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Abstract
We present PyXtal_FF—a package based on Python programming language—for developing
machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of
atomistic simulations through providing several choices of atom-centered descriptors and machine
learning regressions in one platform. Based on the given choice of descriptors (including the
atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3
power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural
network models, by simultaneously minimizing the errors of energy/forces/stress tensors in
comparison with the data from ab-initio simulations. The trained MLP model from PyXtal_FF is
interfaced with the Atomic Simulation Environment (ASE) package, which allows different types of
light-weight simulations such as geometry optimization, molecular dynamics simulation, and
physical properties prediction. Finally, we will illustrate the performance of PyXtal_FF by applying
it to investigate several material systems, including the bulk SiO2, high entropy alloy NbMoTaW,
and elemental Pt for general purposes. Full documentation of PyXtal_FF is available at
https://pyxtal-ff.readthedocs.io.

1. Introduction

Molecular dynamics (MD) simulations have been used routinely to model the physical behaviors of many
complex systems [1–3]. The accuracy of the simulations is highly dependent on the underlying potential
energy surface (PES) of the system. In principle, MD simulations can be based on ab initio
quantum-mechanical [4] or classical force field methods. The ab initioMD (AIMD) simulations usually
employ density functional theory (DFT) approximation [5], which can provide a reliable representation of
the system. Despite the accuracy, DFT simulation can be extendable only to a few hundreds of atoms at a few
picoseconds. This is due to solving the Kohn–Sham equation requires thousands of quantum-mechanical
calculations that are scaled at O(N3) with respect to the number of atoms N. In consequence, simulating the
structural evolution of many of complicated systems in DFT remains demanding in spite of the remarkable
progress in computational facilities and efficient algorithms. This bottleneck in the DFT method is likely to
persist in the foreseeable future. On the other hand, the classical MD method can model large systems at
long-time scale, countering the unwavering issue of the DFT method. A great amount of efforts have been
dedicated to developing PES using the classical method [6–10]. The reconstruction of the PES is usually
based on simple analytical functions related to the scalar properties of the system. This class of force fields
can be applied to gain an understanding of the qualitative behavior of the system. However, they are often
inadequate in describing the quantitative properties of the system.

Recently, machine learning methods have been widely applied to resolve the dilemma in compromising
between accuracy and cost [11]. The machine learning potentials (MLP) are trained by minimizing the cost
function to attune the model to deliberately describe the ab initio data. The cost of atomistic simulation is
orders of magnitude lower than the quantum mechanical simulation, allowing the system to be scaled up to
105–106 atoms [12, 13].
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Among many different ML models, two regression techniques are becoming increasingly popular in the
materials modelling community. They include neural networks and Gaussian process regressions. The neural
networks approach has an unbiased mathematical form that can adapt to any set of reference points through
an iterative fitting process given ‘enough’ training data. The first well accepted neural networks potential
(NNP) was originally applied to elemental silicon system by Behler and Parrinello [14], which demonstrated
that the NNP was able to reproduce the energetic sequences of many silicon phases, as well as the radial
distribution function of a silicon melt at 3000 K from DFT simulation. To gain better predictive power, they
also proposed to use a series of symmetry functions (see section 2.1.1), instead of the Cartesian coordinates,
as the descriptors to represent the atomic environment. Since then, many attempts have been undertaken to
improve the capability of neural networks approach [15]. The accomplishments of neural networks approach
have been extended to multi-component [16, 17] and organic [18] systems. In addition, Gaussian
approximation potentials (GAP), in conjunction with the bispectrum coefficients of atomic neighbour
density (see section 2.1.3), were first introduced to model carbon, silicon, germanium, iron, and gallium
nitride [19]. GAP was further enhanced by replacing bispectrum coefficients with smooth overlapping power
spectrum coefficients with explicit radial basis [20]. Similar to GAP, Thompson et al [21] developed
(quadratic) spectral neighbor analysis potential (SNAP) method based on the Taylor expansion of
bispectrum coefficients. In addition, linear regression model based on the moment tensor—comparable to
atomic environments inertia tensors—as the descriptor [22] was also demonstrated to be a competitive
approach. Many applications based on different MLP models have shown that machine learning potentials
work remarkably well in different types of atomistic simulations [23–28].

In the recent years, several software packages [16, 29–33] were developed to train the MLPs. Among
these, the RuNNer [16] is a closed source software for developing NNP, and ænet [34] is mainly written in
FORTRAN/C and utilizes atom-centered symmetry functions (see section 2.1.1) as the descriptor. Similar
codes, such as the n2p2 package [29] in C++, SIMPLE-NN package [30] in Python/C, and AMP package
[31] in Python/FORTRAN, have similar feature as ænet package. SIMPLE-NN leverages the capability of
Tensorflow platform—a deep learning GPU-accelerated library, and AMP provides several other descriptors
such as Zernike and bispectrum components. Our recent works also suggested that NNP can be developed
using bispectrum and power spectrum components as the descriptor while training on energy, forces, and
stress simultaneously [35, 36]. Moreover, DeepPot-SE [37] and SchNetPack [33] packages introduce
additional filters to the descriptor such as distance-chemical-species-dependent filter and continuous
convolutional filter, respectively, prior to the deep learning model.

In this paper, we present PyXtal_FF—an open-source package in Python scripting language—for
developing MLPs such as NNP and generalized linear potential (GLP). The objective of PyXtal_FF is to
provide handy user-interface in developing MLPs with training of energy, force, and stress contributions
simultaneously. PyXtal_FF creates MLPs based on atom-centered descriptors such as (weighted)
atom-centered symmetry functions [11], embedded atom density [38], SO4 bispectrum coefficients [19],
and smooth SO3 power spectrum [20]. Finally, we will demonstrate the usage of the current features of the
package with SiO2 [30], high entropy alloy [39], and elemental Pt [37] as examples.

2. Theory

In this section, we will provide in-depth discussions of the two main ingredients in creating MLP: the
atom-centered descriptor and regression technique. The construction of the total energy of a crystal
structure can be written as the collections of atomic energy contributions, in which is a functional (E) of the
atom-centered descriptor (Xi):

Etotal =
N∑
i=1

Ei =
N∑
i=1

Ei(Xi). (1)

Specifically, the functional represents regression techniques such as neural networks or generalized linear
regressions.

Since neural networks and generalized linear regressions have well-defined functional forms, the analytic
derivatives can be derived by applying the chain rule to obtain the force at each atomic coordinate, rm:

Fm =−
N∑
i=1

∂Ei(Xi)

∂Xi
· ∂Xi

∂rm
. (2)

2
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Listing 1. Force and stress computation in Python.

Force is an important property to accurately describe the local atomic environment especially in geometry
optimization and MD simulation. Finally, the stress tensor is acquired through the virial stress relation:

S=−
N∑

m=1

rm ⊗
N∑
i=1

∂Ei(Xi)

∂Xi
· ∂Xi

∂rm
, (3)

where⊗ is the outer product.
According to equations (2) and (3), one needs to compute the energy derivative ∂E

∂X and the derivatives of
descriptor X with respect to the atomic positions. For a structure with N atoms and L descriptors, the energy
derivative is a 2D array of [N, L]. The force related derivative (dxdr) can be best organized as a 4D array with
the dimension of [N,N, L, 3]. Note that dxdr[i, j, : , :] is zero when the i-j atomic pair has a distance larger
than the cutoff distance. Thus, it may become a sparse array when the structure has a large number of atoms.
Correspondingly, one can easily derive the 5D rdxdr array by multiplying r to each dxdr according to the
outer product. In Python, one can simply compute the forces and stresses based on the following Einstein
summation.

2.1. Atom-centered descriptors
Descriptor—a representation of a crystal structure—plays a critical role in constructing reliable MLP. If the
MLP is directly mapped from the atomic positions or the Cartesian coordinates, it can only describe systems
with the same number of atoms due to the fixed length of the regression input. In addition, Cartesian
coordinates are poor descriptors in describing the structural environment of the system, restricted by the
periodic boundary conditions. While the total energy of the structure remains the same by translation,
rotational, or permutation operations, the atomic positions will change. Several types of descriptors have
been developed in the past few years [40]. For example, Coulomb matrix has been widely used due to its
simplicity. Coulomb matrix encompasses self interaction based on the nuclear charge and Coulomb
repulsion between two nuclei [41, 42]. Logically, the Coulomb matrix can be upgraded for periodic crystals
through Ewald summation that includes long range interaction calculated in reciprocal space. In addition,
many-body tensor representation—derives from Coulomb matrix while related to bag of bonds which
corresponds to different types of bonding in molecular systems—can be used for both finite and periodic
systems when interpretability/visualization is desirable [43]. These descriptors have been widely used to
model the molecules.

In the atom-centered descriptors, one usually needs to consider the neighboring environment for the
centered atom within a cutoff radius of Rc. To ensure the descriptor mapping from the atomic positions
smoothly approaching zero at the Rc, a cosine cutoff function (f c) is included to every mapping scheme:

fc(R) =

{
1
2 cos

(
π R

Rc

)
+ 1

2 R≤ Rc,

0 R> Rc

, (4)

where R is distance. The cutoff function is zero at Rc and the intensity decreases as R approaches Rc.
Consequently, the derivative of the cosine cutoff function is

∂fc
∂R

=

{
− π

2Rc
sin

(
π R

Rc

)
R≤ Rc,

0 R> Rc

. (5)

3



Mach. Learn.: Sci. Technol. 2 (2021) 027001 H Yanxon et al

One should heed the importance of the vanishing derivative of the cutoff function at Rc, which is important
in describing the force. By definition, there is no discontinuity as the slope decays to zero at Rc. Additionally,
other cutoff functions are available in PyXtal_FF: hyperbolic tangent, exponential and polynomials functions
[44].

In the following, we will introduce four types of atom-centered descriptors in details. The corresponding
derivative terms can be found in A, B and our recent work [36].

2.1.1. (Weighted) atom-centered symmetry functions (G)
The atom-centered symmetry functions (ACSFs) are the very first types of descriptors used in the MLP
development [14]. In general, there are two classes of ACSFs: radial and angular symmetry functions [11].
The radial symmetry function or G(2) describes the radial distribution of the atomic environment, and the
angular symmetry functions, G(4) and G(5), account for the three-body angular distribution of atoms in the
neighborhood. The G(2) is expressed as the sum of the radial distances between the center atom i and the
neighbor atoms j as follows:

G(2)
i =

∑
j ̸=i

e−η(Rij−Rs)
2

· fc(Rij). (6)

Here, G(2) value is controlled by the width (η) and the shift (Rs).
G(4) and G(5) symmetry functions are a few of many ways to capture the angular information via

three-body interactions (θijk). As the structures are constraint by the periodic boundary condition, a
three-body periodic description such as cos(θijk) is used. The explicit form of G(4) and G(5) are

G(4)
i = 21−ζ

∑
j ̸=i

∑
k ̸=i,j

[(1+λcosθijk)
ζ · e−η(R2

ij+R2
ik+R2

jk)·

fc(Rij) · fc(Rik) · fc(Rjk)]

(7)

G(5)
i = 21−ζ

∑
j ̸=i

∑
k ̸=i,j

[(1+λcosθijk)
ζ · e−η(R2

ij+R2
ik)·

fc(Rij) · fc(Rik)]

(8)

ζ determines the strength of angular information. The degree of ζ is normalized by 21−ζ for unvarying the
values of G(4) and G(5) symmetry functions due to ranges of ζ . λ values are set to+1 and−1, for inverting
the shape of the cosine function. The difference between G(4) and G(5) symmetry functions is in the
interactions between the neighbors j and k. The modification in G(5) symmetry function yields in dampening
value of G(5), which can be beneficial in representing larger atomic separation between the two neighbors.

Clearly, the number of ACSFs will grow depending on chemical species as the separations of chemical
species are needed. For instance, in a binary AB system, the number of G(2) ACSFs on specie A need to
double to distinguish A–A and A–B pair interactions. For G(4), three different triplets A–A–A, A–A–B,
B–A–B (where the middle position denotes the center atom) will be needed. To avoid this unpleasant growth,
one can apply a weighting parameter based on the chemical species when counting these atomic pairs and
triplets. One popular choice is simply to use the atomic number as the weighting parameters. Hence,
Gastegger and coauthors proposed the weighted version of ACSF [45], in which each component of the
radial and angular symmetry functions in equations (6)–(8) can be multiplied by the following:

the weighted ACSF:

{
Zj radial,

ZjZk angular

where Zj,Zk represents the atomic number of neighboring atom j and k.
To obtain a satisfactory MLP model, one has to choose a set of parameters to construct the (w)ACSF

descriptors, which may require demanding human intervention [33, 37, 45]. As mentioned, the choice of λ is
straightforward. In general, ζ takes the value of 1. Increasing ζ focuses on the strength of the angular
information in region close to 0

◦
and 180

◦
, and decreasing it will weaken the contribution of angular

information at around 90
◦
. Since the exponential term has larger effect on the symmetry functions, the

selection of η and Rs can be more elaborate. Several routines are available in the literature [38, 45, 46] by
fixing η while varying Rs or vice versa.

4
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2.1.2. Embedded atom density (ρ)
Embedded atom density (EAD) descriptor [38] is inspired by embedded atom method (EAM)—description
of atomic bonding by assuming each atom is embedded in the uniform electron cloud of the neighboring
atoms [6, 47]. In EAD, the electron density is modified by including the square of the linear combination the
atomic orbital components:

ρi =

lx+ly+lz=Lmax∑
lx,ly,lz

Lmax!

lx!ly!lz!

( N∑
j ̸=i

ZjΦ(Rij)

)2

(9)

where Zj represents the atomic number of neighbor atom j. Lmax is the quantized angular momentum, and
lx,y,z are the quantized directional-dependent angular momentum. For example, Lmax = 2 corresponds to the
d orbital. Lastly, the explicit form of Φ is

Φ(Rij) =
xlxij y

ly
ij z

lz
ij

R
lx+ly+lz
c

· e−η(Rij−Rs)
2

· fc(Rij). (10)

According to quantum mechanics, ρ follows the similar procedure in determining the probability density of
the states.

EAD can be regarded as an alternative version of ACSF without classification between the radial and
angular term. The angular or three-body term is implicitly incorporated in when Lmax > 0 [38]. By
definition, the computation cost for calculating EAD is cheaper than angular symmetry functions by
avoiding the extra sum of the k neighbors. In term of usage, the parameters η and Rs are similar to the
strategy used in the Gaussian symmetry functions, and the maximum value for Lmax is 3, i.e. up to f orbital.

2.1.3. SO(4) bispectrum (B)
The SO(4) bispectrum components [19–21] are another type of atom-centered descriptor based on the
harmonic analysis of the atomic neighbor density function on the 3-sphere. The atomic neighbor density
function is given by [20]

ρ(r) = δ(r)+
Rc∑
i

wifc(ri)δ(r− ri) (11)

where wi is a species dependent weight factor and f c is a cutoff function. The cutoff function is f c is
introduced to ensure that the atomic neighbor density function goes smoothly to zero at the cutoff.

Then we map the atomic neighbor density function from 3D euclidean space to another 3D space, the
surface of a four dimensional hypersphere:

s1 = r0 cosω

s2 = r0 sinω cosθ

s3 = r0 sinω sinθ cosϕ

s4 = r0 sinω sinθ sinϕ,

where r0 is a parameter and the polar angles are defined by

θ = arccos
( z
r

)
ϕ= arctan

( y
x

)
ω =

πr

r0
.

(12)

The Winger-D matrix elements (Dj
m ′,m) are the harmonic functions on the 3-sphere, therefore an

arbitrary function defined on the 3-sphere can be expanded in terms of Wigner-D matrix elements. Here we
expand the atomic neighbor density function on the 3-sphere in terms of Wigner-D matrices:

ρ(r) =
+∞∑
j=0

+j∑
m′,m=−j

cjm′,mD
j
m′,m (ω;θ,ϕ),

5
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where the expansion coefficients c jm ′,m are given by the following inner product:

c jm ′,m =
⟨
D j

m ′,m|ρ(r)
⟩
= D∗j

m ′,m(0)+
ri≤Rc∑

i

fc(ri)D
∗j
m ′,m(ωi;θi,ϕi). (13)

Finally, the SO(4) bispectrum components can then be calculated using third order products of the
expansion coefficients:

Bj1,j2,j
i =

j∑
m ′,m=−j

c∗jm ′,m

j1∑
m ′

1 ,m1=−j1

cj1m ′
1 ,m1

×

j2∑
m ′

2 ,m2=−j2

cj2m ′
2 ,m2

Cjj1j2
mm1m2

Cjj1j2
m ′m ′

1m
′
2
,

(14)

where C is a Clebsch–Gordan coefficient.

2.1.4. Smooth SO(3) power spectrum (P)
The Smooth SO(3) Power Spectrum components were been proposed to describe the atomic local
environment [20]. In contrast to the SO(4) bispectrum components, the Smooth SO(3) power spectrum is
based on an alternative atomic neighbor density while also expanded on the 2-sphere and a radial basis. The
alternative atomic neighbor density is defined in terms of Gaussians as follows:

ρ ′(r) =
ri≤Rc∑

i

wie
−α|r−ri|2 . (15)

Then the atomic neighbor density function is then expanded in terms of spherical harmonics and a radial
basis gn(r) as shown in equation (15):

ρ′(r) =
+∞∑
l=0

+l∑
m=−′l

cnlmgn(r)Ylm(̂r),

where the expansion coefficients cnlm are given by

cnlm = ⟨Ylmgn(r)|ρ′⟩

= 4π
ri≤Rc∑

i

wie
−αr2i Y∗

lm(̂ri)×

ˆ Rc

0
r2gn(r)Il(2αrri)e

−αr2dr,

where I l is a modified spherical Bessel function of the first kind. A convenient radial basis for this purpose,
gn(r), consisting of cubic and higher order polynomials, orthonormalized on the interval (0,Rc) has been
suggested by Bartok [20]:

gn(r) =
∑
α

Wn,αϕα(r), (16)

whereWn,α are the orthonormalization coefficients given by the relation to the overlap matrix S by
W= S−1/2 and

ϕα(r) = (Rc − r)α+2/Nα

Nα =

√
2r(2α+7)

cut

(2α+ 5)(2α+ 6)(2α+ 7)
.

6
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The elements of the overlap matrix S are given by

Sαβ =

ˆ rcut

0
r2ϕα(r)ϕβ(r)dr

=

√
(2α+ 5)(2α+ 6)(2α+ 7)(2β+ 5)(2β+ 6)(2β+ 7)

(5+α+β)(6+α+β)(7+α+β)

(17)

and finally, the Smooth SO(3) power spectrum is given by

Pn1n2li =
+l∑

m=−l

cn1lmc
∗
n2lm. (18)

2.2. Regressionmodels
Here, we discuss the regression model, i.e. the functional form (E) presented in equation (1). Each regression
model is species-dependent, i.e. as the the number of species increases, the regression parameters will
increase. For the sake of simplicity, we will explain the regression models for the single-species system.

In any regression model, the objective is to minimize a loss function which describes the discrepancies
between the prediction and true reference values (including energy, force, and stress tensors) for each atomic
configuration in the training dataset:

∆=
1

2M

M∑
i=1

[(
Ei − ERefi

Ni
atom

)2

+
βf

3Ni
atom

3Ni
atom∑

j=1

(Fi,j − FRefi,j )
2

+
βs

6

2∑
p=0

p∑
q=0

(Spq − SRefpq )
2

]
,

(19)

whereM is the total number of structures in the training pool, and Natom
i is the total number of atoms in the

ith structure. The superscript Ref corresponds to the target property. βf and βs are the force and stress
coefficients respectively. They scale the importance between energy, force, and stress contribution as the force
and stress information can overwhelm the energy information due to their sizes. Additionally, a
regularization term can be added to induce penalty on the entire parameters preventing overfitting:

∆p =
α

2 M

m∑
i=1

(wi)2, (20)

where α is a dimensionless number that controls the degree of regularization.
Clearly, one has to choose differentiable functional as well as its derivative due to the existence of force

(F) and stress (S) contribution along with the energy (E) in the loss function. In the following sections,
generalized linear regression and neural network regression will be introduced.

2.2.1. Generalized linear regression
This regression methodology is a type of polynomial regression. Essentially, the quantum-mechanical energy,
forces, and stress can be expanded via Taylor series with atom-centered descriptors as the independent
variables:

Etotal = γ0 +γ ·
Natom∑
i=1

Xi +
1

2

Natom∑
i=1

XT
i ·Γ ·Xi + · · · , (21)

where Natom is the number of atoms in a structure. γ0 and γ are the weights presented in scalar and vector
forms. Γ is the symmetric weight matrix (i.e. Γ12 = Γ21) describing the quadratic terms. If each Xi has a
length of d, the length of γ is d and Γ is a d× dmatrix. In this equation, we only restricted the expansion up
to polynomial 2 due to to enormous increase in the weight parameters.

In consequence, the force on atom j and the structural stress matrix can be derived according to
equations (2) and (3), respectively:

Fm =−
Natom∑
i=1

(
γ · ∂Xi

∂rm
+

1

2

[
∂XT

i

∂rm
·Γ ·Xi +XT

i ·Γ · ∂Xi

∂rm

])
(22)

7
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Figure 1. (a) A schematic diagram of high-dimensional neural networks. (b) A zoom-in version of the color-coded part in (a).

Listing 2. PyXtal_FF script for force field training.

S=−
Natom∑
m=1

rm ⊗
Natom∑
i=1

(
γ · ∂Xi

∂rm
+

1

2

[
∂XT

i

∂rm
·Γ ·Xi +XT

i ·Γ · ∂Xi

∂rm

])
. (23)

Note that the energy, force, and stress share the weight parameters {γ0,γ1, ...,γn,Γ11,Γ12, ...,Γnn},
where n is total the number of descriptors of the center atom. Once the energy, force and stress tensors are
known, the derivative of the loss function can be evaluated. Finding the zero derivative of loss function
(equation (19)) in linear regression is equivalent to solve a set of linear equations of Ax= b. In PyXtal_FF, we
construct such Amatrix and use the numpy.linalg.lstsq solver to obtain the least-squares solution.

2.2.2. Neural network regression
Compared to the linear regression, neural networks provide more flexible functionals to fit a large datasets.
Figure 1 shows a schematic diagram based on neural networks training. Prior to the neural networks
architecture, the atom-centered descriptors are mapped based on the atomic environment of a structural
configuration as discussed in the previous section. These descriptors serve as the input to the neural

8
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Listing 3. PyXtal_FF script to perform geometry optimization.

networks architecture and are arranged in the first layer as shown in figure 1(b). The next layers are the
hidden layers. Neural networks can simply cast more weights parameters as needed through increasing
number of hidden layers and/or hidden layers nodes without the increasing number of descriptors. The
nodes in the hidden layers carry no physical meaning.

For each of the hidden nodes, activation functions such as Tanh and Sigmoid functions are frequently
used in our NNP implementation. While ReLU as an activation function is extremely popular in image
processing, we believe ReLU is not an appropriate choice in constructing MLP, due to the function carries
discontinuity at zero. These nodes are connected via the weights and biases and propagate in forward
direction only. In the end, the output node represents the atomic energy. A mathematical form to determine
any node value can be written as

Xl
ni = alni

(
bl−1
ni +

N∑
nj=1

Wl−1,l
nj,ni ·X

l−1
nj

)
. (24)

The value of a neuron (Xl
ni) at layer l can determined by the relationships between the weights (Wl−1,l

nj,ni ), the

bias (bl−1
ni ), and all neurons from the previous layer (Xl−1

nj ).Wl−1,l
nj,ni specifies the connectivity of neuron nj at

layer l− 1 to the neuron ni at layer l. bl−1
ni represents the bias of the previous layer that belongs to the neuron

ni. These connectivity are summed based on the total number of neurons (N) at layer l− 1. Finally, an
activation function (alni) is applied to the summation to induce non-linearity to the neuron (Xl

ni). Xni at the
output layer is equivalent to an atomic energy, and it represents an atom-centered descriptor at the input
layer. The collection of atomic energy contributions are summed to obtain the total energy of the structure.
At the end, the total energy, forces and stress tensors are compared to the reference values (see equation
(19)). This process is called forward propagation.

Similar to the linear regression, one needs to obtain a set of weight parameters to minimize the loss
function. In NN architecture, the gradient of loss with respect to the weight parameters can be conveniently
done by the backpropagation algorithm. Hence, a number of optimization algorithms can be applied here to
update the weights iteratively, until the optimal solution is found.

3. PyXtal_FF workflow

In this section, we discuss about development of PyXtal_FF and its philosophy. PyXtal_FF is written in
Python. Presently, the package is equipped with two regression models and four types atom-centered
descriptor, as explained in section 2. These regression models and atom-centered descriptors are easily
extendable without changing the core user-interface features. Figure 2 represents the workflow of PyXtal_FF.

First, PyXtal_FF utilizes the Atomic Simulation Environment (ASE) package [48] to parse the DFT data
assembled in several formats, including ASE database, JSON, extended XYZ and the VASP OUTCAR
formats. Further, ASE is employed to compile the atomic neighborhood of each atom in the unit cell based
on the periodic boundary conditions within a cutoff radius. After the neighboring data are gathered, it will
compute the user-defined type of descriptor. The computation follows the theory described in section 2.1

9
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Listing 4. PyXtal_FF script to define the descriptors.

utilizing NumPy—a Python library for scientific computing [49]. For every structure, the descriptor
calculator will return the descriptors and the force and stress related derivatives. Eventually, the descriptors
represent the independent variables in the regression models to obtain the energy, and the derivative terms
are needed to compute the force and stress values.

For the regression, the Pyxtal_FF supports two models, linear (quadratic) regression and neural
networks. Here we focus on the latter since it is a more popular workforce for MLP development. The neural
network regression is powered by PyTorch [50]—an open-source deep learning framework based on
automatic differentiation [51]. Currently, we support three optimization algorithms for training: Limited
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [52], adaptive Moment Estimation (Adam) [53], and
stochastic gradient descent (SGD) with momentum [54]. The L-BFGS method with approximated line
search is the recommended optimizer when the training data is relatively small, as the quasi-Newton method
is generally more stable and finds local optima more efficiently. With larger training datasets, however, the
L-BFGS method is memory demanding, and one can seek to use first-order methods such as Adam or SGD
with momentum. Both SGD and Adam algorithms are usually done in mini-batches, where the gradients for
each weight update are calculated based on a subset of the entire training dataset. Training in mini batches
can reduce the variance of the parameter updates leading to stable convergence. If needed, the training can
also be done in graphical processing units (GPU) mode.

10
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Figure 2. Schematic diagram of PyXtal_FF workflow for NNP/GLP training. In the neural network, data parser includes
normalization of the calculated descriptors.

In addition to the force field generation, PyXtal_FF also provides the supports to utilize the trained
models for several types of atomistic simulations, including geometry optimization, MD simulation, physical
properties prediction, and phonon calculation. These features are managed by ASE calculator, in which the
MLP potential passes the energy, forces, and stress tensors to the calculator and ASE performs the relevant
atomistic simulations. Since these simulation will be powered by Python, we only recommend to use them
for light weight simulations. In the near future, we are going to work on interfacing the trained MLP with
LAMMPS [55] to enable the large-scale atomistic simulation.

4. Example usage

PyXtal_FF can be used as stand-alone library in Python scripts. A PyXtal_FF example code to train Pt model
is shown in the following listing

The atom-centered descriptors and the model are described in dictionary. The dictionary keys determine
the necessary command for the code and are made as intuitive as possible. Most of keys follow the
hyperparameters in the section 2. By default, PyXtal_FF will use neural networks as the regression algorithm.
Here, PyXtal_FF will look for train.json and test.json files as the training and test datasets, respectively.

After the training is complete, the trained model is saved in the result folder (Pt-Bispectrum) with a name
of 16-16-checkpoint.pth, in which 16-16 denotes two hidden layers with 16 nodes each. PyXtal_FF provides a
built-in interface with the ASE code, in which one can use the model to perform different types of
calculations through ASE. Below is a simple example to perform the geometry optimization on a Pt bulk
crystal (Pt_bulk.cif ) based on the trained model from the listing 2.

In addition to geometry optimization and MD simulation, PyXtal_FF also provides several utility
functions to simulate the elastic and phonon properties, which are based on several external Python libraries
including Phonopy [56], seekpath [57] and matscipy [58]. More detailed examples can be found in the
online documentation https://pyxtal-ff.readthedocs.io.

5. Applications

In this section, we choose three different examples to illustrate the power of PyXtal_FF and benchmark the
performances of different descriptors. While the linear regression scheme is also supporte by PyXtal_FF, we
will focus on the NNP model as it provides more flexibility. The examples to be investigated mainly differ by
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Table 1. The MAE values of the predicted energy and forces of 1316 SiO2 dataset from the 30-30 neural network models with different
descriptors within 12 000 L-BFGS steps of training. For each type of descriptors, the average CPU time for descriptor computation per
structure is also given.

CPU time Energy Force
(s/60 atoms) (meV atom−1) (meV Å−1)

ACSF (70) 4.374 1.3 81.2
wACSF (26) 4.372 2.1 141.8
EAD (30) 0.584 4.8 259.0
SO3 (40) 1.028 1.4 115.1
SO4 (30) 1.078 3.3 204.2

the source of datasets, including (1) single SiO2 from pure MD simulation; (2) collective dataset of
NbMoTaW from various approaches; (3) elemental Pt consisting of bulk, surfaces and clusters from different
runs of MD simulations.

5.1. Binary system
The SiO2 dataset [30] was generated by the DFT method within the framework of VASP [59], using the
generalized gradient approximation Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional [60].
The kinetic energy cutoff was set to 500 eV, and the energy convergence criterion for constructing the
k-point mesh is within 10 meV/atom. The MD trajectories are taken at different temperatures including
liquid, amorphous and crystalline (α-quartz, α-cristobalite, and tridymite) configurations. The original
dataset contain 3,048 SiO2 configurations (60 atoms per structure). For simplicity, we considered a subset
that consists of 1,316 structures. with the goal of to gaining an overview of performances and computation
costs for each descriptor. Below gives the parameters to define each descriptor.

In short, we choose a universal cutoff value of 4.9 Å for all descriptors. Each descriptors requires some
manual selection of hyperparameters in the real (e.g. η,λ, ζ ,Rs) or integer (lmax, nmax) space. The ACSF
parameters were taken from reference [30] which lead to 70 descriptors. In its wACSF version, the number is
reduced to 26. For EAD, we chose a similar set of parameters for η and Rs, which make 30 descriptors when
Lmax = 2. For SO3 and SO4, only the integer type hypeparameters need to be provided. In this work, we set
40 SO3 descriptors with nmax = 4 and lmax = 3, and 30 SO4 descriptors with lmax = 4. The neural network
regression will be used with two hidden layers with 30 nodes each.

Table 1 summarizes the performances of each training after 12 000 steps. First, the ACSF-70 set yields the
best accuracy in both energy (1.3 meV atom−1) and forces (81.2 meV Å−1), while the errors in its
corresponding wACSF-26 set rise by 60%–70% in both energy (2.1 meV atom−1) and forces
(141.8 meV Å−1). On the other hand, the weighted EAD-30 descriptor, supposed to mimic G2 and G4
ACSFs, gives the highest errors (4.0 meV atom−1 for energy and 300 meV Å−1 for forces). This may be due
to lack of optimization on the hyperparameters. However, it should be noted that the computation of EAD is
much faster than ACSF. Therefore, it is worth exploring a systematic approach to obtain the optimum set for
EAD. For the two spectral descriptors, SO3-40 seems to outperform SO4-30 while it cost about a similar level
of CPU time. In terms of accuracy, SO3-40 (1.4 meV atom−1 in energy MAE and 115.1 meV Å−1 in force
MAE) is in the middle of ACSF-70 and wACSF-26. Another remarkable advantage of the spectral descriptors
is that tuning the hyperparameters is much easier. If one does not want to spend too much time on choosing
the hyperparameters, SO3 seems to be a better choice than ACSF. We note that all descriptor computations
are based on Python. It is expected that the speed will be much faster when they are implemented in
FORTRAN or C languages.

5.2. High entropy alloy
High entropy alloys (HEAs) are systems that encompass four or more equimolar/near-equimolar alloying
elements. It has been shown that HEAs carry many interesting properties such as high hardness and
corrosion resistance [61, 62]. Due to the high computational cost of DFT method, HEA serves as a great
example in MLP development with PyXtal_FF. Here, we will use NbMoTaW HEA as an example [39], which
are comprised of elemental, binary, ternary, and quaternary systems. Each of the elemental systems has their
ground state, strain-distorted, surface, and AIMD configurations. The binary alloys are composed of solid
solution structures with the size of 2× 2× 2 supercell. Lastly, 300 K, 1000 K, and 3000 K AIMD
configurations along with special quasi-random structures establish the ternary and quaternary data points.
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Figure 3. The correlation plots between NNP and DFT for (a) energy and (b) forces in the HEA system. The energy MAE values
are 6.69 and 7.57 meV atom−1 for training and test sets, while the force MAE values are 0.14 and 0.17 eV Å−1.

The total structures used in developing the MLP are 5529 configurations for training set and 376
configurations for test set.

In the original work [39], SNAP based on the linear regression predicted that the MAE values for energies
are 4.3 and 5.1 meV atom−1 for the training and test sets, and the MAE values in forces are 0.13 and
0.14 eV Å−1. The results demonstrated a quite satisfactory accuracy comparable to the quantum calculation.
However, it needs to be noted that the energy training in reference [39] was based on the comparison of
formation energy relative to the elemental solids, which spans from−0.193 to 0.934 eV atom−1 for the entire
dataset, whereas the atomic energy spans from−12.960 to−9.502 eV atom−1. Training with the energy in a
normalized range can surely reduce the error of fitting. However, this fitting method does not fully solve the
force field prediction problem since it relies on some DFT reference data. We attempted to employ the linear
regression model to fit only the absolute DFT energy based on the same descriptor as used in reference [39].
The resulting MAE values are 944 meV atom−1 and 6.329 eV Å−1 for energy and force when the force
coefficient is 10−4. The MAE values of formation energy fitting yield remarkable improvement of
22 meV atom−1 and 0.243 eV Å−1 for energy and force, respectively. Despite this improvement, the accuracy
is insufficient. Perhaps, it is due to lack of fine tuning of hyperparameters, such as atomic weights and cutoff
radii for each species.

To obtain a better accuracy, we decided to fit the absolute DFT energy and forces based on the NNP
model. We employed the smooth SO3 power spectrum as the descriptor, which are formed by nmax = 4 and
lmax = 3 with 40 components in total up to the cutoff radius of 5.0 Å−1. The NNP training is executed with 2
hidden layers with 20 nodes for each layer while energy, force, and stress contributions are trained
simultaneously. The importance coefficients of force and stress are set to 10−3 and 10−4, respectively. The
results of the NNP training is illustrated in figure 3. The NNP energy MAE values for the training and test
sets are 6.69 and 7.57 meV atom−1, and the NNP force MAE values are 0.14 and 0.17 eV Å−1. In addition,
the MAE value of stress for training set is 0.078 GPa. Our results of energy and force yield worse performance
compared to the previous report. Nevertheless, our NNP model offers a more general representation of the
DFT PES since it does not rely on any prior reference values.

Furthermore, we calculated physical properties such as elastic constants, bulk and shear moduli, and the
Poisson’s ratio of the cubic elemental crystals (see table 2). From the table, the overall performances of NNP
in predicting the physical properties are reasonable, except that the C44 value of Nb is negative. However, this
is consistent with the fact that the DFT’s C44 is also significantly lower than other terms. Hence, the negative
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Table 2. Comparison of physical properties predicted with SO3-NNP. The DFT and experiment values are obtained from [39]. B and G
denote the empirical Voigt–Reuss–Hill average bulk and shear moduli. ν is the Poisson’s ratio. The DFT results were taken from open
database of Materials Project [63].

C11 C12 C44 B G ν

(GPa) (GPa) (GPa) (GPa) (GPa)

Mo
DFT 472 158 106 262 127 0.30
[39] 435 169 96 258 110 0.31
NNP 453 161 107 259 121 0.30
Nb
DFT 233 145 11 174 24 0.45
[39] 266 142 20 183 32 0.42
NNP 255 130 −3 171 N/A 0.47
Ta
DFT 265 158 69 194 63 0.35
[39] 257 161 67 193 59 0.36
NNP 280 165 72 203 66 0.35
W
DFT 510 201 143 304 147 0.29
[39] 560 218 154 332 160 0.29
NNP 527 196 143 306 151 0.29

Table 3. The trained RMSE values of the predicted energy and forces of Pt dataset from the 30-40-40-1 NNP model. For reference, the
results from the DeepPot-SE model [37] is also reported. It should be noted that that DeepPot-SE results were based on training the
entire MoS2/Pt dataset.

SO3-NNP DeepPot-SE [37]

Energy Force Energy Force
(meV) (meV Å−1) (meV) (meV Å−1)

Bulk 1.64 64 2.00 84
Surface 5.91 87 6.77 105
Cluster 7.63 247 30.6 201

C44 is acceptable if one considers the noise of stress data in training. Meanwhile, the C44 value may be
remedied by providing additional training dataset focusing on the shearing effect of Nb, increasing the
importance of the stress coefficient, or increasing the hidden layer size in the NNP training. In addition, SO3
descriptor can be conveniently expanded in terms of both radial basis (nmax) and angular momentum (lmax)
for achieving better overall accuracy.

5.3. Pt MLP for general purposes
Compared to crystalline systems, surfaces and nanoparticles generally represent the more challenging cases
in MLP training as the nanoparticle contain more versatile atomic environments and more complex PES is
expected. Here, we applied the NNP model to a Pt dataset [37], which consists of three data types: Pt surface,
Pt bulk, and Pt cluster. There are 927 clusters of 15 atoms, and the Pt bulk type consists of 1717
configurations which are composed of 256 atoms. Pt surface are constructed from (001), (110), and (111)
surfaces. Respectively, there are 949, 819, and 700 structures which consist of 320, 160, and 320 atoms. The
SO3 power spectrum descriptor with lmax = 3 and nmax = 4 at radius cutoff of 4.9 Å−1 was used to construct
the MLP in the NNP model with two hidden layers with 30 nodes each. Unlike the previous examples, the
minibatch scheme with the Adam optimizer was employed. In each iteration, the training process was
updated in a batch size of 25 configurations.

In the original literature [37], DeepPot-SE includes MoS2 slab and Pt clusters on MoS2 substrate
(MoS2/Pt). The performance of DeepPot-SE yields satisfactory results. Meanwhile, embedded atom neural
networks method can achieves outstanding results using a fraction of the same dataset [38]. Both of the
methods exploit a large number of neural networks parameters, in the order of 104–105, while the current
study only adopts 2191 weight parameters for exemplary purpose. As shown in table 3, the accuracy from
our small neural network model is comparable to that of DeepPot-SE results. Not surprisingly, the group of
Pt bulk has the lowest errors with only 1.64 meV atom−1 for the RMSE in energy and 67 meV Å−1 in force.
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Figure 4. The correlation plots between NNP and DFT for (a) energy and (b) forces in the Pt system.

On the contrary, the errors on Pt clusters are about 2–4 time higher for both energy and forces. This is
expected since the local atomic environments in the clusters are more diverse and thus learning the relation is
harder. Nevertheless, the values from this exploratory study is comparable to the results from deep learning
models. This example also suggests that a small NNP model with the properly constructed features can be a
complementary solution for MLP development.

6. Conclusion

In conclusion, we introduced PyXtal_FF, a versatile package for developing MLPs that can perform at the
DFT level. Currently, the code allows one to construct the MLPs from four different types of atom-centered
descriptors: (w)ACSFs, EAD, SO4 bispectrum, or SO3 power spectrum. Two regression models, the
generalized linear regression and neural networks, are supported to train the MLP by simultaneously fitting
the data of energy, forces and stresses from the ab-initio simulation. In particular, we focus on the neural
networks potential development. Our software package utilizes PyTorch as the main machinery, which is
equipped with neural network models, automatic differentiation, as well as various optimization algorithms.
We demonstrated the features of the current PyXtal_FF version by three examples on SiO2, NbMoTaW HEA,
and elemental Pt, respectively. In general, the mean absolute error values of each trained MLPs fall into the
range of several meVs-atom−1 in energy and several hundred meV Å−1 in forces. While training on stress is
optional, it is helpful to improve the general accuracy of the model. More importantly, this is crucial to yield
better prediction on materials’ elastic properties. As such, the MLPs can be applied to investigate the
materials properties in greater accuracy than the classical potentials built from the empirical model. Finally,
the PyXtal_FF is an open source code. We welcome anyone who is interested in MLP development to
contribute to this project.
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Appendix A. The derivatives of ACSF

Following the equation (6) the derivative with respect to an atomm can be written in the following form:

∂G(2)
i

∂rm
=
∑
j̸=i

e−η(Rij−Rs)
2

(
∂fc
∂Rij

− 2η(Rij −Rs)fc

)
∂Rij

∂rm
. (A1)

For the periodic system, the computation of
∂Rij

∂rm
is straightforward except that one needs to consider one

additional case. When i= j, the derivative is always zero:

∂Rij

∂rm
=


0 m /∈ [i, j],

0 m= i= j,

− rij
Rij m= i (when i ̸= j),

rij
Rij m= j (when i ̸= j)

(A2)

In equations (7) and (8), the cosine function can be defined as

cosθijk =
rij · rik
RijRik

(A3)

where rij is the relative position between atom j and atom i.
In the following, the expressions for the derivative with respect to an interacting atomm are

∂G(4)
i

∂rm
=21−ζ

∑
j̸=i

∑
k ̸=i,j

e−η(R2
ij+R2

ik+R2
jk)

[
λζ(1+λcosθijk)

ζ−1 ∂ cosθijk
∂rm

fc(Rij)fc(Rik)fc(Rjk)−

2η(1+λcosθijk)
ζ

(
Rij

∂Rij

∂rm
+Rik

∂Rik

∂rm
+Rjk

∂Rjk

∂rm

)
fc(Rij)fc(Rik)fc(Rjk)

+ (1+λcosθijk)
ζ

(
∂fc(Rij)

∂Rij

∂Rij

∂rm
fc(Rik)fc(Rjk)

+ fc(Rij)
∂fc(Rik)

∂Rik

∂Rik

∂rm
fc(Rjk)+ fc(Rij)fc(Rik)

∂fc(Rjk)

∂Rjk

∂Rjk

∂rm

)]

(A4)

∂G(5)
i

∂rm
=21−ζ

∑
j ̸=i

∑
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e−η(R2
ij+R2
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[
λζ(1+λcosθijk)
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ζ
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Rij
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)]
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(A5)

The derivatives of atomic distances, Rij and Rik, carry the same meaning as in equation (A2). The
expression of the cosine of triple-atom angle is

∂ cosθijk
∂rm

=
rik

RijRik
·
∂rij
∂rm

+
rij

RijRik
· ∂rik
∂rm

−
rij · rik
R2
ijRik

∂Rij

∂rm
−
rij · rik
RijR2

ik

∂Rik

∂rm
(A6)

∂rij
∂rm

=

δmj − δmi 0 0
0 δmj − δmi 0
0 0 δmj − δmi

 , (A7)

where δmj is the Kronecker delta between atomm and j.

16



Mach. Learn.: Sci. Technol. 2 (2021) 027001 H Yanxon et al

Appendix B. The derivatives of EAD

The expression of the derivative with respect to an interacting atomm is shown in the following:

∂ρi
∂rm

=

lx+ly+lz=L∑
lx,ly,lz=0

2Lmax!

lx!ly!lz!

[ N∑
j̸=i

ZjΦ

][ N∑
j ̸=i

Zj
∂Φ

∂rm

]
, (B1)

where the derivative of Φ with respect to an interacting atomm is

∂Φ
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