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Abstract

Computer-based de-novo design of functional molecules is one of the most prominent challenges
in cheminformatics today. As a result, generative and evolutionary inverse designs from the field of
artificial intelligence have emerged at a rapid pace, with aims to optimize molecules for a particular
chemical property. These models ‘indirectly’ explore the chemical space; by learning latent spaces,
policies, and distributions, or by applying mutations on populations of molecules. However, the
recent development of the SELFIES (Krenn 2020 Mach. Learn.: Sci. Technol. 1 045024) string
representation of molecules, a surjective alternative to SMILES, have made possible other potential
techniques. Based on SELFIES, we therefore propose PASITHEA, a direct gradient-based molecule
optimization that applies inceptionism (Mordvintsev 2015) techniques from computer vision.
PASITHEA exploits the use of gradients by directly reversing the learning process of a neural
network, which is trained to predict real-valued chemical properties. Effectively, this forms an
inverse regression model, which is capable of generating molecular variants optimized for a certain
property. Although our results are preliminary, we observe a shift in distribution of a chosen
property during inverse-training, a clear indication of PASITHEA's viability. A striking property of
inceptionism is that we can directly probe the model’s understanding of the chemical space on
which it is trained. We expect that extending PASITHEA to larger datasets, molecules and more
complex properties will lead to advances in the design of new functional molecules as well as the
interpretation and explanation of machine learning models.

1. Introduction

The de-novo design of new functional chemical compounds can bring enormous scientific and technological
advances. For this reason, researchers in cheminformatics have developed a plethora of AI methodologies for
the challenging inverse molecular design task [3, 4]. They include deep learning techniques such as
variational autoencoders (VAE) [5-7], generative adversarial networks (GAN) [8, 9], reinforcement learning
(RL) [10, 11], and evolutionary techniques such as genetic algorithms (GA) [12-15].

These methods belong to a category with one particular attribute: the model indirectly optimizes
molecules for a target property. For example, VAEs and GAN’s learn to mimic a distribution of molecules
from a training set, constructing a latent space that is then scanned to find molecules that optimize an
objective function. In the case of RL, the agent learns from rewards in the environment in order to build a
policy for generating molecules, which is subsequently used to maximize an objective function. Finally, in
GAs, the population is optimized iteratively by applying mutations and selections. In all of these cases, the
optimization process does not directly maximize the objective function in a gradient-based way.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Here, we present preliminary results for PASITHEA®, a new generative model for molecules inspired by
inceptionism techniques [16] in computer vision. PASITHEA is a gradient-based method that optimizes a
discrete molecular structure for a target property. We train a neural network to predict chemical properties
using a molecular string representation. We then invert the training of the network to generate new variants
of molecules. This is a largely stochastic process that produces a pool of molecules that is considerably more
diverse than the original dataset. This approach has two significant novelties:

e Molecules are directly optimized to a given objective function, sidestepping the learning of distributions and
policies, or the application of mutations to a population.

e We can analyse what the regression network has learned about the chemical property by probing its inverse
training with test molecules. This may allow us to explain the neural network’s understanding of chemistry.

Furthermore, in contrast to most exploratory methods such as RLs or GAs, PASITHEA does not require
expensive function evaluations for quantum chemistry calculations. Provided that we use a pre-calculated
dataset, this is an important advantage over explorative approaches such as GA or RL, since costly chemical
properties can be directly optimized.

This method is made possible by the application of SELFIES, a 100% robust molecular string
representation [17]. In contrast to SMILES, for which a large fraction of generable strings do not map to
valid molecular graphs, SELFIES is a surjective map between molecular strings and molecular graphs. That
is, for every SELFIES string, there exists a valid molecular graph, and every molecular graph can be
represented by SELFIES.

In this analysis, the logarithm of partition coefficient (logP) is used as our target property, obtained from
the RDKit library [18]. The logP, which measures the lipophilicity of a molecule, is an important property of
drug molecules and an indicator of drug-likeness [19]. Apart from its practicality, the logP is particularly
suitable to this study because it follows an approximate normal distribution in the QM9 dataset. The range of
logP values is nearly continuous, which is essential for gradient-based molecular design.

Once PASITHEA has been trained on the QM9 dataset to predict logP values, we initialize the inverse
training with a molecule and optimize it for a logP value. We confirm a shift in the logP distribution of
generated molecules. We can observe how the model changes a molecule quasi-continuously over several
steps to a final, optimized chemical structure. Finally, we indicate how this technique can be used to probe
concepts learned by PASITHEA. For completeness, we want to mention there are very recent technologies
that can efficiently explore the chemical space that do not require training, datasets or domain-knowledge at
all [20]. Those techniques are complementary to what we demonstrate here, and it might be interesting to see
how they can be combined with PASITHEA.

2. Methodology

2.1. Inceptionism
Despite wide-ranging applications, artificial neural networks are still a black box—there is a wealth of
research in machine learning devoted to understanding how a network learns from data. Particularly,
inceptionism has drawn considerable attention as a technique to visualize the inner workings of a network,
capable of designing distinctive works of art [1, 16]. At the core of this technique is the idea that after a
classification network has been trained on a dataset of images, each layer encodes some feature or aspect that
allows it to distinguish between images. Deeper layers hold high-level features such as the shapes of specific
objects; layers closest to the input tend to hold simple aspects such as texture. In a process referred to as ‘deep
dreaming), the initial classification training is reversed. Here, the network is no longer updating the weights
and biases by minimizing the error between prediction and ground truth. Rather, it is maximizing the
activations of a chosen layer. A single image chosen as input is then gradually mutated via gradient ascent as
the layer is enhanced, displaying a visual interpretation of the layer. An example is shown in figure 1, where
animal features are enhanced in the image of a chemistry lab. The final image shown in figure 1 is generated
by holding the network weights fixed while modifying the pixel values of the first image, maximizing the
output of specific internal neurons. In this way, by looking at the final picture, we can infer the role of these
specific neurons in the entire neural network.

We generalize this technique to the inverse-design task of functional molecules. Several key modifications
to the original algorithm are required. The network is no longer predicting discrete image classes, but a

6 PASITHEA is the goddess of relaxation, meditation, hallucinations, and wife of Hypnos, the god of sleep. The full code is available at
https://github.com/aspuru-guzik-group/Pasithea.
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Figure 1. Inceptionism techniques aim to understand the inner mechanism of a neural network by visualizing the information
encoded in a particular layer [1]. A typical result after training on a chosen image is a build-up of flourishes that has a dream-like
quality—hence the name of the process, ‘dreaming’. To generate this image, we use the following github repository [2].
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Figure 2. Two-step training for PASITHEA. (a) In prediction training, the neural network learns to predict logP values from input
molecules through the standard feedforward and backpropagation process in which the network weights are updated continually.
(b) The same feedforward and backpropagation process occurs. The gradients are not computed with respect to the weights, but
rather the input molecule.

continuous property value such as the logP. Moreover, the inverse training does not deal with any arbitrary
layer. Instead, we are most interested in the output layer, which contains the predicted property value.

Prior to deep dreaming, the network learns to predict a specific real-valued property for each molecule in
a given dataset (i.e. logP) from the molecular graph. The training involves the standard feedforward and
backpropagation process. For a set of fixed inputs and outputs, the network iteratively improves its
predictions by updating the weights through mini-batch gradient descent (figure 2(a)). In deep dreaming, an
input molecule with a property value predicted by the network is incrementally modified to a similar
molecule with the desired value. The weights and biases of each layer of the network are now fixed and the
neural network is no longer adjusting its logP prediction for each molecule. Through backpropagation, we
minimize the error between the predicted properties of each input molecule and the desired target property
(figure 2(b)). The computed error is then used to compute the gradient with respect to the one-hot encoding
of the input. This effectively transforms the input gradually to a molecule that matches the target property.
Each increment of the one-hot encoding corresponds to a potential transformation of the input molecule.
Once the loss function has been minimized, the gradient evaluates approximately to zero, which terminates
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Ho\%NH —[N][=C][O] —’[{1,0,0,...,0,0,0},

[0,0,0,...,0,1,0]]

+ Random noise, [0, k]

[[0.134,1,0.001,...,0.892,0.211,0.111],
[1,0.122,0.412,...,0.119,0.332,0.599],
[0.121,0.131,0.761,...,0.511,1,0.110]]

Model input

Figure 3. It is an ongoing study to find the optimal method to convert a SELFIES string into an input suitable for deep dreaming.
As described in the original paper [17], each molecule is tokenized into a set number of SELFIES symbols and processed into
one-hot encoded vectors. The number of symbols is determined by the length of the largest SELFIES string in the dataset. In
tokenizing molecules which require less symbols than the set number, we use a special null token for the empty positions. When a
one-hot encoding is taken as input, the encoding transforms from a vector of binary variables to a vector of real numbers through
the first and subsequent iterations of inverse training. The mixed vector representations make it difficult for the deep dreaming
model to converge. Therefore, taking one of several possible approaches, we introduce noise in the one-hot encoding as input to
deep dreaming. Every zero in the one-hot encoding is replaced by a random number in the interval [0, k], where the upper-bound
k is set to a value between 0.5 and 0.95.

the training. In this process, the same standard feedforward and backpropagation algorithm is used, but the
input molecule is adjusted while the weights and biases remain constant.

2.2. Molecular representation

An important contribution to the model is a recently developed textual representation for molecules known
as SELFIES. The dreaming process requires a continuous space in which all points are valid, a criterion met
by SELFIES, which has been proven to be 100% valid [17]. The traditional SMILES representation can be
problematic when the deep dreaming model transitions over an invalid structure from one molecule to the
next. For example, in the transition from a string containing a ring, ‘CCCC1CCCC1CC,, to a string without a
ring, ‘CCCCCCCCCC;, the model is likely to produce strings resembling ‘CCCC1CCCCCC’, which does not
correspond to a valid molecular graph. In this case, the transformation may reveal the network’s
understanding of string syntax in relation to logP, but not the molecular structure in relation to logP, since
the string does not correspond to a valid molecule. In contrast, the SELFIES representation enforces a
constraint on the syntax to prevent the model from producing such invalid structures, which produces a
complete optimization sequence that directly maps to valid molecules.

There are several steps required to convert from a SELFIES string to a one-hot encoded vector for the
model input, described in figure 3. The last step, applying noise to input vectors, ensures that we observe
increments in the molecular optimization, instead of haphazard modifications or none at all.

A more straightforward task is the opposite conversion, from the one-hot encoding to the corresponding
SELFIES string, in each iteration of inverse training. We apply the argmax function to each array to find the
position of the maximum value, which is then translated to the corresponding SELFIES symbol.

3. Comparison to VAEs

A simple four-layer network highlights one key difference between PASITHEA and other optimization
methods: we perform reverse-differentiation directly on the molecular representation, which is a one-hot
encoding of SELFIES. Let us compare this approach with the related concept of VAE [5]. In VAEs, a latent
space is learned by encoding and decoding molecules. After the reconstruction, another neural network can
then optimize in the newly created latent space. In this case, since the prediction network is applied to the
latent space, the basis for gradient computation lies in the latent space, not in the molecular representation
itself.

The direct reversibility on the basis of model weights is important in the context of machine learning
interpretability. Our goal is to understand directly what a neural network learns about a specific molecular
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Figure 4. Stepwise molecule transformations, optimized for a lower target logP in (a), (b) and optimized for a higher target logP
in (c), (d). The blue curve represents the training loss over the number of epochs and the red curve represents logP adjustments
corresponding to the training loss, where the logP values are computed with RDKit. Next to each molecular structure is a number
written in red, indicating the computed heats of formation in kcal/mol. In some cases, the molecule evolves to meet the target by
adding a noticeable pattern repeatedly, such as the appendage of nitrogen in (a) and length reduction in (b). Figures (c) and

(d) show the analogous behaviour for an optimization target with a large positive logP. Notice, in (b), the significant aberration at
around epoch 100. The logP adjustment is initially done in the correct direction, but it is immediately snapped back in the
opposite direction. This is a case where the neural network over-generalizes and does not capture the full relationship between
molecular representation and logP.

property. We believe that probing the regression neural network with test molecules, without a detour over
some specific latent spaces, is the most direct way to understand what the model has learned.

4, Results

A simple four-layer neural network, with no added components, suffices for our results and we did not
require an exhaustive search for the ideal training hyperparameters. A random subset of 10 000 molecules
from the QM9 dataset is selected as input to a network trained to predict logP values. We demonstrate how
PASITHEA transforms molecules in a stepwise, quasi-continuous fashion and shifts the distribution of logP
in the molecular dataset toward set targets. These logP targets are set high in order to observe a rightward
shift in logP distribution and similarly set low to observe a shift in the opposite direction. With logP targets
much further from the central tendency in the distribution, surpassing the highest and lowest values in the
dataset, we observe a more pronounced shift in distribution during training. We then analyse what
PASITHEA has learned regarding the relationship between logP and molecular structure. Our experiments
clearly indicate that deep dreaming achieves both a direct, gradient-based design of novel functional
molecules and the explainability of neural networks for molecules.

4.1. Evolution of individual molecules

Of particular interest is the gradual progression of each molecule through inverse training. Over hundreds of
training epochs, the gradient with respect to input SELFIES produces minor adjustments in the molecule
that increments to a pronounced transmutation (figure 4). The behaviour of these adjustments are stepwise
due to the discrete, textual nature of the molecules represented by strings, but continuous in terms of
real-valued one-hot encodings.

To test the quality of generated molecules, we consider thermodynamic stability as a metric of
synthesizability. Next to each molecular structure in figure 4 is a number coloured in red, indicating the
computed heats of formation in kcal mol~'. Smaller, negative numbers, as shown in figure 4(c), mark a
progression toward high thermodynamic stability. In figures 4(a), (b) and (d), we observe much larger,
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Figure 5. The molecules are optimized toward logP targets at both extreme ends, which indicates a non-trivial understanding of
structure—property relationships. Depicted underneath the histogram are the molecules corresponding to the maximum and
minimum logP values from each distribution. LogP values shown here have been computed with RDKit. Notice that the right tail
and the left tail of the shifted distributions (in blue and green) extend past those of the original distribution (highlighted in red).

positive numbers, indicating low stability. Although the heats of formation is a useful measure, we expect
that it is not optimized well in the inverse training. In order to generate molecules that are more stable, for
instance, the heats of formation can be incorporated as a target in prediction training, as a multi-objective
optimization. Using inceptionism, multi-target optimization works analogously to the single-objective
optimization.

4.2. Shift in distribution

In order to observe a large-scale pattern over the entire dataset, we disregard the intermediate molecules and
restrict our analysis to the initial and fully-optimized molecules. We take a sample of 10 000 random
molecules from the QM9 dataset and apply deep dreaming to each molecule. From these results, there is a
clear shift in the distribution of logP values in the set of molecules as they transmute toward a given target
value (figure 5). The distribution shifts in figure 5 show that there are some molecules generated with logP
values exceeding the lowest and highest values in the original dataset. For instance, notice that the left tail of
the left-shifted (green) distribution extends beyond the left tail of the original (red) distribution and the right
tail of the right-shifted (blue) distribution extends beyond the right tail of the original distribution. A
quantitative account is summarized under the histogram in figure 5. Notice that the maximum logP in the
right-shifted distribution exceeds that in the original dataset, and the minimum in the original dataset
exceeds that in the left-shifted distribution. Demonstrably, PASITHEA is generating novel molecules with
properties outside the limits of the original training set of molecules, which attests to the large potential of
this method.

4.3. Probing the neural network’s intuitions

4.3.1. Interpretable ML in physics

Our approach to de-novo molecular generation does not require domain knowledge, nor is the design of
PASITHEA influenced by domain knowledge. However, this knowledge is useful when applied to individual
molecular evolutions in deep dreaming [21]. In particular, we take interest in the recent progress in the
machine-assisted discovery of concepts in the natural sciences [22-27]. These lines of research use machine
learning techniques to draw conclusions about the underlying processes of a particular physical system,
which are often mathematical models with tunable parameters that are responsive to input observations. This
approach differs from research in machine-assisted de-novo molecular generation [5], where the focus lies in
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Figure 6. Graphical and SMILES representation of nitrogen appendages, with the corresponding logP. LogP values shown here
have been computed with RDKit. Shown in the top row are initial test molecules from the QM9. Shown in the bottom row are the
optimized counterparts of the molecules directly above. The neural network recognizes the nitrogen atom as an important
indicator of a low logP value.

producing optimization methods that can navigate a massive chemical search space. Our approach may close
the gap between these lines of research. By inverting the training, we achieve both molecular generation and
insights into how the network produces each molecular transformation, such as the ‘strategy’ employed to
optimize molecules by appending nitrogen atoms. Although PASITHEA does not model the behaviour of
molecules in the physical sense, it does model the transition rules required for molecular optimization; there
is potential in rigorously quantifying these transition rules. Specifically, the viability of inceptionism in
recovering the thermodynamic principles of physics [27] attests to the potential for chemistry.

4.3.2. Interpretable ML in chemistry

Inspired by explainable representations in image recognition [28] and rediscovery of concepts in physics
[27], we can understand the internal molecular representation by inverting it. For that, we probe the neural
network with specific test molecules and observe patterns in how it changes them. For example, the
composition of atoms after inverse training follows a predictable pattern, such as the appendage of a few
non-carbon atoms, fluorine and nitrogen. Take, for example, the transmutations of the simplest molecules in
the QM9 dataset (figure 6), which suggest that PASITHEA interprets these non-carbon atoms as correlated
with lower logP values. A similar trend persists for more complex molecules, in which more than one atom
may be replaced with nitrogen (figure 4(a)), though this persists to a lower extent for fluorine.

The intermediate states during continuous transformation can be used as additional insights into the
network’s understanding of chemical property. In particular, by observing a single test molecule, there are
instances where an additional iteration in inverse-training transforms the molecule with a repeated ‘strategy’
that has been used in previous iterations. The neural network appears to persist with a single strategy until
the training terminates.

We demonstrate this behaviour in figure 4(b), which shows a gradual process of reducing length, and in
figure 4(a), which shows an initial molecule containing a single nitrogen atom, an intermediate molecule
containing two nitrogen atoms, and a final molecule containing three nitrogen atoms. Moreover, in
figure 7(c), the neural network persists with several strategies. In the first three transformations, we observe
that the network replaces a single bond with a double bond each time, growing from a total of one double
bond to three double bonds. In the last two transformations, the network adds another double bond, while
in the process replacing a bond with a triple bond two times.

We discern another possible trend in figure 7, though less apparent, by noticing differences between the
molecules generated in positive and negative optimization. The generated molecules are shown to be
reducing in length in figure 7(a) and (b), while in figures 7(c) and (d), this pattern is either absent or the
structure appears to be increasing in length. The network has some non-trivial understanding of molecular
length: in prediction training, it has discovered that smaller molecules tend to associate with a lower logP
value. Similarly, figure 7(a) is a clearer indication that the network understands molecular length, taking a
simple five-carbon molecule as input. When optimizing in one direction, the network adds carbon to the
molecule, and when optimizing in the opposite direction, the network removes carbon several times. Put
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string of carbons. The opposite occurs for the —6 target. (b) Double bonds are repeatedly replaced by a carbon atom, which
occurs over multiple trials of positive optimization. (c) A single bond is repeatedly replaced by a double bond or triple bond when
optimizing to the +6 target.

differently, the network not only optimizes toward a goal arbitrarily—it recognizes dichotomies in structural
features and exploits them selectively.

As a hallmark of the dreaming, we find that 97.2% of the molecules in the generated set do not exist in
the original training set. The network is not memorizing the data, instead using features of the molecular
structure to guide its optimization. For instance, the number of heavy atoms in some generated molecules
exceed the maximum number, 9, in the original QM9 dataset. The only limit to the size of any generated
molecule is governed by the string representation, SELFIES—more specifically, the set number of symbols
used to express each molecule. Since the length of the largest SELFIES string in the QM9 is larger than 20, the
set number of symbols is larger than 20. Therefore, the deep dreaming model could potentially replace every
symbol with a heavy atom, generating a molecule containing more than 20 heavy atoms.

Finally, an inspection of repeated trials of the same optimization process gives some more intuition into
the network’s understanding. Since the input one-hot encoding is initialized with random noise before
inverse-training, the transformation is entirely stochastic. As a result, repeated trials of the same molecule
give different sequences of transformation. Despite this factor, the network demonstrates consistent
understanding across several trials. Some examples are shown in figure 7. Repeated trials for the molecule in
figure 7(a) may not result in an identical sequence, but a similar extension and reduction process occurs.
Figure 7(b) shows two selected trials for another test molecule, and in both trials some double-bonds are
persistently replaced with carbon atoms.

These cases validate that the network is charting deliberate, non-arbitrary paths toward the target logP; it
has a non-trivial understanding of features corresponding to higher and lower logP values.

5. Outlook

We propose a direct, gradient-based property-optimization method that offers insights into the network’s
understanding of structure—property relationships. Our next task is to explore other ‘strategies’ the network
may use in optimizing for other chemical properties, including those that require expensive quantum
chemistry calculations. Moreover, from a more practical standpoint, the quality of generated molecules is
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Figure 8. Hyperparameter tuning for inverse training.

another important consideration. A multi-objective design would allow more than one property to be
optimized in the inverse training, including a metric for synthesizability such as heats of formation.

There is also work to be done to add transparency [21] to our approach. There are many possible
directions, including exploring other surjective string representations that may be more suitable to the task
of deep dreaming, and comparing other reverse-differentiable machine learning architectures that may be
capable of a similar ‘dreaming’ process. Ultimately, our work can be used to find the underlying rules the
neural network discovers in order to optimize a property, conjointly offering insights into how the network
makes its predictions for interpretability and suggesting ways in which a human can use these rules in order
to generate new and useful chemical compounds for explainability [21].
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Appendix A. Neural network architecture and training

PASITHEA uses a fully-connected neural network consisting of four layers, each with 500 nodes, using the
reLU activation function. The loss function during training is determined by computing the mean squared
error. Throughout prediction training, the data is split into two parts: 85% and 15% of the data for training
and testing the model, respectively. We train the prediction model for about 1500 epochs. Both the
prediction training and inverse training use an Adam optimizer.

An important hyperparameter is the upper-bound on the level of noise applied to the input vectors. We
find an upper-bound of 0.95 appropriate for prediction training. For the current network architecture, the
learning rate must be set low for prediction training, at 1 x 10~°. Holding these hyperparameters fixed, a
summary of varying upper-bounds and learning rates for the inverse training is listed in figure 8. The model
accuracy is evaluated by the percent of molecules optimized toward the target property. From this data, we
choose 0.9 as the upper-bound and 0.01 as the learning rate for the inverse training.

Appendix B. Heats of formation

Heats of formation (displayed in figure 4 as an indicator of stability) were estimated using MOPAC2016 [29]
at the PM7 [30] level of theory with PRECISE settings by performing geometry optimization of the initial
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guess structures using eigenvector following (keyword EF). Initial guess structures were generated from the
SMILES strings using Molconvert [31].
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