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1.  Introduction

Whereas full-field image-based measurement techniques such 
as particle image velocimetry (PIV) are capable of providing 
velocity data within planar or even volumetric sections of the 
scrutinised flow (Kähler et  al 2016), highest spatial resolu-
tions (excluding advanced PIV alternatives e.g. micro-PIV 
(Meinhart et  al 1999)) continue to be attainable with more 
traditional point-wise methodologies e.g. hot-wire anemom-
etry (HWA) or laser Doppler anemometry (LDA) (Lavoie et al 

2007). Contrary to PIV where data rates are defined by the 
laser’s pulse repetition and camera frame rate (and therefore 
associated costs), metrologies such as HWA and LDA also 
offer cheaper alternatives with high frequency responses. This 
makes such techniques extremely suitable for spectral analyses 
in turbulent flow research. Although the limited measurement 
volume of the point-wise techniques enables the detection of 
smaller flow scales, because measurement volumes are typi-
cally hundreds of orders of magnitude smaller compared to 
the flow region of interest, some form of traversing is required 
when performing a flow survey. Typical HWA wire diameters 
for example are in the order of 5 μm compared to flow-related 
length scales in the order of centimeters (Gao et  al 2015). 
Unless flow-related time scales are much larger than the 
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overall measurement time, full-field data analyses with point-
wise measurement techniques are therefore often limited to 
temporal averages, i.e. time-average flow fields.

Point-wise probes are commonly mounted on traverse 
mechanisms and are therefore able to be, in principle, posi-
tioned continuously in space. Ignoring limitations imposed by 
the finite probe dimensions, the level of flow detail captured is 
thus directly defined by the spacing of spatial sampling loca-
tions considered through the well-known Nyquist sampling 
criterion (Petersen and Middleton 1962). This criterion dictates 
the smallest measurable length scale to be at least twice the 
minimum sample spacing. The experimentalist is thus forced to 
compromise between data content and time efficiency: the more 
samples of the flow, the longer the measurement time, the higher 
the running costs of the experimental facility yet the more flow 
detail can be obtained. In turn, when faced with the task of char-
acterising an unknown flow phenomenon, every experimentalist 
will be ultimately faced with the same conundrum: where to 
measure and how many samples to take.

Of the various sampling strategies, space-filling is the 
most common and includes, among others, the distribution 
of equidistant samples across the measurement domain (full-
factorial sampling: FF), Latin Hypercube (LH) sampling, 
Poisson disc sampling, etc. The number of samples adopted in 
such methods will always vary as a power of the ratio between 
domain extent L and user-defined minimum sample spacing h. 
For full factorial and Poisson disk sampling in d-dimensional 
space, the number of samples will for example be in the 
order of O((L/h)d), whereas, because of the permutations, 
LH typically results in O(L/h) samples. As the user refines 
the sampling grid, the number of measurement points clearly 
becomes rapidly impractical. Assuming the data collection 
spans ten seconds at each measurement location (common in 
LDA), characterisation of a three-dimensional velocity field 
with only ten samples along each coordinate axis will require 
a total run-time of approximately three hours for 103 samples 
while yielding a still under-resolved flow field. It is for this 
reason that more intelligent sampling approaches are needed, 
capable of focusing, and thereby minimising, the data accrual 
to flow regions in which a higher number of measurements 
are beneficial in the reconstruction and subsequently under-
standing, of the underlying a priori unknown flow field.

All space filling methods blindly adopt the identical sam-
pling strategy irrelevant of the scrutinised process (LH does 
involve the probability density function of each variable in 
theory, yet for spatial sampling each coordinate has a uniform 
probability, eliminating any probability dependency). Instead, 
adaptive processes whereby the sampling strategy is adjusted 
in situ on the basis of collected observations, have the potential 

to yield results more efficiently if the stopping criteria are 
quality-defined, or with higher accuracy, when limiting the 
permitted number of accrued data points. It is therefore not 
surprising that adaptive sampling has been widely applied 
in e.g. surface reconstruction (Chen and Peng 2017), survey 
studies (Yu et  al 2012), computer vision (Bolin and Meyer 
1998), computer graphics (Chen et al 2011), computer aided 
design (Li 1995), optimisation (Mackman et  al 2013) and 
in the prediction of suitable measurement locations for PIV 
(Theunissen et al 2007) or one-dimensional velocity surveys 
(Theunissen et al 2015).

The typical adaptive process outline is depicted in figure 1 
and starts with collecting data at initial sampling locations, 
defining the domain outline in which an evaluation grid is 
specified. This grid defines the locations at which the surro-
gate model is evaluated and must subsequently be sufficiently 
small to capture the model’s behaviour. The surrogate model 
itself is constructed from the available data and needs to be 
updated each time new data is accrued. Various routes exist 
to construct surrogate or meta-models such as for example 
neural networks (Holeňa et al 2010), support vector machines 
(Ciccazzo et  al 2014), splines (Grimstad et  al 2015), poly-
nomial regression (Gano et  al 2006), Kriging or Gaussian 
process regression (Denimal et al 2016) and radial basis func-
tions (RBF) (Durantin et al 2017).

Adaptivity is finally based on some form of criterion, 
the so-called objective, enabling potential samples to be 
ranked according to their quantified suitability. In numerical 
grid refinement for example, this criterion can be based on 
a second derivative error norm of the surrogate model (Li 
2010), local field curvature (Mackman and Allen 2010) or a 
combination of various functionals. When dealing with sam-
pling optimisation, such cost functions are generally based on 
estimates of the spatial distributions of the scrutinized param
eters (Forrester et al 2008).

In the work of Theunissen et al (2015), which forms the 
basis of the current study, a procedure was presented whereby 
sequential sample locations were selected adaptively thus 
eliminating user-dependency and/or a priori knowledge 
of the investigated flow. Weighted criteria involving local 
measurement error estimates, space filling heuristics, local 
surrogate improvement and curvature were combined into 
a unique objective function such that its peak location 
indicated the most suitable sampling location, replicating 
the experimentalist’s decision processes. A C2-continuous 
Wendland function, extended with third-order polynomial 
interpolation, was adopted because of its ability to provide 
second order derivative estimates with relative computa-
tional ease. The autonomous methodology was shown to be 

Figure 1.  Procedural steps in adaptive sampling.
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more efficient and able to capture flow features of interest 
more accurately, although restricted to one-dimensional, 
single component velocity profile extraction. In the current 
work such concepts are extended to higher dimensions with 
a focus on implementation.

The aim of the current work is to devise an autonomous 
routine capable of guiding the spatial sampling process in a 
typical experiment in which point-wise measurement tech-
niques are utilized to survey a prescribed domain in terms 
of scalar quantities such as e.g. pressure, velocity, temper
ature, etc. At each sampling location the statistical average 
of multiple readings serves as the quantity of interest in the 
characterisation of the underlying phenomenon. Given the 
exponential increase of the number of sampling positions with 
dimensionality of the problem (and consequently the experi-
ment run time), irrespective of adaptation, considered appli-
cations are limited to two-dimensions. The positioning of the 
data extraction locations within the 2D domain is performed 
through an adaptive process similar to Theunissen et al (2015) 
but extended into higher dimensions. To this extent the current 
study starts with a review of the objective function followed 
by a discussion on the choice of RBF kernel for interpola-
tion. Additional computational procedures are presented to 
ensure viability and reduce computational effort in each of 
the different procedural steps. Preceding the conclusions, a 
numerical assessment as well as an experimental application 
with varying degree of data uncertainty corroborate the advo-
cated advantages.

It is important to note that the importance of efficient col-
lection of meaningful data spreads beyond the boundaries of 
experimental fluid mechanics and has a broader application 
referred to as the design of experiments. As such, the proposed 
methodology and associated implementation is expected to 
benefit a wider range of research.

2.  Surrogate modelling

2.1.  RBF interpolation

In its simplest form the surrogate model in d-dimensions 
consists of an interpolation of available data f (xt) with 
x = (x1, . . . , xd) onto the evaluation grid. In view of required 
adaptivity to local curvature, this interpolant must be at least 
second order continuous (C2). Because of their simplicity and 
ease of implementation, polynomial regression and RBF inter-
polation are the most common methods (Fasshauer 2007). 
Moreover, RBF functions have been shown to substantially 
reduce effects of measurement noise when interpolating (Casa 
and Krueger 2013). Given N(i) data points (t = 1, . . . , N(i)), 
the value of the surrogate model s(i)(xs) in the ith iteration 
at a random location xs in d-dimensional space is formulated 
through an augmented RBF model with polynomial sum-
mands as

s(i)(xs) =

N(i)∑
t=1

αtψ(‖xt − xs‖) + q(xs) with x ∈ Rd� (1)

where ψ(r) accounts for the contribution of the tth basis func-
tion in function of the radial distance r = ‖xt − xs‖ between 
the new location and the tth data point. It is evident that with 
every iteration the number of samples N(i) can change and the 
metamodel s(i)(x) needs to be re-evaluated. Without loss of 
clarity, the superscript (i) will be omitted for brevity hereafter.

The polynomial part q(xs) is added to guarantee 
polynomial accuracy up to degree m and is given 
by the summation of M =

(m
d

)
= (m+d)!

m!d!  weighted 
terms p1, . . . , pM; q(x) =

∑M
j=1 βjpj(x) where a pos-

sible choice of polynomial basis functions is given by 
p1(x) = 1, p2(x) = x1, . . . , pd+1(x) = xd, pd+2(x) = x1x2, pd+3 
(x) = x1x3, . . . , pM−d+1(x) = xm

1 , . . . , pM(x) = xm
d . Scaling 

coefficients αt,βt ∈ R are obtained in a straightforward 
manner by solving equation (1) for the known data points, i.e. 
the interpolation conditions s(xt) = f (xt) with the M addi-
tional constraints 

∑N
t=1 αtpj(xt) = 0, j = 1, . . . , M. This is 

equivalent to solving the matrix system
[
Ψ+ λI P

PT O

] [
α

β

]
=

[
f
0

]

�

(2)

where Ψi,j = ψ(‖xi − xj‖), i, j = 1, . . . , N , Pi,l = pl(xi),  
l = 1, . . . , M , O is a M × M  zero matrix, I is the N × N  
identity matrix, α = [α1, . . . ,αN ]

T , β = [β1, . . . ,βM]
T , 

f = [ f (x1), . . . , f (xN)]
T  and 0 is a 1 × N  vector. The additional 

term λI  is referred to as ridge-regression and introduces 
a degree of smoothing, which can be controlled through λ. 
Having calculated the coefficients for each data point, these 
are then substituted into equation (1) to solve for the interpola-
tion at any random location.

Especially the Wendland kernels have received great 
attention as choices for ψ(r) because these can be easily 
extended to higher dimensions and any degree of smoothness 
(Wendland 2004). More importantly, these kernels introduce 
sparsity in the matrix systems to solve (see equation  (2)) 
because of their compactness (Schaback and Wendland 1999), 
thus reducing computational effort. However, RBF functions 
require a well-defined support radius since enlarging the RBF 
kernel generally leads to enhanced interpolation accuracy 
at the expense of denser and ill-conditioned matrix systems 
(Boyd and Gildersleeve 2011). Too large values of the sup-
port cause the RBF interpolant to exhibit spurious overshoots 
reminiscent of the Gibbs phenomenon for polynomial inter-
polants. To this extent (Schaback and Wendland 1999) sug-
gested the support radius to be chosen such that each RBF 
support contains approximately the same number of samples, 
which in turn depends on the sample density (i.e. the fill dis-
tance defined as the largest of the nearest neighbor sample 
distances). Especially given the expected non-uniformity in 
sample density, a unique choice of support radius may prove 
troublesome and much continuing research is devoted to the 
proper choice of a potentially adaptive scale parameter (Rippa 
1999, Scheuerer 2011, Uddin 2017).

Thin Plate Splines (TPS) on the other hand do not require 
shape parameters (Fasshauer 2007) and are more intuitive as 
they provide an interpolation minimising the overall ‘bending’ 
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energy. They are inhibitive though as they are intrinsically not 
compact (Li et al 2007) and thus involve solving large matrix 
systems (Wood 2003). However, experimental applications 
targeted in the current work will concern a number of sam-
pling locations ordinarily in the order of 103–104, rendering 
the matrix system (depending on the choice of evaluation grid 
density) of only low to moderate complexity. Considerable 
work has also been done in optimising the ridge regression 
parameter λ (see equation  (2)) to accommodate splines for 
noisy data (Wahba 1990). This will prove to be advantageous 
as it allows the sampling process to consider recursively 
refined spatial scales of the underlying function through 
iterative reduction of λ (see section 2.3). Moreover, the TPS 
kernel has a well-defined integral, contrary to the Wendland 
functions, which will be shown to reduce the computational 
complexity of spatial filtering based on moving averages 
(see section 3.3). For this reason, in the following TPS radial 
basis functions of second (n  =  2) and third order (n  =  3) (see 
table 1) will be adopted.

In terms of polynomial order m, the inclusion of high order 
polynomials has been reported to worsen the conditioning 
problem as well as increasing the cost of the matrix solution 
(Costin and Allen 2013). It is therefore advisable to retain the 
polynomial order to a minimum. Following (Duchon, 1977) 
the order of the polynomial will be at most m  =  n  −  1 (m  =  1 
for TPS2 and m  =  2 for TPS4).

2.2.  Preconditioning

The definition of TPS basis functions in two dimensions 
(d  =  2) and associated derivatives are tabulated in table  1. 
The most common TPS is that of order two (TPS2), despite 
its second derivative exhibiting an unavoidable singularity at 
the origin. In view of the requirement to calculate the sur-
rogate model’s curvature (see section  3.1), the order three 
variant (TPS4) is more suitable. On uniform grids, the TPS4 
has a condition number which increases as O(N7) compared 
to O(N4) for TPS2 (Boyd and Gildersleeve 2011). This trans-
lates in ill-conditioned, and subsequently, unstable solutions 
for the coefficient vectors α and β in equation (2). To over-
come this problematic, interpolation matrices are precondi-
tioned and TPS2 kernels are adopted to construct the surrogate 
models whereas the TPS4 kernels are applied in the calcul
ation of curvature heuristics. The latter will be elaborated in 
section 3.1.

The preconditioned equivalent of matrix system Ax = y is 
given as CAx = Cy such that CA is better conditioned. For 
two dimensional problems the preconditioning strategy pro-
posed by Dyn et al (1986) is specifically tailored to TPS2 and 
has been extended here for TPS4. Contrary to equation  (2), 
the system considered in Dyn did not involve ridge regression. 
However, the addition of λ along the diagonal elements of Ψ 
does not invalidate the presumptions that the iterated Laplacian 
of the radial basis function (including the TPS kernels) tends 
towards zero as the radial distance increases and approaches 
infinity in the limit of zero radial distance. Preconditioning 
also intends to increase the diagonal elements relative to the 
off-diagonal ones in Ψ. Ridge regression enforces such dif-
ferences and as such, the described preconditioning remains 
valid.

The preconditioning matrix C in Dyn is obtained through the 
identity 

∑N
t=1(∆

nu)tvt = vTCu. The nth iterated Laplacian is 
given by n consecutive Laplacians ∆n( f ) = ∆(∆(. . .∆( f ))) 
with ∆( f ) = ∂2f/∂x2 + ∂2f/∂y2. The summation can be rep-
resented on an analogue (Delaunay) triangulated domain con-
taining N∆ triangles on the basis of the N datapoints; 

N∆∑
j=1

n∑
i=0

(
n
i

)(
∂nu

∂xi∂yn−i

)

j

(
∂nv

∂xi∂yn−i

)

j
Tj ≡ vTCu.� (3)

Functions u and v can be approximated on the jth tri-
angle, which has an area Tj, as nth order polynomials 
ũj =

∑n
t=0 at,jxt ∑n

t=0 bt,jyt =
∑

p+q�n ξpq,jx pyq = Xpqξj and  
similarly ṽj = Xpqηj. Vectors ξj  and ηj contain the 
Nξ = 1

2 (n + 2)(n + 1) polynomial coefficients for ũ and 
ṽ respectively, which can be solved for in a least-squares 
manner ξj =

(
XT

pqXpq
)−1XT

pquj = Sjuj and alike ηj = Sjuj. 
Vectors uj and vj are Nv,j × 1 in size and contain the u and 
v-values respectively of the Nv vertices neighbouring the jth 
triangle, i.e. Nv,j. These matrix systems can be rewritten such 
that all N vertices are included; Sjuj = Bu and Sjvj = Bv. 
Matrix B is then a Nξ × N  sparse matrix with copied entries 
of the Nξ × Nv,j matrix Sj and vectors u and v contain the u 
and v values of all the N vertices. Using the polynomial rep-
resentations, each of the derivative terms in equation (3) can 
now be expressed in terms of ξj  and ηj and consequently with 
reference to discrete values u and v. Matrix C is constructed 
by summing up the different terms pertaining the contributing 
polynomial coefficients for all triangles. The process is clari-
fied for the case of n  =  3 in appendix A.1. It was shown in 
Dyn et al (1986) that this type of preconditioner reduces the 
condition number by several orders of magnitude. Solutions 
for the TPS coefficients α are retrieved through an iterative 
conjugate gradient scheme, which is presented in appendix 
A.2 for completeness.

2.3.  Scale-adaptive TPS-based modelling

Measurement data will unavoidably contain some level of 
uncertainty due to noise originating from temporal fluctua-
tions in the data, limited spatial resolution of the measurement 

Table 1.  2D TPS basis functions of order n, ψ(r) = r2n−2 log(r), 
with associated derivatives.

r = ‖xk − xs‖2

Order n  =  2  
(TPS2)

Order n  =  3  
(TPS4)

ψ(r) r2 log(r) r4 log(r)
d
drψ(r) r(2 log(r) + 1) r3(4 log(r) + 1)
d2

dr2 ψ(r) 2 log(r) + 3 r2(12 log(r) + 7)

∆ψ(r) = d2

dr2 ψ(r) + 1
r

d
drψ(r) 4 log(r) + 4 8r2(2 log(r) + 1)

Meas. Sci. Technol. 29 (2018) 085007
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system, electronic noise, etc. In view of adjusting the sam-
pling process to signal curvature, such regions of jitter will 
unnecessarily attract samples and continue to do so, as with 
each new sample the noise component will alter the surrogate 
model and amplify higher order spatial derivatives. A degree 
of filtering is therefore required. Data can be low-pass filtered 
prior to the interpolation process, although this requires an 
appropriate choice of smoothing kernel and extent (Carr et al 
2003). Both are dependent on the data landscape a priori 
unknown to the user. Alternatively, ridge regression presented 
in equation (2) renders the RBF interpolation an approximant.

With increasing λ, the surrogate model equation  (1) 
becomes a smoother representation of the underlying data, 
effectively modulating smaller scale oscillations. To this 
extent the choice of λ must be in relation to the noise level. 
However, over-smoothing must be avoided as oscillations 
(in space) may genuinely originate from smaller scale phe-
nomena such as e.g. turbulence. For this reason the adaptive 
sampling routine is nested in a primary process in which the 
degree of smoothing, λ(k), is progressively reduced over three 
iterations (figure 2).

In the first iteration, values of λ(1) are obtained on the basis 
of ensemble average data scatter 〈σt〉 = 1

N

∑N
t=1 σt (Forrester 

et al 2008) and are updated with each new adaptively placed 
data sample. Multiple readings are taken at every sampling 
location enabling the estimation of local signal scatter as 
the signal standard deviation σt (see also section 3.2). Once 
the adaptive sampling process has converged, the second 
iteration is initiated in which a smoothed TPS2 spline is esti-
mated recursively using a generalised cross-validation (GCV) 
scheme as suggested and implemented by Bates et al (1987). 
The procedure to obtain the coefficients αθ and βθ of the 
smoothed spline (with polynomial precision) is incorporated 
in appendix B for completeness. While the smoothed spline 
is not obtained through ridge regression, it can be expressed 
in an equivalent form, which will prove useful when evalu-
ating relative improvements in the underlying surrogate model 
(section 3.3) ; representing the vector containing the values of 
the smoothed spline evaluated at the sampling locations by fθ, 
the approximation utilising the coefficients of the smoothed 
spline is given by Ψαθ + Pβθ = fθ. This can be written 
analogously in terms of ridge regression (equation (2)), 
(Ψ + λI)α+ Pβ = f, such that Ψα+ Pβ = fθ. Equating 
the two expressions implies α = αθ and β = βθ and the 
corresponding ridge parameter is obtained as

(Ψ + λGCVI)αθ + Pβθ = f ⇔ λGCVIαθ

= f − fθ ⇔ λ2
GCV =

(f − fθ)T(f − fθ)
αθ

Tαθ
.

�

(4)

To ensure a gradual decrease in smoothing and allow for 
sampling of smaller scales in case of low data uncertainty, 
λ(k)-values are iteratively scaled down with the following 
intermediate conditional parameter value

λ(1) = 〈σt〉,λ(2) = λGCV × 10
κ
2 ,λ(3) = λGCV if κ =

⌈
log10

(
λ(1)

λGCV

)⌉
> 2

λ(1) = 〈σt〉,λ(2) = λGCV,λ(3) = λGCV × 10−2 else.
� (5)

An example of the influence of λ is illustrated in figure 3. 
In the first iteration λ(1) is based on the ensemble averaged 
data scatter 〈σt〉 and the surrogate model reflects the overall 
signal behaviour. As the value of λ(k) is gradually reduced 

Figure 2.  Procedural steps in scale-adaptive sampling.

Figure 3.  Illustration of progressive smoothing using ridge 
regression. The underlying signal f (x) = 10 sin(2πx)+
2 cos(20πx) is sampled with 50 randomly positioned points 
(N  =  50), each superimposed with a local uncertainty (error bar 
width) σt = |5γt cos(100πxt) sin(160πxt)| where γt  are random 
numbers between 0 and 1 with uniform probability. Measurement 
noise nt is defined as nt = 3τt  with τt ∈ N (0, 1). The inset shows a 
close-up of the graph portion bounded by the rectangle.

Meas. Sci. Technol. 29 (2018) 085007
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towards λGCV (in the current example λGCV = 3 × 10−4), 
the underlying surrogate model tends to reflect smaller scale 
oscillations, though a degree of smoothing is retained.

3.  Adaptive sampling objective function

The objective function J(i)(xs) defined in Theunissen et  al 
(2015) consisted of various individual objective factors con-
verting the typical sampling criteria used by experimentalists 
in analytical formats. With new information added every itera-
tion the objective function is iteratively updated (also here the 
subscripts (i) will be omitted for brevity) and maxima in the 
function then indicate new suitable sampling locations.

3.1.  Curvature dependent sampling

The first criterion JC ensures an increased number of samples 
in regions of higher curvature, similar to mesh-refinement 
heuristics in computational fluid dynamics e.g. Mavriplis 
(1995). Curvature is estimated on the basis of the Laplacian Δ 
of the RBF-based surrogate model s, yielding the criterion JL; 

JL(xs) = ∆s(xs) =

N∑
t=1

αt∆ψ(‖xs − xt‖) + ∆q(xs).� (6)

The Laplacian of the TPS kernels is tabulated in table 1. 
For TPS2 kernels the Laplacian of the polynomial term van-
ishes. Whereas the surrogate model is constructed using the 
2nd order TPS, its singularity in the second-order deriva-
tive is avoided by basing the curvature on the 3rd order TPS 
(∆q(xs) = 2(β5 + β6)). The objective function aims to indi-
cate regions of higher curvature, not to be an accurate repre-
sentation. As such, the use of multiple kernels is permitted.

To compensate for the detrimental effect of stochastic 
noise, JL is combined with a measure for local signal change

J∆(xs) = |s(xs)− sMA(xs)|� (7)

where sMA(xs) constitutes the moving average filtered 
response evaluated with a filter of approximately 30% domain 
width. While a moving average operation is computationally 
relatively inexpensive in one dimension when selecting neigh-
bouring data points through a kd-tree, the process becomes 
too time consuming when extended into two dimensions. 
Advantage can be taken though of the existence of explicit 
analytical expressions for the integral of the TPS functions 
over a 2a × 2b rectangular domain; 

sMA(xs) =
1

4ab

∫ xs+a

xs−a

∫ ys+b

ys−b
s(x) dx

=
1

4ab

∫ xs+a

xs−a

∫ ys+b

ys−b

(
N∑

t=1

αtψ(‖x − xt‖) + q(x)

)
dx

ξ=(ξ,η)=x−xt
=

1
4ab

N∑
t=1

αt

∫ ξ2=xs+a−xt

ξ1=xs−a−xt

∫ η2=ys+b−yt

η1=ys−b−yt

ψ(ξ) dξ + qMA(xs)

=
1

4ab

N∑
t=1

αtψMA(xs, xt) + qMA(xs)

�

(8)

which for the case of the 2nd order TPS (n  =  2) gives

ψMA(xs, xt) =
1
3
log(ξ2

2 + η2
2)(ξ

3
2η2 + η3

2ξ2)−
1
3
log(ξ2

2 + η2
1)(ξ

3
2η1 + η3

1ξ2)

+
1
3
log(ξ2

1 + η2
1)(ξ

3
1η1 + η3

1ξ1)−
1
3
log(ξ2

1 + η2
2)(ξ

3
1η2 + η3

1ξ2)

− 5
9
(ξ3

2 − ξ3
1)(η2 − η1)−

5
9
(η3

2 − η3
1)(ξ2 − ξ1)

+
1
3
ξ4

2 arctan

(
(η2 − η1)ξ2

ξ2
2 + η1η2

)
− 1

3
ξ4

1 arctan

(
(η2 − η1)ξ1

ξ2
1 + η1η2

)

+
1
3
η4

2 arctan

(
(ξ2 − ξ1)η2

η2
2 + ξ1ξ2

)
− 1

3
η4

1 arctan

(
(ξ2 − ξ1)η1

η2
1 + ξ1ξ2

)

qMA(xs) = q(xs) + β2a + β3b.
�

(9)

In one dimension the smoothed kernels reduce to 
(ξ1,2 = xs − xt ± a = ξ ± a)

ψMA(xs, xt) =

∫ ξ2

ξ1

ξ2 log(|ξ|) dξ

= (log(ξ2)− log(ξ1)) +
ξ3

2

9
(3 log(|ξ2|)− 1)

− ξ3
1

9
(3 log(|ξ1|)− 1)

qMA(xs) = q(xs) + β2a.
�

(10)

The evaluation of the spatially smoothed surrogate 
hence reverts to a re-evaluation of equation  (1), with a 
novel kernel and polynomial but readily available pre-deter-
mined coefficients α and β (recall that the TPS2 kernel is 
used to generate the surrogate model while the TPS4 kernel 
is only used in the calculation of curvature). Following a 
unity-based normalisation, referenced with subscript n, 
(·)n = [(·)− (·)min]/[(·)max − (·)min], both objectives are 
combined into the curvature objective JC; 

JC(xs) = ((JL)n × (0.5 + (J∆)n))
0.5 .� (11)

3.2.  Uncertainty-based sampling

The second criterion ensures regions of higher uncertainty 
are adequately sampled by introducing the local level of data 
scatter as a component in the objective function. Regions in 
which accrued data shows larger scatter will undoubtedly 
demand additional samples not only from the perspective 
of data validation but also from a flow physics perspective. 
Additional samples will thus verify whether the increased 
scatter is due to an isolated outlier event or to a coherent 
region of higher turbulence intensity.

While each variable is assigned one unique value at each 
sampling location, these values typically correspond to the 
average of Ni independent measurements taken at each sam-
pling station. Accordingly, the relative measurement error at 
the tth sampling location for 95% confidence level in variable 
(·) is given by

ε(·)t = 1.96 ×
σ(·)t√

Ni × (·)t
→ JE(xt) = (ε(·)t)n� (12)

where (·)t  refers to the mean statistic (time-average) of Ni 
values and σ(·)t the standard deviation in the data. The number 
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of readings Ni is typically set to 10 000 to retrieve reliable mean 
statistics or can be locally adjusted according the local data 
scatter to ensure a constant relative error across the domain. 
Subsequently, the objective component pertaining error can 
be expressed as JE(xt) = (ε(·)t)n. The discrete JE values at the 
data points can also be interpolated using thin plate splines as 
per section 2.1 yielding a continuous function JE(xs) for each 
of the considered variables.

3.3.  Improvement-driven sampling

Sampling locations whose addition does not alter the sur-
rogate model are evidently of low importance. Conversely, 
regions where the addition of new data yields a sig-
nificant change in the previous underlying approximant 
merit further exploration. This thought is captured in the 

improvement objective J(i)
I , incorporating the relative 

additive information content, Ω(i)(xs) =
Q(i)(xs)

1+|s(i)(xs)|
, where 

Q(i)(xs) quantifies the model’s change in the ith iteration 

Q(i)(xs) = |s(i)(xs)− s(i−1)(xs)|. To retain historic model 
change, the improvement objective combines the four most 
recent Ω’s in a weighted average, with all weights wi−m cur
rently equal to 1/4; 

JI(xs) =

(
3∑

m=0

wi−mΩ
(i−m)(xs)

)

n

.� (13)

Changes in surrogate model are however not neces-
sarily linked to the addition of novel data, but can be due 
to alterations in the ridge-regression parameter, uncer-
tainty in the model due to uncertainty in the acquired data 
and/or limitations in interpolation accuracy. This has been 
accounted for through three parameters quantifying each 
of these sources of variation in surrogate model; Eλ(xs), 
Eσ(xs) and ETPS.

	 1.	�With each ith iteration, the ridge regression param
eter λ(k) is updated as new data is added. As such, the 
surrogate model can show variations which do not 
necessarily relate to an enhanced representation of 
the underlying signal, but are merely due to a different 
degree in smoothing, i.e. changes in ridge regression 
parameter. To quantify these changes, the matrix system 
in equation (2) is first rewritten as [K + λI∗] [α;β] = f0 
where K =

[
Ψ P; PT O

]
, f0 = [f; 0] and I* is an 

(N + M)× (N + M) matrix. The first N rows and col-
umns in I* constitute the identity matrix and the trailing 
M rows and columns are zero. With L = [Ψ P] evalu-
ated at a location xs, the surrogate model value in the ith 

iteration is given as s(i)(xs) = L
(

K + λ
(k)
(i) I∗

)
−1f0. The 

regression parameter in the (i − 1)th iteration is λ(k)
(i−1) 

and the change in surrogate model due to this variation in 

λ-value, δλ = λ
(k)
(i−1) − λ

(k)
(i), can then be evaluated as

Eλ(xs) = L
[
(K + λ

(k)
(i) I∗ + δλI∗)−1 − (K + λ

(k)
(i) I∗)−1

]
f0

K̃=K+λ
(k)
(i) I∗

= L
[{

K̃−1 − K̃−1(I + δλI∗K̃−1)−1

× K̃−1I∗K̃−1}− K̃−1] f0

= −δλLK̃−1(I + δλI∗K̃−1)−1I∗K̃−1f0

= L
[
−δλK̃−1(I + δλI∗K̃−1)−1]α(i).

�
(14)

		 In the second step of the derivation the Woodbury matrix 
identity was applied. It should be noted that Eλ is not 
simply equivalent to s(i−1)(xs)− s(i)(xs) due to the addi-
tion of new sampling locations with every iteration. 
The difference between s(i−1) and s(i) thus encompasses 
a change in ridge regression as well as new data and 
would require re-evaluation of s(i−1) on the ith evaluation 
grid as this can change between iterations (section 4.2). 
Instead, in the final expression of equation (14), K̃−1 has 
already been calculated in the ith iteration to evaluate 
the TPS interpolation coefficients α(i) for the surrogate 
model s(i)(xs). With each of the terms readily available, 
the change in surrogate model Eλ(xs) caused purely by a 
change in ridge regression parameter is easily obtained.

	 2.	�When performing point-wise measurements, multiple 
readings are taken at each station and local data scatter 
can be suitably modelled through a normal distribution 
N (0,σ). The local average of the readings is subse-
quently used to fit the surrogate model. When imposing 
a regression parameter to smoothen too rapid changes 
in underlying signal merely due to noise, the surrogate 
model becomes sensitive to the fitted data values as 
these might vary as a result of the underlying scatter. 
This subsequently introduces an uncertainty in the thin 
plate spline approximant, which has been dealt with in 
Wahba (1990). In this case the variation in surrogate 
model is caused by data uncertainty. Let σt symbolise 
the data scatter in the tth sampling point and 〈σt〉 the 
ensemble average of all σt=1...N  values. The suggested 
Bayesian confidence interval at 95% for the tth sample 
is given as

Eσ(xt) = 1.96 × 〈σt〉 ×
√

Htt� (15)

		 where Htt is the tth entry on the diagonal of the influence 
matrix H. The influence matrix changes with λ and is 
expressed in appendix B for completeness. The sporadic 
values can be subsequently interpolated yielding the 
function Eσ(xs), quantifying the possible variation in 
surrogate model, for a given ridge regression parameter, 
due to uncertainty in the underlying data.

	 3.	�Finally, a variation in surrogate model can be due to the 
inherent interpolation error. Based on Fasshauer (2007) an 
upper error bound for TPS interpolation is proposed involving 
the fill distance hs = supi=1,...,N(mint=1,...,N

t �=i
(‖xi − xt‖)), 

i.e. the largest nearest-neighbour distance based on the avail-
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able data points within the domain, and a scaled native 
space norm F;

ETPS = 10�log10(χ)� × hs × F whereχ = (s(xs))max

− (s(xs))min and F =
1
χ
αTΨα.

�

(16)

		 The authors would like to stress that they do not claim 
ETPS to be a proven or mathematically underpinned error 
bound. The obtained error bound only provides a con-
servative guesstimate above which changes in surrogate 
model can no longer be ascribed to interpolation errors.

Values of Q(i)(xs) exceeding the three thresholds; Eλ(xs), 
Eσ(xs) and ETPS, are finally considered sufficiently high to be 
changes in the surrogate model, genuinely caused by the addi-
tion of newly accrued data and are taken into account in the 
calculation of Ω(i).

3.4.  Iteration dependent exploratory sampling

New measurement locations will be prescribed by the objec-
tive function. However, each region within the domain should 
ideally be sampled at least once to ensure a representa-
tive objective function. To this extent oversampling of local 
extrema in objective function should be avoided, which in this 
work is achieved through a separation function Jh(xs). This 
function attains zero values at each existing measurement 
location and tends to unity away from the sample location. 
The objective function surrounding the points is thus given 
less importance, promoting exploration of the domain. The 
influence of each point should be radially symmetric and 
finite, making the compactly supported Wendland functions 
ideal kernels (Wendland 2004). Function Jh(xs) is there-
fore obtained through RBF interpolation as per section  2.1 

with ψ(r) = (1 − ηr)6
+

(
35(ηr)2 + 18ηr + 3

)
, f = 1 and 

omitting the polynomial term. The cutoff function is defined 
as (ζ)+ = ζ  for ζ � 0 and (ζ)+ = 0 else. The radial extent of 
the kernel is controlled through η. Since increasingly smaller 
scales are envisaged within the iterative process (section 2.3), 
samples must be allowed to be positioned in closer proximity 
to each other as the iterations continue. This can be achieved 
by adjusting the Wendland kernel’s support in function of the 
changing fill distance hs and iteration k in ridge regression 
(figure 4(a)); 

(
η(i)

)−1
= 100.71+1.4×(k−1)−1 × h(i)

s .� (17)

Starting with a radial extent equal to the fill distance, the 

kernel reduces asymptotically to h(i)
s /10 (figure 4(a)). The 

authors would like to draw the reader’s attention to the defi-
nition of η as the scaling factor preceding h(i)

s  is altered with 
every ridge-regression iteration k while the fill-distance itself 
is updated with every sample addition (iteration (i)).

In line with the concept behind domain exploration, it 
would not be efficient to sample the domain in sequen-
tial regions. Instead, areas of interest must receive a higher 
number of samples, while avoiding global under-sampling. 
This is accounted for by introducing a secondary weighting to 
the objective function, particular to the tth sample point and 
dependent on the iteration number i; 

wt(i) = 1 −
(

1 − (i − it)
Nκ

)3

+� (18)
where it designates the iteration number the tth sample point 
was introduced. The weighting starts from 0 and gradually 
reaches a value of 1 after Nκ iterations (figure 4(a)). Parameter 
Nκ essentially dictates how fast a region can be re-sampled 
and has been set to Nκ = 15 in the current study. The wt 
value at each of the sampling locations is subsequently inter-
polated again using the TPS2 kernel producing a continuous 

Figure 4.  (a) Evolution of (η(i)h(i)
s )−1 and wt with k and i  −  jt as per equations (17) and (18) respectively setting Nκ = 15 (equation (18)). 

(b) Illustration of the influence of the iterative weighting factor on the Franke function (figure 8(a)). Insets depict the obtained sampling 
distribution corresponding to the curves in the graphs aside, superimposed on the contour levels of the underlying Laplacian of the signal.
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weighting Jw(xs) for the objective function. Jw will avoid 
recently sampled regions from being re-sampled, enforces 
domain exploration, yet gradually allows further investigation 
of already explored domain sections.

The effect of the new weighting term is demonstrated in 
figure  4(b) for a translated Franke function (see section  7), 
considering the first (k  =  1) and last (k  =  3) data smoothening 
iteration (see section 2.3). The objective function was based 
solely on curvature and seperation as per equations (11) and 
(17) respectively. Depicted is the coverage with increasing 
number of iterations, whereby five samples (NS = 5) are added 
each iteration. A circular area of π/4N  was centered on each 
sample. Considering N congruent, non-overlapping circles of 
diameter D in a square L × L domain such that 

√
ND = L  

(in the current approach the domain will be normalised, i.e. 
L ≡ 1—section 4.1), the ratio between the total area of the 
circles and domain is given by N πD2

4
1
L2 = π

4 . The coverage 
was subsequently calculated as the ratio between the unified 
domain area covered by all sampling points and the ideal 
maximum (π/4). In the first scale-adaptive smoothing itera-
tion (k  =  1) homogeneity in the sampling distribution (cov-
erage tending to unity) is driven by Jh(x) and Jw is of lesser 
importance. Indeed, with increasing number of samples the 
omission of Jw (or equivalently Jw ≡ 1) yields a distribution 
quasi identical to that obtained with active Jw. When η(i) is 
decreased in the third smoothing step (k  =  3), the effect of Jw 
becomes more prominent. Sampling locations become clus-
tered in regions of high curvature when Jw ≡ 1. A spatially 
varying Jw on the other hand returns a distribution more popu-
lated in those regions, while simultaneously exploring their 
vicinity, which is reflected in the higher coverage attained.

3.5.  Combined objective

At each sampling station multiple variables can be measured. 
In the case of two-dimensional LDA for example, the velocity 
magnitudes in two directions are obtained. Each of the Nvar 
variables will therefore have an associated JC(xs), JE(xs) and 
JI(xs). For each variable these elementary functions are com-
bined as

Jo,v(xs) = (κC + JC,v(xs))× (κI + JI,v(xs))× (κE + JE,v(xs)) .
� (19)

The empirical offset constants κ were set as κC = 0.5, 
κI = 0.1 and κE = 0.5. The definitive encompassing objective 
function is finally given by

JO(xs) =

(
Nvar∏
v=1

Jo,v(xs)

)
× (1 − (Jh(xs))n)× Jw(xs).� (20)

4.  Sample allocation

4.1.  Domain normalisation

While the above procedures are generally valid, a domain 
normalisation is introduced for simplicity, i.e. data locations 
are rescaled to the unit domain such that xs ∈ [0, 1]d. This is 

achieved by initiating the adaptive process by covering the 
d-dimensional domain with equispaced samples along each 
dimension. The minimum and maximum along each dimen-
sion thus define the extent of the observed flow region.

The choice of initial number of samples is left user 
dependent. However, it should be noted that the total 
number of samples increases as a power of the dimension. 
Selecting for example 20 samples in each direction of a 
two-dimensional domain quickly yields a total of 400 initial 
samples, while considering a typical total of 1000 measure-
ment locations. Moreover, the numerical assessments pre-
sented hereafter will show that the performances of adaptive 
sampling are relatively insensitive to the choice of initial 
sampling density. To that extent a modest 7-by-7 sampling 
grid is deemed a good compromise between effort and infor-
mation content.

4.2.  Adaptive evaluation grid

The evaluation grid defines the underlying nodes at which 
the surrogate models, and consequently the objective func-
tion defined in equation (20), is computed. While coarse grids 
hamper the detection of smaller structures in the objective 
function, a too fine grid spacing will needlessly augment the 
computation time. The authors circumvented this problem 
by partitioning the global domain into regular blocks and 
adapting the local evaluation grid spacing in each block in 
response to the local sample spacing. This concept is illus-
trated in figure 5.

Figure 5.  Illustration of adaptive evaluation gridding when sampling  
Franke’s bivariant test function: f (5(x − 0.6), 5(y − 0.3)). Gray 
dots indicate adaptively placed measurement positions. As points 
are located more densely in regions where the underlying signal 
varies, the evaluation grid clearly becomes denser.
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The Nyquist sampling criterion implies that an oscilla-
tion in a signal can only be reconstructed when sampled at 
least twice. The smallest nearest neighbour distance between 
samples is obtained as ht = inf i=1,...,N(mint=1,...,N

t �=i
(‖xi − xt‖)) 

and this will be representative of the smallest measurable spa-
tial fluctuation. Proper characterisation of any fluctuation at 
this scale will necessitate at least two evaluation grid points 
and for this reason the spacing is further reduced to fit five 
grid points. The local grid spacing of the equispaced evalua-
tion grid is thus defined as δ = 1

5 (ht)MA where (ht)MA is the 
smoothed distribution of ht obtained by means of the moving 
averaging filtering described in section 3.1. Representing, in 
the ith iteration, the number of nodes in the jth block, which 

has a square size l × l, as N(i)
e,j =

⌈
l2

(δ
(i)
j )2

⌉
, the evaluation grid 

is only updated provided it is sufficiently different from the 

previous iteration i.e. N(i)
e,j > 1.25 × N(i−1)

e,j .

4.3.  Objective function guided sample allocation

While peaks in the objective function JO(xs) (equation (20)) 
indicate the most suitable sampling locations, such a process 
would rapidly favour local extrema and hence clustering of 
the newly to-be-added measurement stations within an itera-
tion. To avoid over-sampling, an alternative process has been 
implemented in this work, basing the sample locations no 
longer on simply the highest JO value, but on local peak geom-
etry. Having defined the objective function, a threshold TJO is 
calculated based on the average of all detected local maxima 
(figure 6(a)). Potential regions for further investigation are 
identified where JO(xs) exceeds the threshold and sorted on 
the basis of their parameter Γ. This heuristic is evaluated for 
each region Vj  and quantifies the local extent of the objective 

function (in case of two dimensional domains this equals the 
volume underneath the objective function) and height (max-
imum value); 

Γj =

∫

Vj

JO(x) dx ×max
xs∈Vj

(JO(xs)) with ∀xs ∈ Vj : JO(xs) � TJO .

� (21)

Each region is then attributed nj = max
(

1,
⌊

Γj

〈Γ〉

⌋)
 sam-

ples with 〈Γ〉 = 1
NS

∑
j Γj  and NS equals the number of new 

samples to be distributed each iteration. Of all the identi-
fied regions, only the NS regions with highest Γ are retained 
and each is subsequently sub-divided into 2�√nj� × 2�√nj� 
patches. For each region, patches with the highest JO average 
are then assigned one of the nj samples in their corresponding 
local centers of gravity (based on JO(xs)). This process tends 
to deliver an evenly-spread distribution of points across 
each region, while ensuring samples are spatially assigned 
in accordance with the objective function as illustrated in 
figure 6(b). The minimum sample spacing is thus also limited, 
allowing for a well-conditioned interpolation matrix.

The number of new sampling points NS to allocate each 
iteration is highly dependent on the underlying function. 
Generally, adding too many new samples each iteration will 
automatically enforce space exploration and negate any ben-
efit of adaptive sampling. On the other hand, incrementing 
the number of samples by only one will yield a lengthy and 
computationally intense sampling process since the surro-
gate model needs re-evaluation with each newly accrued data 
point. The evolution in error and iteration number with NS 
is presented in section 7.1 and the authors found NS = 5 to 
provide a reasonable compromise while for one-dimensional 
adaptivity NS = 1 is more conducive (Theunissen et  al 
2015).

Figure 6.  Illustration of sample allocation. (a) Local peaks (°) of JO(xs) are used to define the threshold TJO. (b) Regions of JO(xs) above 
the threshold value are attributed a certain number of samples in proportion to their value of Γ. Starting with the region of largest Γ, 
samples (•) are progressively allocated in the c.g. of the smaller sub-portions until the budget of samples (set to NS = 7 in the current 
figure) has been depleted.
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Once the sampling locations have been identified, the 
order in which they are visited is optimised analogous to the 
Traveling Salesman Problem to minimise traverse time.

5.  Surrogate model convergence

While the number of repeated measurement at a certain 
sampling location for a Gaussian process can be related 
to confidence level, local fluctuation level in the data and 
a user-imposed relative error (equation (12)), the required 
number of sampling locations to retrieve a reliable esti-
mate of the underlying spatial data distribution is less evi-
dent and a priori unknown. Too few samples will yield a 
poor representation of the underlying data landscape, while 
oversampling is an inefficient use of computational and 
experimental effort. For this reason the adaptive sampling 
process should be considered converged when the addition 
of new data points yields a minimal change in surrogate 
model over a sufficient number of iterations. The exper
imentalist is therefore left with the problem of deciding for 
how many iterations the improvement must remain below a 
user-defined threshold. In this work a modified version of 
the adaptive stopping procedure of Theunissen et al (2015) 
has been employed.

While convergence in the surrogate model would imply 
a near-zero discrepancy, small model changes due to inter-
polation inaccuracies or modifications caused by uncer-
tainty in the data should actually be discarded. Convergence 
in the surrogate model is thus essentially equivalent to 
demanding the previously introduced improvement to be 
below a certain level, which has been discussed already 
in section  3.3. The number of consecutive converged itera-
tions NCCI in which the maximum improvement in surrogate 
model of each of the measured variables is negligible, i.e. 
Q(i)(xs) � max (Eλ(xs), Eσ(xs), ETPS) ∀xs, has been defined 
as

NCCI = 1 +

⌈
20

(
µ1 + µ2

2

)⌉
.� (22)

Parameter µ1 quantifies the relative importance of the 
measurement uncertainty with respect to the overall sur-

rogate; µ1 = 〈ε〉(i)

|s(i)
max−s(i)

min|
 with 〈ε〉(i)

= 1
N(i)

∑N(i)

t=1 εt  as per 

equation (12). The contrast in surrogate model is essentially 

quantified by µ2; µ2 =
|(J(i)

∆ )max−(J(i)
∆ )min|

|(J(i)
∆ )max+(J(i)

∆ )min|
, adopting the pre-

vious definition of J∆ (equation (7)). An overall large data 
scatter 〈ε〉 with respect to the underlying signal will result in 
high values of µ1 and subsequently, an increase in NCCI. Such 
a more stringent convergence criterion will thus lead to an 
increase in number of samples placed and concomitantly an 
improved confidence in the obtained surrogate model’s rep-
resentativeness of the underlying signal. High values of µ2 
imply the surrogate landscape to contain few, yet very distinct 
(high amplitude) peaks. In the presence of such isolated fea-
tures, a higher number of samples is required to encourage 
further domain exploration, which is analogous to a higher 
NCCI. Conversely, a relatively flat signal would correspond to 
low values of µ2 and requires only few samples to be appro-
priately modelled. Note that NCCI is adjusted with every addi-
tion of new samples. In the ideal situation of no scatter in the 

data (µ1 = 0) and uniform signal (hence J(i)
∆ = 0 and µ2 = 0) 

the minimum number of consecutively converged iterations 
will equal NCCI = 11 (equation (22)), which was empirically 
found to be a suitable number.

6.  Additional remarks

6.1.  Computational overhead

It is clear from the foregoing that adaptive sampling will 
be accompanied by an additional overhead compared to 

Figure 7.  Partition in computational effort with total number of samples N for the case of the shifted Franke function with NS = 5 and  

(a) 
∑

j N(0)
e,j = 7 × 7, (b) 

∑
j N(0)

e,j = 15 × 15.
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traditional sampling. In view of the numerical performance 
assessment in the following paragraph, figure  7 depicts the 
contribution of the different stages in adaptive sampling to the 
overall time (Ttotal) for the case where the underlying signal is 
defined by Franke’s function. All processes pertaining adap-
tive sampling were implemented in the commercial software 
MATLAB (2014) on a 64-bit standard PC (Intel Core i7-4790, 
3.6GHz CPU) with 16GB RAM. Regarding data accrual, at 
each sampling location Ni = 104 samples are assumed to be 
collected at a typical data rate fs of 1 kHz to retrieve mean-
ingful statistical moments.

Neither the allocation of samples (section 4.3), nor the 
establishment of an adaptive evaluation grid (section 4.2), nor 
convergence checks (section 5) signify a high computational 
load as seen in figure 7(a). The total time for adaptive sam-
pling is dominated by data acquisition since in each iteration 

50 seconds (= NS×Ni
fs

) are allocated to data collection. With 
increasing number of samples the construction of the surro-
gate model and objective function start to take up a significant 
portion of the total processing time. The establishment of the 
surrogate model involves the evaluation of the interpolation 
coefficients α and β by means of an iterative conjugate gra-
dient method (appendix A.2), the RBF matrix Φ, as well as a 
preconditioning and generalised cross-validation (section 2). 
The objective function involves the interpolation of the model 
onto an adaptively refined evaluation grid (section 4.2). As the 
number of samples grows, so do the involved matrices and 
hence the computational effort in their manipulation. Exactly 
these two subroutines constitute the additional overhead com-
pared to the full factorial approach as illustrated by the red 
lines in figure  7. At approximately 600 samples, adaptive 
sampling takes approximately 20% longer than FF. However, 
as will be shown hereafter, with the benefit of obtaining con-
sistent data quality and lower error levels compared to the 
structured sampling approach.

In figure 7(b) the initial sampling grid consists of 15 nodes 
in each direction compared to the 7 × 7 grid in figure 7(a). 
The evaluation grid thus contains a larger number of blocks 
(section 4.2) and, consequently, each block will accommo-
date fewer evaluation grid points. Indeed, for a given number 
of total samples, comparison between figures  7(a) and (b) 
indicates a reduction in additional computational effort. 
Moreover, the establishment of the surrogate model, which is 
independent of the evaluation grid, also shows to take slightly 
less effort, implying that optimised internal memory manage-
ment may bring the computational cost down further. This is 
however beyond the scope of the current work.

6.2.  Extension to higher dimensions

In describing the adaptive routines proposed, no limitations 
were imposed in terms of dimensionality of the problem and 
as such, the concept underlying the proposed adaptive process 
remains valid in higher dimensions. Some implementation 
aspects can be expected to require more attention. The precon-
ditioning described in section 2.2 for example was tailored for 
surface fitting and hence no longer suitable when sampling in 

a volumetric domain. In that case, alternative RBF functions, 
such as the Wendland functions mentioned afore, may prove 
to be more appropriate. Especially given the rapid increase 
in data points, the sparsity promoted by these RBF kernels 
will be beneficial in reducing the computational overhead and 
negating the need for preconditioning. However, these kernels 
will require a proper definition of the inherent support radius. 
Also the optimal ridge-regression parameter λ(k) will neces-
sitate a review of its estimation when changing RBF kernel 
(Schaback 2007) as this further influences the improvement-
driven sampling. Given the vast application of RBF interpo-
lation, the majority of these problematics has already been 
solved, making the adaptation of the presented strategy for 
volumetric sampling less cumbersome.

7.  Performance study

7.1.  Numerical assessment

To test the performances of the proposed methodology, the 
adaptive sampling strategy has been tested on two analytical 
test functions; Franke’s bivariate function (Franke 1979) and 
the numerically simulated flow field underlying a 2D lid driven 
cavity at a cavity-height-based Reynolds number of 100.

Franke’s function was translated by 0.6 and 0.3 in x and 
y direction respectively and coordinates were rescaled by a 
factor five; f (5(x − 0.6), 5(y − 0.3)). The surface consists 
of localised peaks and a trough superimposed on a global 
exponential (figure 8(a)). The lid driven cavity is chosen as 
it involves adaptivity to multiple velocity components and 
presents a complex flow field with a central vortex and two 
additional regions of recirculating flow in the cavity corners 
(figure 11(a)).

With no uncertainty in the data, the µ1 component in 
equation (22) equaled zero for all cases while µ2 = 1 as the 
minimum in JD was 0. Accordingly, all adaptive sampling 
processes, each consisting of three iterations in smoothing 
parameter λ(k), were considered converged after NCCI = 11 
consecutive iterations in which the improvement in surrogate 
model was negligible.

Two initial structured grids were considered to construct 
the very first estimate of the surrogate model and initiate the 
adaptive process; a 7 × 7 and 15 × 15 grid. Once the adap-
tive approach converged, the uniform sample spacing in 
the FF was defined as hFF = �1/

√
N� at which the function 

values were evaluated. Note that the number of samples with 
FF will always satisfy NFF = h−2

FF � N. To juxtapose the 
‘goodness’ of the adaptive sampling (AS) distribution with 

equispaced sampling, a Laplacian-based quality heuristic G 

was introduced defined as G = 1
N(·)

∑N(·)
t=1 |∆f (xt)| where 

N(·) = N  or N(·) = NFF depending on the approach selected. 
High values of G indicate the sample distribution to be more 
dense in regions of higher signal curvature, in line with the 
curvature dependency criterion. Errors were quantified by 
defining a common 200 × 200 evaluation grid (xe) with a 
fixed spacing of he  =  0.005 onto which the FF and AS values 
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were re-interpolated using a 2nd order Thin Plate Spline 
augmented with a linear polynomial (see section  2.1). To 
minimise the influence of interpolation errors on the domain 
edge, the evaluation grid span between 0.05 and 0.95 in 
both directions. At each of the Ne = 4 × 104 grid nodes the 
absolute difference between imposed and interpolated value 
constituted the local error δε(xe) = |s(xe)− f (xe)| and the 
single-valued root mean square (rms) error was defined as 

βε =
1

Ne

∑Ne
q=1 δ

2
ε,q −

(
1

Ne

∑Ne
q=1 δε,q

)
2.

The authors would like to re-iterate the fact that the total 
number of samples was not pre-defined, but automatically 
determined by the algorithm based on the stopping criteria 
discussed in section 5.

Figure 8 gives an overview of the algorithm’s perfor-
mance with respect to the traditional full factorial sampling 
(FF) approach in the analysis of the shifted Franke func-
tion. As the number of samples imposed per iteration NS is 
increased, fewer iterations are needed to reach convergence 
(figure 8(b)). Augmenting the initial number of samples from 
49 to 225 shows the process to converge faster because of 
the better initial estimate of the underlying signal. However, 
the total number of samples continues to increase in a near 
linear fashion (figure 8(c)) and is nearly equal for both ini-
tial grids. The standard deviation in error (figure 8(d)) and 

maximum error (figure 8(e)) initially decrease, reaching 
asymptotic values equal for both FF and adaptive sampling. 
Up to NS ≈ 30 AS reduces both errors by a factor 3 com-
pared to FF, independent of the initial sampling density used. 
As such, the adaptive approach shows to be independent of 
the initial sampling grid used, provided of course the initial 
surrogate model is at least to some degree representative of 
the underlying function. Also the sampling quality is consist-
ently higher for adaptive sampling as the samples are located 
in appropriate regions (figure 8(f)). This can be clearly seen 
in figure 9. With NS = 71 the regions of higher curvature are 
clearly visible through the heightened sample concentrations. 
However, these regions become increasingly oversampled 
when NS is enlarged as the interpolation accuracy improves 
due to the reduced sample spacing. Driven by the objective 
JI(xs) (section 3.3) additional samples are placed to further 
enhance the surrogate model. For NS = 5 the denser initial 
(structured) grid provides an overall, better initial estimate 
of the underlying function (figure 9(d)), yet, the function’s 
extremities are sampled to a lesser amount compared to the 
sparser initial grid, yielding a comparable maximum error 
(figure 8(e)). For both initial grids tested, the addition of 5 
new samples (NS = 5) with each iteration shows to result in 
an appropriate sampling. In view of the time required to per-
form the experiment, a total number of samples N ∼ O(103) 

(a) (b) (c)

(d) (e) (f)

Figure 8.  (a) Illustration of the modified Franke function f (5(x − 0.6), 5(y − 0.3)) with superimposed contours. Considering Adaptive and 
Full Factorial sampling with two initial sampling densities; evolution in (b) number of iterations before convergence, (c) total number of 
samples N, (d) rms error (βε) normalised with the maximum value of the underlying signal Ao, (e) normalised maximum error (δε)max/Ao 
and (f) G heuristic, with imposed samples per iteration NS.
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is desirable, in which case the typical number of samples to 
be added each iteration should be less than 20 according to 
figure 8(c). Comparing the error distributions (figure 10) it can 
be seen that little is gained going from NS = 5 to NS = 11 
despite a near doubling of the total number of samples. Both 
AS and FF have the largest errors in the regions of largest spa-
tial variance, but already for NS = 5 AS reaches error levels 
comparable to those achievable with NS = 11. It is as such 
proposed that NS = 5 is most suitable.

For the lid driven cavity figures 11(b) and (c) depict the 
evolution in maximum and random error with respect to 
the total number of samples adding with each iteration five 
new samples (NS = 5). It should be noted that the sampling 
is based on surrogate models of both the horizontal (U) and 
vertical (V) velocity component. All heuristics, calculated for 
each of the components, are therefore arithmetically aver-
aged and displayed in figure 11. Initially the error plots for 
both AS and FF approaches are very similar. However, struc-
tured sampling yields a higher variation in maximum error 
and increasing the number of samples does not guarantee a 
reduction in maximum error (figure 11(b)). The adaptive pro-
cess on the other hand yields a typical reduction in (δε)max 
and random error by a factor two compared to FF. In other 
words, for FF to achieve the same error level as AS, at least 
double the number of samples are required. Even then, based 
on figure 11(b) this still does not ensure FF to attain the same 
error level.

The smoothing iterations can be clearly identified in 
figures  11(b) and (c); for an initial grid of 7 × 7 samples 

the value λ(1), based on data scatter, is used for the first 
38 iterations (N = 7 × 7 + 38 × 5 = 239). Although the 
maximum error for λ(2) remains largely constant, this ten-
dency does not reflect the local improvements in surrogate 
model. As can be seen in figure  11(c), the random error 
continues to decrease. In approximately the 144th iteration 
(N = 7 × 7 + 144 × 5 = 769) the final smoothing is applied. 

In this stage smaller flow scales are considered, which, espe-

cially for 
∑

j N(0)
e,j = 7 × 7 yields a sudden reduction in max-

imum error.
Increasing the initial sampling density allows AS to 

reach lower maximum errors during the converging process. 
However, as can be seen from figures 11(b) and (c), once the 
process converges, final error levels are identical. Higher sam-
pling densities with AS are observed in regions of strong gra-
dients, notably the corner vortices, the top of the cavity and 
the central inflection point (X ≈ 0.6, Y ≈ 0.75). This clearly 
leads to a drastic reduction in local error (figures 11(e) versus 
(f)). With FF exactly these regions consistently present the 
highest errors.

7.2.  Experimental assessment

The final assessment consisted of the application of the adap-
tive methodology to an experimental test. The case of an open 
cavity flow with a length-to-depth (L/H) ratio of 2 was con-
sidered at a Reynolds number ReH ≈ 37 × 103. Experiments 
were performed in the open-return low-speed wind tunnel 

Figure 9.  Adaptive sample distributions for the modified Franke function (figure 8(a)). Initial grids 
∑

j N(0)
e,j = 7 × 7; (a) NS = 1,  

(b) NS = 5, (c) NS = 71. (d) 
∑

j N(0)
e,j = 15 × 15 NS = 5. The colors indicate the reconstructed signal from the data samples.

(a) (b) (c) (d)

Figure 10.  Error distribution across the modified Franke function obtained with an initial grid of 7 × 7 samples and (a) and (c) adaptive 
sampling and (b) and (d) equispaced sampling. (a) and (b) NS = 5; (c) and (d) NS = 11.
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of the University of Bristol at a flow speed of approximately 
10.33 m s−1 and a turbulence intensity of approximately 2%. 
2D2C Particle Image Velocimetry measurements were per-
formed on a cavity 110 mm long and 55 mm deep using a 
Dantec Dynamics system consisting of a 200 mJ Litron laser 
and 4MP FlowSense EO camera. A sketch of the setup and 
exemplary PIV image illustrating the location of the cavity 
walls is provided in figure 12. The 2072 × 2072 px2 sensor 
corresponded to a field of view of 115 × 115 mm2 and images 
were analysed using initial interrogation windows of 65 × 65 
px2, recursively reduced to 17 × 17 px2. A mutual window 
overlap of 75% yielded a final vector spacing of approxi-
mately 0.2 mm.

In total 1000 instantaneous velocity fields were consid-
ered (Ni = 103) in the calculation of the mean and fluctuating 
velocity components, (u, v) and (u′2, v′2) respectively, where 

u(x) = 1
Ni

∑Ni=103

q=1 uq(x) and u′2(x) = 1
Ni

∑Ni
q=1 u2

q(x)− u(x)2. 

The latter stresses then enabled the determination of the local 

standard deviations, e.g. σu =
√

Ni
Ni−1 u′2 , to establish relative 

measurement estimates as per equations (12) and (15). The 
extracted PIV data subsequently served as input into the 
adaptive sampling process adopting linear data interpolation 
from the structured PIV data to the intermediate locations.

The adaptive process was initiated by taking measurements 
at 49 (7 × 7) equispaced samples. Each iteration five new sam-
ples (NS = 5) were added. Typical LDA traverse increments 
are in the order of 0.1 mm. In terms of the unit domain, this 
implies that sample locations must be located on multiples of 
0.1
115. This was taken into account when attributing new data 
positions. Useful data can only be extracted within the flow 
region. To this extent cavity walls are to be excluded when 
attributing new sampling locations. This was accounted for by 
setting the objective function (equation (20)) to zero within 
the corresponding regions as evidenced when overlaying the 
FOV with the predicted sampling locations (figure 12(c)).

The number of consecutive iterations to establish conv
ergence in each of the smoothing phases through ridge 
regression was automatically set to NCCI = 16, NCCI = 15 
and NCCI = 15 respectively. A higher concentration of sam-
ples is allocated within the cavity compared to the outer 
flow region. A zone of recirculation can be noted in the 
upstream corner of the cavity as visualised by the stream-
lines and this region, as well as the upstream and down-
stream cavity stagnation points are adaptively allocated 
more samples. Contrary to the numerical cases, which are 
void of any fluctuation in signal, the distribution of new sam-
ples is now influenced by the local data uncertainty, i.e. JE. 

(a) (b) (c)

(d) (e) (f)

Figure 11.  (a) Illustration of the 2D lid driven cavity at Re  =  100 where the streamline pattern is superimposed onto the contours of the 
absolute out-of-plane vorticity component ωz = ∂V/∂X − ∂U/∂Y . Evolution in (b) normalised maximum error ((δε)max/Ao) and (c) 
normalised rms error (βε/Ao) with total number of samples N for a varying initial sampling grid and adaptive or full factorial sampling 
strategy. (d) Sampling locations for NS = 5 superimposed on contours of the horizontal (U) velocity component for an initial sampling grid 
of 7 × 7 nodes. Corresponding normalised error distribution in U with (e) adaptive and (f) full factorial sampling.
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This is manifested when samples are superimposed onto the 
product of local Reynolds stresses u′2 × v′2  (figure 12(d)). 
Whereas the adaptive approach yields a consistent reduction 
in maximum error with increasing number of samples (figure 
12(e)), the standard approach shows stronger fluctuations. 
Not only does AS attain error levels inferior to those of FF 
(figures 12(e) and (f)), but, as per the numerical cavity flow, 
adding more data does not ensure either the maximum, or the 

rms error of FF to reduce. On the contrary, adding samples 
can actually increase the maximum error as samples are not 
optimally placed in flow regions of spatially rapid changes 
such as the cavity corners. This leads to poor representa-
tions of the flow as manifested in the error distribution plots  
(figures 12(g)–(j)). In the bulk of the flow where spatial gra-
dients in time-averaged velocity are low, differences between 
full factorial and adaptive sampling are marginal. However, 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 12.  (a) Sketch of the open cavity experimental setup (Lo  =  200 mm, H  =  55 mm, L  =  110 mm, W  =  200 mm) at ReH = 37 × 103. 
The green square indicates the PIV field-of-view. (b) Exemplary PIV image (flow from left to right) in which the cavity walls can be seen 
in the top part. The shear layer shed from the upstream stagnation point and impinging on the far cavity wall, is rendered visible through 
the inhomogeneous seeding density as a result of inherent flow turbulence. (c) Contours of the longitudinal velocity component with 
superimposed streamlines (white lines) and adaptively placed sampling positions (grey dots). The dashed black line represents the dividing 
streamline issued from (x/L, y/H) = (0, 0). (d) Contours of the product between the time-averaged fluctuations in the horizontal and 
vertical velocity component. Evolution in (e) maximum and (f) rms error with total number of samples. Error distribution obtained with 
adaptive sampling in (g) horizontal and (h) vertical velocity component compared with PIV. Error distribution as per full factorial sampling 
in (i) U and (j) V  component.
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in the close vicinity of the cavity walls, adaptive sampling 
clearly yields a representation in better agreement with the 
PIV results.

Both this test case and foregoing numerical assessments 
corroborate AS to be more reliable and efficient in the meas-
urement of an a priori unknown flow field;

	 1.	�Error levels in the reconstructed signal with data sampled 
through AS are lower than those sampled by means of FF.

	 2.	�Without knowing the underlying signal, it is impossible 
to preset the required number of samples to collect. In 
the FF approach N is thus rendered a critical user-defined 
parameter. The adaptive routine on the other hand auto-
matically stops when sufficient convergence is reached 
and does not require the experimentalist to make this 
decision.

	 3.	�The observed instability in error with FF, from an exper
imental perspective, is a highly unwanted anomaly. When 
using the traditional equispaced sampling, the assess-
ments have indicated that the experimentalist cannot be 
certain that the obtained result would be more accurate if 
more data points were added. He/she is therefore required 
to gradually increase the number of samples and make 
decisions based on observed changes in the reconstructed 
flow field. Such a process however intrinsically replicates 
the concept behind adaptive sampling.

	 4.	�Adaptive sampling shows a more consistent decrease 
in error (both maximum and rms) with total number of 
samples. Aborting the adaptive process before reaching 
convergence will subsequently still yield an overall result 
more reliable than FF.

8.  Conclusions

With the aim of improving experimental efficiency when sur-
veying e.g. flow regions by means of point-wise metrologies, 
an adaptive strategy has been proposed to properly sample 2D 
areas of interest in an automated manner. The methodology 
incorporates sampling criteria based on local signal curvature, 
improvement, uncertainty and domain exploration. In addi-
tion, initial smoothing is applied and progressively reduced 
as to mitigate the effect of local data jitter due to measure-
ment noise. The different processes are elaborated within 
this paper. Thin Plate Splines finally allow the reconstruction 
of the surrogate model onto a self-adapting evaluation grid. 
Automated stopping criteria have been implemented to imply 
convergence is reached and the numerical and computational 
implications are discussed within the document.

The performance of the adaptive sampling strategy is 
assessed and juxtaposed with results obtained by traditional, 
equispaced sampling (full factorial sampling) based on 
Franke’s function and the lid driven cavity flow. In addition, 

both approaches are applied to an open cavity experiment. All 
test cases attest regions of interest to be consistently attrib-
uted a higher number of samples through adaptive sampling. 
The optimum number of samples to add with each iteration 
was found to be 5. This yields a drastic reduction (typically 
factor 2–3) in error compared to traditional full factorial sam-
pling, independent of the initial number of samples. To reach 
the same level of error as the adaptive approach, traditional 
factorial sampling thus requires at least twice the number 
of samples. More importantly, whereas adaptive sampling 
yields lower error levels with increasing number of samples, 
full factorial sampling does not guarantee such a tendency. 
However, without any a priori knowledge of the flow field, the 
experimentalist is unable to determine an appropriate number 
of samples when adopting equispaced sampling. Traditional 
sampling thus demands the experimentalist to frequently re-
evaluate the reconstructed signal and augment the number of 
samples until presumed convergence is reached. Such a pro-
cess intrinsically replicates the concept behind adaptive sam-
pling and, combined with the fact that the automatic stopping 
criteria implemented have shown to be effective in the assess-
ments provided, corroborates the adaptive approach to be 
more reliable and efficient in the measurement of an unknown 
signal/flow field.
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Appendix A.  Surrogate model construction

A.1. TPS preconditioning

The preconditioner for the case of d = 2, n = 3 (TPS4) dis-
cussed in section 2.2 is provided below for clarity. A third-
order polynomial is locally fitted to the available measurement 
data, enabling a straightforward evaluation of the spatial 
derivatives defining the preconditioning matrix (equation (3)); 

ũj = ξ30x3 + ξ03y3 + ξ21x2y ++ξ12xy2 + ξ20x2 + ξ02y2

+ ξ11xy + ξ10x + ξ01y + ξ00.
�

(A.1)

Following the procedure presented in section 2.2, the polyno-
mial coefficients are obtained by means of least-squares fit-
ting and can be expressed in terms of all available data points; 
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ξj = Bu and ηj = Bv. The preconditioning matrix C then fol-
lows from approximating the Laplacian in terms of the deriva-
tives of the polynomials; 

N∆∑
j=0

3∑
i=0

(
3
i

)(
δ3u

δxiδy3−i

)

j

(
δ3v

δxiδy3−i

)

j
Tj

≈
N∆∑
i=0

(36ξ30η30 + 12ξ12η12 + 12ξ21η21 + 36ξ03η03)j Tj

≈
N∆∑
j=0

(36B1,∗uB1,∗v + 12B4,∗uB4,∗v + 12B3,∗uB3,∗v + 36B2,∗uB2,∗v)j Tj

≈ vT
N∆∑
j=0

[
6BT

1,∗ 6BT
2,∗

√
12BT

3,∗
√

12BT
4,∗
]

j




6B1,∗
6B2,∗√
12B3,∗√
12B4,∗




j

Tju

≈ vT
N∆∑
j=0

Cju ≡ vTCu.

� (A.2)
The notation Bi,* refers to the ith row of matrix B including 

all columns.

A.2.  Iterative conjugate gradient

The solution process to the preconditioned system of equa-
tions for TPS interpolation is provided as per (Dyn et al 1986) 
for completeness. For further details regarding derivation the 
reader is referred to the related reference.

α(−1) = α(0) = 0, r(0) = f, ρ(1) = 1,

x(q) = Cr(q), y(q) = (Ψ + λI)x(q), η(q) = (r(q))Tx(q),

w(q) =
η(q)

(x(q))Ty(q) , ρ(q+1) =

(
1 − w(q)η(q)

w(q−1)η(q−1)ρ(q)

)−1

,

r(q+1) = ρ(q+1)
(

r(q) + w(q)y(q)
)
+
(

1 − ρ(q+1)
)

r(q−1),

α(q+1) = ρ(q+1)
(
α(q) + w(q)x(q)

)
+
(

1 − ρ(q+1)
)
α(q−1).

� (A.3)
Superscript (q) indicates the iteration number. The process is 
stopped when convergence is reached in α(q) or the number of 
iterations exceeds a maximum.

The preconditioner was constructed by imposing the condi-
tion that C eliminates the polynomial contribution in the RBF 
interpolation (equation (2)); CP = 0. The polynomial coeffi-
cients can then be recovered through Pβ = f − (Ψ + λI)α, 
which can again be solved for β in a least-squares manner

β = (PTP)−1PT (f − (Ψ + λI)α) .� (A.4)

Appendix B.  Smoothed spline estimation  
using GCV

The procedure to obtain a smoothed spline approximation 
using Generalised Cross Validation (GCV) is repeated from 
Bates et al (1987) for completeness and extended to include 
the regression parameter λ. The routine starts by taking a QR 

decomposition of the matrix containing the M = (n−1+d)!
(n−1)!d!  

polynomial basis functions evaluated at the N sampling 

locations (k = 1, . . . , N); P  =  FG with Pk,∗ = [xk yk 1]. 
For the case of a 2nd order spline (n  =  2) in two dimensions 
(d  =  2), M  =  3. Matrices F1 and F2 respectively contain the 
first M and trailing N  −  M columns of F (F = [F1 F2]) while 
G1 consists of the first M rows of G (G = [G1; G2]). An addi-
tional matrix L is obtained through a Cholesky decomposi-
tion of the matrix product LTL = FT

2 ΨF2, followed by the 
singular value decomposition of LT; USVT = LT . Matrix 
S will be a N × N  diagonal matrix with elements si along 
the diagonal. Introducing the vector z = UTFT

2 f  and the 
(N − M)× (N − M) identity matrix I, the optimal values for 
the coefficients are given as

αθ = F2U(S2 + NθI)−1z� (B.1)

βθ = FT
1 f − FT

1 Ψαθ.� (B.2)

The most suitable value of θ corresponds to the location 
where V(θ) attains a minimum, which can be solved by means 
of e.g. a golden section search.

V(θ) =

∑N−M
j=1 (κjzj)

2

(∑N−M
j=1 κj

)2 with κj =
Nθ

s2
j + Nθ

.� (B.3)

The influence matrix is given by

H(θ) = F1FT
1 + F2US2(S2 + NθI)−1UTFT

2 .

Using equation (B.1) to obtain an expression for (S2 + NθI)−1 
in terms of αθ = α, substituting the definition of z and 
straightforward algebra, the ‘hat’ matrix H can be expressed 
in terms of the interpolation coefficients, which are obtained 
either through smoothed spline fitting—hence a function of 
θ—or equivalent ridge regression (see equation (4)) in which 
case H becomes a function of λ; 

H (α) = H(λ) = F1FT
1 + F2US2 (UTU)−1UT(FT

2 F2)
−1FT

2 αfT(ffT)−1

︸ ︷︷ ︸
=(S2+NθI)−1UT FT

2

.

� (B.4)
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