specific properties of the materials standard to OC20 were employed as node
embeddings [34]. This crystal graph and associated properties passes through convolutional layers that
reduce the incoming high-dimensional space to a fixed lower-dimensional space. The model accepts
adsorbate/alloy systems of a varying number of atoms because all the data in transit inside the model gets
convolved to the same number of dimensions. After the convolutional layers, the data was transformed by a
series of fully connected layers. Model parameters were optimized to produce accurate predictions via
mini-batch stochastic gradient descent. The best reported hyperparameters reported in the original OC20
dataset report were used for our CGCNNmodel [34]. Before applying any UQ method, our baseline
CGCNNmodel had a 0.651 eV MAE on the IS2RE Val-ID dataset, which is comparable to the expected error
reported in the literature [34].

2.3. UQmethods
We compared three different UQ methods from the literature: k-fold ensembling [48–50], MC dropout [13],
and evidential regression [51, 52], figure 2(a). Each adsorption energy prediction was expressed as a mean
prediction µ with uncertainty as a standard deviation σ centered around the prediction. Uncertainty
intervals around each prediction were constructed using the associated value of the standard deviation σ to
give an interval of µ± 3σ. From an application standpoint, trustworthy uncertainty intervals are interpreted
similarly to a confidence interval in that these intervals quantify the lack of confidence in ML predictions.
Unlike confidence intervals, uncertainty intervals only have coverage guarantees if a UQ method is perfectly
calibrated, figure 2(c).

2.3.1. k-fold ensembling
The k-fold ensemble method estimates uncertainty by segregating the training dataset into k nonoverlapping
subsets (i.e. folds) that are used to train kmodels. Each model makes adsorption energy predictions on the
same test set, but the predictions for these same systems will be different from model to model because each
model was trained on a different fold of training data. For every adsorbate/alloy system, k predictions were
averaged together to produce a mean adsorption energy prediction µ. The uncertainty (i.e. a standard
deviation σ) was calculated for each average prediction µ. Herein, we used k= 5.

2.3.2. MC dropout
MC dropout estimates uncertainty by modifying the fully connected layers of the NN model. Dropout was
applied both during and after training when making predictions—this protocol is necessary to approximate a
Gaussian process [13]. Like the ensemble method, all the adsorption energy predictions corresponding to
any specific system were used to calculate a mean adsorption energy prediction µ and an associated
uncertainty σ for that system.

We refer to the different adsorption energy predictions for the same adsorbate/alloy system as MC
dropout samples. When we say an uncertainty estimate is a 1000-sample MC dropout estimate, we mean that
1000 different adsorption energy predictions for the same system were used post-training to calculate a mean
prediction µ and uncertainty estimate σ. For each fully connected layer of our CGCNNmodel, 5% of the
nodes were stochastically dropped out for each MC dropout sample. A dropout rate of 5% was chosen
because it results in a negligible reduction in model accuracy on the test set, figure S1.

2.3.3. Evidential regression
Evidential regression estimates uncertainty by modifying both the loss function and model architecture of a
regression model [51, 52]. Evidential regression does not require sampling predictions post-training to
estimate the uncertainty, unlike k-fold ensembling and MC dropout. All the information needed to make an
uncertainty estimate of a prediction is outputted by the model at prediction time. Evidential regression uses
an evidential loss function Li (w) such that the model learns the predictive uncertainty while it minimizes the
predictive error during training

Li (w) = LNLLi (w)+λLRi (w). (1)
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Figure 2. Uncertainty quantification workflow to predict adsorption energies of molecules on catalysts. (a) Three UQ methods
(left) k-fold ensemble method, (middle) Monte Carlo dropout, and (right) evidential regression are applied onto a crystal graph
neural network to give both a property prediction and associated uncertainty. (b) UQ metrics of accuracy, sharpness, dispersion,
calibration, and tightness are applied to compare UQ methods. (c) UQ metrics are interpreted to assess the trustworthiness of
materials predictions.

Here w refers to the model weights that are optimized during training, LNLLi (w) refers to the negative
log-likelihood (NLL) of the evidential loss function, and LRi (w) refers to the regularization term of the
evidential loss function. These terms are defined as follows:

LNLLi (w) = 1
2 log

(
π
v

)
−α log(Ω)+

(
α+ 1

2

)
log

(
(yi − γ)

2v+Ω
)
+ log

(
Γ(α)

Γ(α+ 1
2 )

)
(2)

LRi (w) = |yi − γ| · (2v+α). (3)

Here Ω= 2β (1+ v) and the parameters γ, v, α, and β are the evidential distribution parameters. The
symbol Γ refers to the gamma function. The variable λ is a scalar hyperparameter that controls the degree of
regularization introduced by the term LRi (w). We modified the CGCNNmodel architecture to predict these
four parameters for each adsorbate/alloy system. The parameter γ represents the predicted target property
(here the adsorption energy of a system). The parameters v, α, and β are related to the aleatoric (σa) and
epistemic (σe) uncertainties of each prediction:
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σa =
β

α−1 (4)

σe =
β

v(α−1) . (5)

Whereas k-fold ensembling and MC dropout provide one uncertainty estimate for each prediction,
evidential regression provides two estimates corresponding to either aleatoric uncertainty or epistemic
uncertainty. For this experiment, we focus on the epistemic uncertainty of evidential regression because
epistemic uncertainty is related to the uncertainty of the ML model and is a reducible uncertainty, whereas
aleatoric uncertainty is a type of stochastic, irreducible uncertainty [58]. Both aleatoric and epistemic
uncertainty estimates across values of λ are included in figures S2 and S3 of the SI for completeness.

The regularization term LRi (w) inflates the uncertainty estimate of the adsorption energy predictions
based on the absolute residual error |yi − γ|, and λ weights the magnitude of this inflation. Because λ was
fixed before training the model and inflates the uncertainty of the predictions, evidential regression gives a
tunable uncertainty estimate that grows or shrinks depending on the choice of λ.

2.4. UQmetrics
We compare the UQ methods in terms of five UQ metrics: accuracy, sharpness, dispersion, calibration, and
tightness [14, 44]. These UQ metrics collectively provide a means of comparing the predictive accuracy,
shape, and reliability of the uncertainty distribution between UQ methods. Ideally, a UQ method would be
accurate, sharp, disperse, calibrated, and tight, figure 2(b). A UQ method that expresses a prediction as a
mean and the uncertainty as a standard deviation should give accurate predictions regardless of the
uncertainty centered around the predictions. A UQ method is ideally sharp, implying that the method gives
highly certain adsorption energy predictions on average. A UQ method is preferably disperse such that the
uncertainty level of different test predictions is easily distinguished. Importantly, the UQ method should also
be calibrated to allow reliable interpretation as a confidence interval. Lastly, a UQ method should be tight in
that the predictive uncertainty interval should only be as large as necessary to capture the ground truth.

2.4.1. Accuracy
The MAE, RMSE, MDAE, MARPD, coefficient of determination (R2), and the correlation coefficient (R)
were used to quantitatively assess the accuracy of each UQ method. Because MDAE uses the median of the
absolute residual error distribution across predictions, it is less sensitive to outliers compared to the RMSE.
MAE and MARPD are formulated as means, so these metrics have some sensitivity to outliers. MARPD is a
normalized measure of accuracy [14]:

MARPD= 1
N

N∑
i=1

100 ∗ |̂yi−yi|
|̂yi|+|yi| (6)

where ŷi is the ith adsorption energy prediction from the UQ method applied onto our CGCNNmodel and
yi is the true adsorption energy of the ith adsorbate/alloy system as predicted by DFT.

2.4.2. Sharpness
Sharpness (Sha) was expressed as [14]:

Sha=

√
1
N

N∑
i=1

σ2
i (7)

where N is the total number of data points and σ2
i is the squared uncertainty of the ith adsorption energy

prediction.

2.4.3. Dispersion
The dispersion of uncertainty across predictions for each UQ method was measured by constructing a box
plot for each method and measuring the interquartile range (IQR)

IQR= Q3−Q1. (8)

Q3 is the third quartile corresponding up to the 75th percentile and Q1 is the first quantile corresponding
up to the 25th percentile. Whiskers are calculated based on 1.5× IQR below the first quartile and above the
third quartile, respectively. Each box plot was overlaid with a violin plot, which provides a smooth kernel
density estimate of the distribution shape such that each distribution can be visually inspected similarly to a
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histogram. Each kernel density estimate was performed using Scott’s rule for calculating the estimator
bandwidth [59].

Cv was calculated to measure dispersion as well. While IQR quantifies the spread of a distribution bulk
on an absolute scale, Cv quantifies the spread of a distribution relative to its mean. These metrics in tandem
allow for a more robust analysis of dispersion than either alone. Cv was expressed as:

Cv= σσ

µσ
(9)

where σσ and µσ respectively are the standard deviation and mean of the uncertainty distribution. We
include Bessel’s correction in the calculation of σσ .

2.4.4. Calibration
Calibration formally refers to how well the uncertainty estimate represents the true correctness likelihood of
a prediction [39, 41–44]. A calibrated ML model is a model whose uncertainty estimates should be
comparable with its predictive error residuals [14]. In other words, a calibrated model should often be highly
certain for highly accurate predictions and vice versa. Quantitatively, a calibrated model means that the
uncertainty magnitude σ of an adsorption energy prediction µ should often be comparable in magnitude to
the residual predictive error (y−µ), where y is the ground-truth adsorption energy of the system the model
tries to correctly predict.

Calibration of a model was assessed by constructing a calibration curve, figure 2(b). A calibration curve
displays the true frequency of points in each confidence interval relative to the predicted fraction of points in
that interval [60]. For calibration curve construction, a quantile-based method was used [56].
Programmatically, this task was accomplished in the same way as explained by Tran et al [14].

The residual predictive error was normalized by the uncertainty of that prediction. All the normalized
residual errors of all the predictions were combined to construct a distribution. If this distribution was
comparable to a unit Gaussian distribution, then the uncertainty across all the predictions was said to be
calibrated on average. In other words, the uncertainty across all predictions is calibrated on average if the
normalized residual predictive error follows the probability density function of a unit Gaussian distribution:

Φ
(
z= y−µ

σ

)
= e−

z2
2√

2π
(10)

where z is the normalized residual predictive error. This distribution-specific measure of calibration was
applied to all UQ methods tested.

To better interpret this procedure with intuition, consider the case where an adsorption energy
prediction is highly accurate but has high uncertainty. In this case, the normalized residual error (z) is close
to zero because the numerator is small; likewise, the denominator (i.e. uncertainty) is sufficiently large. It is
desirable to have a normalized residual less than or equal to unity for predictions because this implicitly
shows that the uncertainty interval is large enough to enclose the ground truth adsorption energy. The
deviation of the normalized residual error from unit Gaussian behavior is what produces a nonideal
calibration curve, which is constructed by defining quantiles and comparing the proportion of data inside
each quantile between distributions.

Every calibration curve shown herein visually represents the average calibration, which refers to
calibration across the entire adsorption energy test set. However, randomly selected subgroups of predictions
and even individual predictions should be calibrated as well [56, 60]. We refer to the global scope of
calibration across all possible subgroups as the calibration density; to the best of our knowledge, we have not
seen this term used in the literature. We use this term to better intuitively emphasize that any stochastic
subselection of adsorption energy predictions across varying scales should be calibrated, that is, any
subselection of predictions should ideally produce a normalized residual error distribution that is unit
Gaussian, figure S4. If this expectation is met, then we say that a UQ method has effective calibration density.
Calibration density is a related concept to individual uncertainty estimates in that it conceptually represents
the map of calibration at all sample sizes and quantifies the deviation in the average uncertainty from
individual estimates [61].

Calibration density was assessed via adversarial group calibration [56, 61]. Ten subgroups of predictions
were drawn across different subgroup sizes (e.g. ten subgroups that each represent 10% of the test set, 20%,
30%, etc). Within each subgroup, predictions were drawn without replacement. For each subgroup size, the
ten subgroups were compared in an adversarial fashion. By adversarial, we mean that the worst performing
subgroup of the ten compared was chosen as a worst-performing estimate of the calibration density. For each
subgroup size, a hundred trials of picking ten subgroups at that size was performed. Using these trials, a
mean worst-performing estimate of the calibration density was calculated for each subgroup size, as well as
standard error bars (figure 8).
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2.4.5. Tightness
It is desirable to score the quality of the uncertainty intervals irrespective of calibration. For example,
assessing calibration might indicate that an small uncertainty interval could be sufficient to capture the
in-domain ground truth across most predictions, but a UQ method might often be returning unnecessarily
larger intervals in practice. The uncertainty intervals should only be as large as necessary to capture the
ground truth, so scoring metrics assess what we herein refer to as the tightness of a UQ method. Tightness
was measured by computing a negatively oriented mean interval score [40]. An increasingly lower score
refers to an increasingly tight and appropriate uncertainty estimate, figure 2(c).

This mean interval score rewards itself for smaller uncertainty intervals that capture the ground truth but
punishes itself for smaller uncertainty intervals that do not. Across all predictions, we drew uncertainty
intervals across a ground-truth coverage of 1%–99% in 1% increments. The interval length corresponds to
the coverage of our Gaussian distribution assumption (e.g. µ± 1σ is a coverage of∼68%, µ± 2σ is a
coverage of∼95%, etc). For each prediction, we computed a mean interval score across all coverage levels,
figure 2(b). A mean interval score for the entire test set was computed by calculating a mean of these mean
scores.

2.5. Scalar recalibration
The UQ methods tested were recalibrated [61] such that the uncertainty interval of µ± 3σ more reliably
behaves as a confidence interval and encloses the ground truth, which refers to the target property. An
interval of±3σ was chosen because such an interval provides 99.7% confidence under a perfect calibration
assumption. Scalar recalibration was used, which involves multiplying all the uncertainty estimates σ across
all adsorption energy predictions by a constant [57]. This recalibration method retains the original shape of
the uncertainty distribution and stretches or shrinks the distribution based on scaling σ, so UQ methods
with uncertainty distributions that reasonably fit our distribution-specific Gaussian assumption before
recalibration are best recalibrated with this method. The constant was chosen via a black-box optimization
algorithm that attempts to minimize the miscalibration area for each UQ method, table S4. Brent’s method
was used for this recalibration method because—unlike Platt scaling [62] for example—it is a nonparametric
method that makes no assumptions about the shape of the calibration curve(s) to be recalibrated [63]. The
Scikit-learn implementation of Brent’s method was used [64].

3. Results and discussion

We assess the accuracy of each UQ method applied onto our CGCNNmodel by comparing parity plots and
different quantitative metrics of accuracy, figure 3. The three UQ methods have similar distributions of
adsorption energy predictions. By all quantitative measures, evidential regression outperforms the other UQ
methods in accuracy. Evidential regression has an R2 of 0.902 (figure 3(c)), whereas MC dropout has 0.893
(figure 3(b)) and five-fold ensemble has 0.890 (figure 3(a)). Evidential regression has the lowestMDAE of
0.391 eV, suggesting that this UQ method is the most accurate on non-outlier data. Generally, five-fold
ensemble and MC dropout perform similarly across all quantitative metrics of accuracy.

Although each UQ method (figures 3(a)–(c)) differs in its approach for estimating the
uncertainty—ensembling involves segregating the training data, MC dropout involves modifying the model
architecture, and evidential regression requires modifying both the model architecture and
optimization—the accuracy is quite similar for all three methods. To explore why, we examine if the models
are overfit or underfit. Consider MC dropout; this method is used to prevent model overfitting as specified
by the dropout rate hyperparameter [65]. A higher dropout rate results in dropping out more nodes, thereby
resulting in larger adjustments away from overfitting. However, we do not observe improvements in test
accuracy as dropout rate increases, suggesting that the baseline CGCNNmodel that we apply UQ methods
onto is not overfitting to the training data—but rather underfitting relative to the chemical space represented
by the training data, figure S1. A plausible explanation for the underfitting of the three UQ methods with a
CGCNN is that the OC20 dataset is very sparse; roughly 0.07% of possible calculations were performed when
considering the dataset constraints on adsorbates, surfaces, and bulk compositions [34]. Consequently, our
CGCNNmodel architecture may underfit the chemical space represented by the full IS2RE training dataset.
To achieve higher accuracy, more state-of-the-art deep NN models and representations are needed, which is
an area of on-going research [12].

We explored the sensitivity of the hyperparameter choice λ for evidential regression. Table S2 contains
the test MAE results for evidential regression across varying values of hyperparameter λ. The test MAE across
λ fluctuated at most by 0.48% from any given measurement, demonstrating that λ can be used to tune the
size of the uncertainty intervals for this dataset and model without appreciable changes in the average
accuracy of adsorption energy predictions. Based on this sensitivity analysis, we chose λ= 0.05 for all
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Figure 3. Parity plots used to assess accuracy of adsorption energy predictions using CGCNN. Accuracy results shown for (a)
five-fold ensemble, (b) 1000-sample MC dropout, and (c) evidential regression with regularization weight λ= 0.05. Hexagonal
binning was used. Dashed line (red) is the parity line. The mean absolute error (MAE), root mean squared error (RMSE), median
absolute error (MDAE), mean absolute relative percent distance (MARPD), coefficient of determination (R2) and correlation
coefficient (R) are reported inset. Histograms of the model predictions are shown on the same scale inset (100 bins) with the
mean and standard deviation of the histogram given inset.

Figure 4. Violin box plots to assess dispersion and sharpness for each uncertainty distribution. Accuracy results shown for (a)
five-fold ensemble, (b) 1000-sample MC dropout, and (c) evidential regression with λ= 0.05. Shown inside each box plot: Q1
(25th percentile), Q2 (50th percentile), Q3 (75th percentile), and sharpness (dotted red line). Dispersion as measured by IQR and
Cv is reported in table S1. Outliers are not shown for visual clarity of the bulk distribution but are given in figure S5.

subsequent experiments because this regularization weight gives the most conservative uncertainty intervals
of the non-zero weights tested, figure S3(b).

We construct violin box plots to assess both the dispersion and sharpness of each UQ method, as
displayed in figure 4. High dispersion is desirable because one can define heuristics or rules based on the
uncertainty to select and study catalysts for further study. For example, one might want to segregate very
uncertain adsorbate/alloy systems from the rest for further study, but there may not be very uncertain
systems to segregate if the dispersion is small. MC dropout is the most disperse UQ method on an absolute
scale based on having the largest IQR. Five-fold smallest IQR; for this UQ method, defining uncertainty
heuristics to select adsorbate/alloy systems for further study could be difficult—at least if one wants to select
systems from the bulk of the uncertainty distribution. Evidential regression has dispersion in-between MC
dropout and five-fold ensemble in terms of IQR, although we found the dispersion of evidential regression to
vary substantially with varying values of λ, figure S3(b).

The Cv analysis demonstrates that the evidential regression results are the most disperse relative to the
distribution mean. Evidential regression has a Cv of 2.13, whereas five-fold ensemble and MC dropout have a
Cv of 0.786 and 0.779, respectively. Although MC dropout is the most disperse in absolute terms of the
distribution spread, the dispersion of values around the distribution mean is poor. We conclude that
evidential regression is the most disperse UQ method based on IQR and Cv collectively.

Of the methods considered, evidential regression is the least sharp (i.e. has the highest sharpness value);
thus, for this dataset evidential regression gives the least confident adsorption energy predictions on average.
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Figure 5. Calibration curves to assess average calibration for each UQ method. (a) Average calibration comparison between
five-fold ensemble, 1000-sample MC dropout, and evidential regression (λ= 0.05). (b) The effect of sample size on average
calibration of MC dropout. (c) The effect of hyperparameter λ on average calibration of evidential regression (epistemic
uncertainty).

Uncertainty estimates of the adsorption energy predictions can range from 0 eV upwards for each UQ
method, so we expected MC dropout to be the least sharp due to having the largest spread as measured by
IQR, but this is not the case. We observed that evidential regression gives increasingly large—sometimes even
enormous—uncertainty estimates for outliers as λ increases, which skews the sharpness. Whereas evidential
regression is the least sharp (0.780 eV), five-fold ensemble is the sharpest (0.168 eV). Therefore, the five-fold
ensemble gives the most confident adsorption energy predictions on average. We summarize IQR, Cv, and
sharpness for each UQ method in table S1. Dispersion as measured by Cv for the UQ methods does not
change after scalar recalibration. Before recalibration, MC dropout is the most disperse as measured by IQR,
but this UQ method has poor dispersion as measured by Cv. While evidential regression does not have a
better IQR before recalibration, this method is generally more disperse before and after recalibration when
IQR and Cv are collectively considered. The effects of recalibration are discussed more below.

Although it is important for a UQ method to make confident predictions on average, one needs to ensure
that the associated uncertainty estimate σ for each adsorption energy prediction are neither overconfident
nor underconfident such that we can interpret the uncertainty estimate similarly to that of a confidence
interval—an interval that reliably suggests where the actual ground-truth adsorption energy could exist. In
other words, it is important to ensure that the UQ method is calibrated.

We assess average calibration across the test set in figure 5 before scalar recalibration. Each calibration
curve has an associated miscalibration area, which refers to the area between any given calibration curve and
the diagonal. A higher miscalibration area means worse model calibration (i.e. the reliability of using an
uncertainty estimate as a confidence interval is weakened). The average calibration between the three UQ
methods tested significantly varies, figure 5(a). The data shows that MC dropout provides the most
calibrated adsorption energy predictions on average by having the smallest miscalibration area (0.20).
Oppositely, five-fold ensemble gave the least calibrated adsorption energy predictions on average by having
the largest miscalibration area (0.38). With a miscalibration area of 0.34, evidential regression performed
similarly to the five-fold ensemble.

We observe a noticeable change in the degree of calibration for MC dropout with an increasing number
of samples taken to construct the uncertainty estimate, figure 5(b). Five-sample uncertainty estimates are
poorly calibrated, giving a miscalibration area of 0.36. However, 1000-sample uncertainty estimates reveal
that MC dropout is the most calibrated UQ method tested before recalibration. The takeaway is
straightforward; one needs to gather enough samples for the uncertainty estimates of MC dropout to
converge. For our experimental setup, we found that a sample size of 50 nearly converges MC dropout,
figure 5(b). Herein, we report the uncertainty of each adsorption energy prediction using a sample size of
1000 to ensure convergence.

The data in figure 5(c) demonstrates the effect of varying λ on the average calibration of evidential
regression. Values of 0.0, 0.05, 0.1, 0.15, and 0.2 for λ were tested. Evidential regression becomes
monotonically more calibrated with increasing λ for the values tested. For λ values above 0.2, the model
struggled to converge onto a finite uncertainty estimate, which we discuss in SI. Interestingly, the calibration
curves between all UQ methods were largely of a similar character—most remain below the diagonal.
Because of the method of construction, calibration curves below the diagonal indicate overconfident
adsorption energy predictions. It is known that increasing λ generally inflates the uncertainty estimate of a
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Figure 6. Calibration curves to assess recalibration using scalar recalibration. Calibration curves on the test set are shown for
(a) five-fold ensemble, (b) 1000-sample MC dropout, and (c) evidential regression (λ= 0.05) before and after recalibration. The
dashed red line denotes perfect average calibration. The miscalibration area before and after recalibration is shown inset.

Table 1.Mean interval score for each UQ method. A lower score indicates better tightness.

UQmethod Five-fold ensemble 1000-sample MC dropout Evidential regression (λ= 0.05)

Interval score 5.307 4.131 3.901
Interval score (recalibrated) 2.907 3.472 3.550

prediction [51], so it is expected that the evidential regression calibration will improve as overconfident,
small uncertainty estimates become appropriately inflated.

If a UQ method does not give calibrated and therefore reliable materials predictions as implemented, the
method can be recalibrated. The results in figure 6 show the associated calibration curves on the test set
before and after recalibrating each UQ method with scalar recalibration. In general, all three UQ methods
saw a sizable decrease in average miscalibration area after recalibration. The data in figure 6(a) shows that
five-fold ensembling gives the most calibrated adsorption energy predictions on average based on having the
smallest miscalibration area. Despite the highest miscalibration area after recalibration, MC dropout as
shown in figure 6(b) still gives competitively calibrated adsorption energy predictions on average. The
calibration performance of evidential regression displayed in figure 6(c) is close to that of MC dropout. All
three UQ methods give both overconfident and underconfident uncertainty estimates on average after
recalibration, but the degree of miscalibration is less severe.

All UQ methods we trained have average calibration curves close to the diagonal for the test set after
recalibration, which demonstrates that each UQ method is well-calibrated on average for many adsorption
energy predictions. Having high calibration on average is useful because selecting adsorbate/alloy systems for
further study based on the adsorption energy uncertainty (e.g. in active learning workflows) should be more
reliable compared to if the model is highly miscalibrated.

Table 1 reports the mean interval score to access the tightness of each UQ method before and after
recalibration. Before recalibration, evidential regression gives the most appropriately tight uncertainty
intervals on average despite not being the most calibrated UQ method. For the predictions that happen to be
calibrated, the associated uncertainty intervals of evidential regression are the leanest on average. After
recalibration, five-fold ensemble is the tightest UQ method on average.

UQ metrics holistically provide a means of comparing the shapes of uncertainty distributions across
methods. For example, dispersion quantifies the spread of uncertainty, and sharpness quantifies a notion of
average uncertainty. When considering these metrics in their entirety, no UQ method is clearly advantageous
before recalibration. MC dropout is the most calibrated on average which might lead one to believe that this
method is superior, but evidential regression outperforms the secondary criteria of accuracy, dispersion, and
tightness. After recalibration, all UQ methods are comparably calibrated on average, but evidential
regression outperforms in measures of accuracy and dispersion. We emphasize that the UQmetrics discussed
provide a portfolio from which to holistically compare methods to robustly assess trustworthiness; any single
metric on its own can give a misleading conclusion of trustworthiness.

Thus far, we have compared three UQ methods in terms of the five UQ metrics for our challenging
benchmark, the OC20 dataset. To demonstrate how these modeling concepts can be used in practice, we
report our uncertainty-guided enumeration of materials for a hydrogen adsorbate in figure 7. We subselect
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Figure 7.Materials compositions from the OC20 dataset that satisfy the enumeration criteria formulated for a hydrogen
adsorbate. Materials were selected using the evidential regression (λ= 0.05) uncertainty estimate after scalar recalibration.
Sr2Cd4Pd2 (Sr: green, Cd: purple, Pd: gray) and Cs4 (Cs: teal) are visualized for demonstration. Hydrogen adsorbate is not shown.
Materials of the same bulk composition differ by adsorption site and Miller index. Details about material differences are given in
table S5.

609 hydrogen adsorbate/catalyst systems from the OC20 Val-ID test dataset used to assess each UQ method
and filter these systems based on defined search criteria. Our search criteria for enumerating materials
involves defining an adsorption energy range and an uncertainty limit to select systems.

For our case study, we select systems with hydrogen adsorption energies in the range of−0.1–0.1 eV.
Such a range may be useful, for example, for studying materials for the hydrogen evolution reaction because
hydrogen adsorption energy is a descriptor of catalytic activity [66, 67]. From these systems, we only choose
those with an associated uncertainty σ of 0.05 eV or smaller. This adsorption energy range was chosen
because each UQ method has inaccuracy due to the performance of the underlying CGCNNmodel. We
decided to select a conservative, narrow search range to select only those predictions that should be
confident. With our choice of σ, a µ± 3σ interval implies that the ground-truth adsorption energy
prediction should often be at most 0.15 eV away from the ML prediction—the reliability of which becomes
less consistent with larger miscalibration. Any material satisfying these criteria is enumerated.

For this case study, our goal is not to rely on our ML adsorption energy predictions for the best chemical
accuracy; rather, we demonstrate uncertainty estimates that are at least reliable and trustworthy enough to
effectively enumerate materials. Additionally, from a modeling standpoint, we intend to demonstrate the
increase in trustworthiness for predictions made with our model on the challenging OC20 dataset before and
after recalibration.

We observe improved reliability in the uncertainty estimates after recalibration. Before recalibration,
none of the UQ methods enumerated materials that matched our search criteria. After recalibration,
evidential regression gave 15 catalyst materials matching the search criteria (figure 7). Materials that have the
same bulk composition differ by adsorption site and Miller index. Crystallographic differences between
materials such as K2 and K8 are given in table S5.

A UQ method should propose materials that match the search criteria for an application; however, these
proposals should be honest. Six of these materials’ predictions are honest in that their associated uncertainty
interval of µ± 3σ successfully captures the ground truth values. The rest of the proposed materials were
dishonest. This lackluster overall screening performance is to be expected using this challengingly sparse
OC20 dataset. First and foremost, the trained CGCNNmodel is not highly accurate as measured by MAE, so
many of the adsorption energy predictions are far away from the ground truth values before even applying
the UQ methods. A more accurate model would place the predictions closer to the ground truth,
demonstrating the importance of recent efforts to develop even more accurate deep NN models
[29, 33, 36, 37]. Given that the OC20 dataset is challenging, we note that the CGCNN architecture may have
better accuracy on less sparse, narrowly selected datasets, as we observe in table S3. For evidential regression
(λ= 0.05), we report the element-wise sharpness and accuracy as measured by MAE for catalyst materials in
figure S7, finding that periodic groups 3–5 are particularly uncertain and inaccurate. Additionally, we report
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Figure 8. Adversarial group calibration to assess calibration density. The miscalibration area of the most miscalibrated group is
shown for that corresponding group size. Shown for five-fold ensemble (blue circle), 1000-sample MC dropout (orange square),
and evidential regression (λ= 0.05, green pentagon) before (dotted line) and after (solid line) scalar recalibration. Shaded
regions represent the standard error. Trends continue to asymptote past 2.00% group size as shown in figure S6.

uncertainty distributions of evidential regression on a per-adsorbate basis in figure S8, finding that a handful
of adsorbates (e.g. ∗NO2NO2) are particularly uncertain for this dataset, model, and UQ method. An
improvement in model accuracy should plausibly make any given search criteria more forgiving—assuming
that the UQ method applied onto the model is calibrated. We deduce this point from the effective calibration
assumption that necessitates that the uncertainty σ of any prediction is probabilistically likely to grow or
shrink with the accuracy of that prediction.

Nevertheless, it is noteworthy that we could identify trustworthy materials predictions as shown in
figure 7, which highlights the importance of recalibration. From a purely data-driven viewpoint, we
demonstrate that scalar recalibration did improve a UQ method’s ability to enumerate DFT-accurate
adsorption energies of these materials, although we acknowledge that many of these materials found in the
OC20 dataset are not commonly used catalysts for reactions involving hydrogen. In a real catalyst screening
study, one might consider additional criteria outside of adsorption energies, such as stability or selectivity.

Recalibration can be considered as a postprocessing step for a UQ method that can improve an initially
poor result, which we demonstrate in this discussion. However, recalibration may not be necessary and may
even introduce some drawbacks to the experimental design, depending on the method. For scalar
recalibration, all uncertainty estimates σ are multiplied by a constant, which has the effect of multiplying the
sharpness by said constant. Because sharpness is akin to the average uncertainty of a prediction, scalar
recalibration scales the average magnitude of uncertainty, thereby making it more difficult to effectively
define narrow σ screening criteria if the scaling enlarges the sharpness.

For our demonstration of enumerating hydrogen adsorbate/catalyst systems, we rationalize the increase
in the number of enumerated systems after recalibration based on two reasons. First, each UQmethod makes
overconfident adsorption energy predictions, so inflating all the uncertainty estimates σ for any UQ method
by a scalar made the model more appropriately calibrated—thereby improving the confidence interval
reliability of each uncertainty estimate as supported by figure 7. Secondly, we define our uncertainty search
criteria as σ = 0.05 eV. Evidential regression (λ= 0.05) shown in figure 4 is more forgiving for this screening
criterion in that the uncertainty estimates σ are much less than 0.05 eV before recalibration such that
inflating the uncertainty intervals did not exceed the σ = 0.05 criterion after recalibration, unlike many
systems for five-fold ensemble and MC dropout.

Although the average recalibration results of figure 6 appear excellent and the recalibration did improve
the results of our material enumeration case study for the hydrogen adsorbate, a more nuanced analysis of
recalibration on the scale of individual predictions was performed by estimating the calibration density. The
adversarial group calibration results in figure 8 allow us to estimate the upper bound miscalibration
associated with the calibration density across group sizes. We only report here adversarial calibration of
group sizes up to 2% of the test set size because we otherwise observe asymptotic miscalibration.

Generally, the miscalibration across UQ methods monotonically improves across group sizes after
recalibrating. This consistency in behavior is true near the limiting case of a group size of zero, that is,
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individual calibration of predictions. However, directly assessing individual calibration is often unverifiable
for finite dataset sizes, despite being a strict calibration constraint in the literature [61].

Although we previously calculate average calibration curves across the entire test set, a UQ method is
truly calibrated if all individual predictions are themselves calibrated. The recalibration results demonstrate
significant improvement in the average calibration (i.e. calibration corresponding to a 100% group size), yet
the limiting behavior near the origin in figure 8 suggests that there is only a mild improvement in the
individual calibration for the most miscalibrated predictions. Ultimately, the analysis in figure 8 helps
rationalize why many of the uncertainty intervals in the figure 7 demonstration do not capture the ground
truth. Moreover, we highlight a subtlety that the dramatic average recalibration improvements shown in
figure 6 are misleading and, in actuality, more modest, so the interpretation of average calibration needs to
be handled carefully for applications.

4. Conclusions

We compare three UQ methods to frame future analyses in high-throughput materials discovery by training
a state-of-the-art CGCNN on the challenging OC20 dataset. These methods were chosen for comparison
based on their general applicability to a wide range of NN architectures across materials problems. We base
our comparison on the UQ metrics, which quantify not only the accuracy of predictions but also the size,
spread, and reliability of the associated uncertainty intervals. These intervals—if they are trustworthy—can
be used to infer the accuracy of unseen materials predictions in high-throughput discovery schemes. Before
recalibration, evidential regression is advantageously found to be the most accurate, disperse, and tight UQ
method, but MC dropout is the most calibrated method on average. After recalibration, evidential regression
is found to be the most accurate and disperse, as well as competitively calibrated. Additionally, evidential
regression provides high utility by enabling tunable uncertainty estimates that output upon prediction time,
unlike k-fold ensembles and MC dropout. This tunability allows for more flexibility in addressing
application-specific shortcomings with sharpness, dispersion, and tightness. For future high-throughput
studies using distribution-specific UQ, we recommend evidential regression because of its tunability,
demonstrated trustworthiness, and computational tractability on this challenging dataset benchmark.

Through the enumeration of OC20 materials in the case of a hydrogen adsorbate, scalar recalibration
demonstrably enhances the trustworthiness of evidential regression. We note that scalar recalibration was
most effective on the tested UQ methods that give uncertainty distributions of a similar shape to our
Gaussian-specific assumption. We conjecture based on the experimental results that effective recalibration is
a promising knowledge gap to make distribution-specific UQ more accessible across materials studies. NNs
can perform surprisingly poorly under domain shift [68], so it is unclear how each UQ method would
perform across different model architectures and complex material spaces. With effective recalibration that
has little negative effect on the UQ metrics, the choice of UQ method would be more arbitrary. Researchers
would be able to prioritize choosing the method that is the most computationally tractable and recalibrate
accordingly. The UQ metrics and analysis discussed can serve as a frame of reference for this endeavor.
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