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Abstract
We introduce natural language processing into the study of knot theory, as made natural by the
braid word representation of knots. We study the UNKNOT problem of determining whether or
not a given knot is the unknot. After describing an algorithm to randomly generate N-crossing
braids and their knot closures and discussing the induced prior on the distribution of knots, we
apply binary classification to the UNKNOT decision problem. We find that the Reformer and
shared-QK Transformer network architectures outperform fully-connected networks, though all
perform at≳95% accuracy. Perhaps surprisingly, we find that accuracy increases with the length of
the braid word, and that the networks learn a direct correlation between the confidence of their
predictions and the degree of the Jones polynomial. Finally, we utilize reinforcement learning (RL)
to find sequences of Markov moves and braid relations that simplify knots and can identify
unknots by explicitly giving the sequence of unknotting actions. Trust region policy optimization
(TRPO) performs consistently well, reducing≳80% of the unknots with up to 96 crossings we
tested to the empty braid word, and thoroughly outperformed other RL algorithms and random
walkers. Studying these actions, we find that braid relations are more useful in simplifying to the
unknot than one of the Markov moves.

1. Introduction

In work and in play, some of the most difficult or even unsolvable problems can be formulated by using a
fairly small set of rules. Indeed, even when the rules of the game are simple, the state space of all possible
configurations can be extremely large, way too large for a human brain or a deterministic algorithm to
identify a given configuration and tell where in a big scheme of things it belongs. This is precisely the domain
where machine learning and artificial intelligence hold a consistent record of winning the game, growing
stronger each year and outperforming the best chess grand masters [1] and go players [2, 3].

There are many such ‘games’ in fundamental science too, with simple rules and a vast landscape of
possible outcomes.

The one considered in this paper involves three Reidemeister moves (or, equivalently, Markov moves) as
‘rules of the game’ and the rich state space is spanned by many different knots or, more precisely, by different
presentations of knots. Although these basic rules can be counted on one hand and encode all possible
equivalences, the richness of the state space immediately gets in the way of identifying whether two different
presentations are equivalent or not. It is rather ironic that this is an obstacle to several fundamental problems
in low-dimensional topology, including the smooth 4-dimensional Poincaré conjecture. Other areas where
finding the simplest representation of a knot will be beneficial are for example the knots-quivers
correspondence [4, 5] in physics, or protein folding in biology [6].
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In the field of string theory, it has been realized [7–10] within the last three years that machine learning
can also be applied to the large state space of string vacua and compactification spaces; see [11] for an
introduction and overview. In particular, in [12], a Reinforcement learning was applied to find solutions to a
set of coupled quartic Diophantine equations that describe consistent string vacua, of which there are many
more [13–16] than configurations in Go.

From the AI/ML point of view, the problem of identifying equivalence classes, i.e. different presentations
of the same knot, is very similar to the problem of completing the sentence ‘I grew up in France… I speak
fluent …’. Roughly, the reason is that the latter task requires identifying the meaning of the sentence and
placing it next to other sentences with a similar meaning in a large space of possibilities. This is a classical
problem in Natural Language Understanding (NLU) or Natural Language Processing (NLP). Therefore, the
question we wish to ask here is: How quickly and how well can a neural network learn to speak the language
of knots?

This question was asked before, however, not from the NLP perspective, which is one novelty of this
paper. For example in [17], Hughes uses a simple feedforward neural network to predict knot invariants such
as quasi-positivity, the slice genus, and the Ozsváth-Szabó τ -invariant. In [18] the authors also use a simple
feedforward network to compute the hyperbolic knot volume from the Jones polynomial.

The knot theory problem we are studying is the UNKNOT problem, i.e. recognition of whether a given
knot is the unknot. In addition to using NLP tools for the binary classification task, we also employ
reinforcement learning to explicitly find a sequence of moves that allow to transform a (potentially
complicated) representation of the unknot to its simplest representative, a circle with no crossings. Since the
algorithm finds the necessary Reidemeister moves, rather than just predicting a probability for the knot
being the unknot, the results can serve to prove that a given knot is the unknot.

Another novelty is that, for the NLP itself, the example of the ‘knot language problem’ studied here
presents new twists and opportunities. For example, the role of equivalence classes so central to this example
could be also useful in other problems, not only in fundamental science.

This paper is organized as follows. In section 2 we review the basics of NLP and knot theory and
introduce how the braid representation of knots yields an NLP description of knots. In section 3 we
introduce an algorithm by which trivial and non-trivial knots may be generated, represented by braids with a
fixed number of crossings. In section 4 we utilize a variety of neural networks to apply binary classification to
the UNKNOT problem, and use the trained networks to study correlations with the Jones polynomial and
notions of hardness. In section 5 we utilized reinforcement learning to find sequences of Reidmeister moves,
represented by braid relations and Markov moves on the braid, that simplify a non-trivial representation of
the unknot to the trivial one. In section 6 we summarize the main results of this work and discuss. In
appendix A we provide pseudo-code for some algorithms used in this paper and in appendix B we provide an
unknotting game.

2. Knots and natural language

In this section we review NLP and introduce its application to knot theory.

2.1. Embedding layers for semantics
A language L is composed of words from a vocabulary V(L). In NLP it is useful to have an embedding of a
word into a vector space that ideally encodes its meaning:

E : V(L)→ Rd, (1)

where d is the embedding dimension.
Since the vocabulary is a discrete set of words, one embedding, known as the one-hot encoding, maps the

ith word wi∈V(L) as wi 7→ ei, where ei is a unit vector and d= |V(L)|. From the NLP perspective, this
embedding has a number of issues. First, the dimension of the target vector space is |V(L)|, which for any
non-trivial language will be quite large. Second, all but one of the entries is zero; the vector is sparse. Finally,
the embedding only contains the information of the index in the set V(L), which is arbitrary and can be
permuted; no useful information is encoded in the embedding.

One would like a better technique for associating a vector to a word. The problem of sparseness may be
solved by choosing d< |V(L)|, typically d� |V(L)|. In some cases E is fixed by using pre-trained word
vectors for the embedding, while in others E has randomly initialized parameters and a useful embedding is
learned by training on some task. In the process, semantics may be learned that encoded meaning into the
vector representatives of words. (e.g. [19]) A famous example is

E(king)− E(man)+ E(woman)' E(queen), (2)

2
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an approximate equivalence at the level of the vector relationships that encodes an actual semantic
relationship in the language. Other semantic relations have also been learned, e.g. related to capitals:

E(Paris)− E(France)+ E(Poland)' E(Warsaw), (3)

and pluralization:

E(cars)− E(car)+ E(apple)' E(apples). (4)

Clearly, word embeddings that capture semantic features of a word or language could be useful in a variety of
machine learning tasks with respect to that language.

In what follows we will be discussing queries and keys, and it will be assumed that each word in a
sequence of length l has been mapped to d-vector via an embedding layer, so that each embedded sequence
has shape [l, d].

2.2. Attention and transformers
Recent years have seen great progress in NLP with the evolution of the attention mechanism and its
introduction into various architectures. It works as the name suggests: by training the neural network to pay
attention to the most important parts of sentences.

To explain the mechanism we will utilize the notion of queries, keys, and values [20]. This notion is used
because the mechanism mimics the retrieval of a value vq for a query q based on a key ki in a database, each
of which has its own value vi. In normal database retrieval, one finds the key ki that is identical to the query
and returns the value. In attention, we wish instead to have a similarity measure s(q, ki) between the query
and key, which is used as the weight to determine the attention paid to the different elements in a weighted
sum of values:

Attention(q,k,v) = vq =
∑
i

s(q,ki)vi. (5)

In this formulation, the case of normal database retrieval is the case where s(q, ki)= 1 if q= ki and 0
otherwise. The different types of attention that exist in the literature [20–23] correspond to different choices
for similarity function s, which is chosen to be differentiable (unlike usual database retrieval) to allow for
backpropagation in a neural network. The similarity is usually softmax applied to some score function, so
that the weights sum to one.

The attention mechanism is a crucial component of the so-called transformer architecture [20], where
the version of attention used is known as scaled dot-product attention,

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (6)

where Q is a set of queries and the keys and values are packed into matrices K and V, and dk is the dimension
of the keys. The softmax function of a vector x is defined as

softmax : Rn → Rn

xi 7→
exi∑n
j=1 e

xj
,

(7)

which is applied to the dot product of the queries with the keys. The scaling in the softmax in (6) by a factor
of 1/

√
dk improves stability of the gradients.

Multi-head attention [20] is a simple variant of attention that can lead to improved training. In
multi-head attention, h ∈ N different linear projections of the d-dimensional queries, keys, and values are
learned, to dq, dk, and dv dimensions, respectively. Attention is then computed for each of the projected
queries, keys, and values, which are then concatenated and projected again. The result is known as
multi-head attention, with h heads.

The Transformer [20] is an encoder-decoder language translation architecture that uses stacked
multi-head attention layers. Since we will be utilizing a memory-efficient modification of the Transformer,
we refer the reader to the original literature for further details.

3
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2.3. Reformer
The Reformer is a new architecture, an efficient transformer, that makes a number of memory improvements
with respect to the original Transformer and related follow-ups. In this section we review the essential
elements of the Reformer, as presented in [24].

Perhaps the key improvement in the Reformer is the use of locality sensitive hashing (LSH) attention. The
essential idea behind LSH attention is that, due to the exponential dependence in the softmax in (6), some
keys contribute much stronger to attention (for fixed query) than others. This means that the matrix
softmax(QKT) is sparse and dominated by a few entries, and we want to only compute these dominant ones.
This will improve the complexity fromO(l2) toO(l log l), which becomes especially important for long
sequences. In more detail, the softmax of a key kj contributes a factor exp(qi · kj) to the attention of a query
qi. One now wishes to find the keys kj with maximal qi · kj = |qi| |kj| cos(θij), i.e. finding keys that are nearest
neighbors to qi in a high-dimensional vector space.

Formulated abstractly, a hashing function (or scheme) h : V → {1, . . . ,b} assigns a vector x ∈ V to one of
b hash values. In cryptography, h is chosen such that the hash values h(x) of nearby values x are as
uncorrelated as possible in order to avoid revealing whether a guessed secret x is close to the actual secret.
Here, we want the inverse situation: nearby values x should be mapped to nearby hashes h(x). Such a hashing
scheme is called locality-sensitive. An example for an LSH scheme uses

h(x) = argmax([xR;−xR]), (8)

where [u; v] denotes the concatenation of two vectors u and v, R is a fixed random matrix of shape
legnth(x)×b/2, and argmax returns the index of the largest vector component [25]. The idea is that under the
random projection, nearby vectors will map to nearby vectors and thus receive the same hash with high
probability.

Returning to computing the attention (6), we can now only evaluate those scalar products in QKT that
contribute the most. The attention ai of a query qi is given by

ai =
∑
j∈Pi

exp(qi · kj − z(i,Pi))vj. (9)

Here, Pi := {j : i≥ j} is the set that the query at position i attends to, the exponential structure comes from
the softmax, z is a normalizing term for the softmax, and we have omitted the factor 1/

√
dk for clarity. Note

that the structure of Pi ensures that the ith position in the query may only attend to itself and the prior
positions [20].

We now change this attention scheme by only paying attention to elements within the same hash bucket,
i.e. we set

PLSH
i = { j : h(qi) = h(kj)}. (10)

As discussed above, the computational and memory gains arise because |PLSH
i | � |Pi|. Sometimes (but

rarely), similar vectors will fall in different hash buckets. The chance that this happens can be reduced by
performing multi-round LSH attention, i.e. the Reformer uses nhashes distinct hashing functions, defined by
distinct, random matrices R.

Additional details of LSH attention in the Reformer include causal masking that ensures positions may
only attend to prior positions, and also a chunking scheme that allows for efficient batch processing. In
practice, the input with batch-size N is a tensor of shape [N, l, d] which the Transformer then turns into Q,K,
and V via three different linear layers. However, for LSH attention in the Reformer to make sense we need
Q=K. Similarly, a shared-QK Transformer is a Transformer that has Q=K, and it turns out [24] that this
has little effect on performance. Further improvements are achieved by using reversible layers.

In summary, the Reformer is a modern NLP architecture where improvements relative to the
Transformer allow sophisticated sequence data to be trained effectively on a single GPU, bypassing the need
for extensive computational resources and therefore allowing easy exploration of new domains with NLP
techniques. The most important hyperparameters introduced by the Reformer are the number of hashes b in
LSH attention, and also the choice of LSH attention or full attention, for the sake of comparison.

2.4. Knots as language
Knots have various data presentation as words in appropriate sets of letters, which makes it natural to think
of them as language7. In this section we develop the idea in the context of natural language processing. We

7AnNLP that deals with letters and words would be to predict the next letter to be typed based on the letters that have already been input.
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Figure 1. Examples of knots. From left to right: unknot (01), trefoil (31), figure-eight (41), 51, and 52.

Figure 2. Reidemeister moves.

start by briefly summarizing some basics of knot theory, and then introduce the braid representation of a
knot, which we use in most of our analysis and which can be interpreted as language.

A knot is an embedding of S1 in 3-dimensional space, without self-intersections and up to ambient
isotopy. The main goal of knot theory is to classify all knots, and to develop tools that enable to determine
whether two different embeddings of S1 are topologically equivalent, i.e. whether they represent the same
knot—in other words, whether one can be transformed onto the other without cutting. An important
specialization of this problem that we address in this paper is to determine whether a given knot is
topologically equivalent to the unknot, i.e. an unknotted loop, also referred to as the trivial knot. A collection
of several possibly entangled knots is called a link.

One useful approach to analyze knots is to consider their projections on a plane, see figure 1. Two knots
are topologically equivalent if and only if their projections can be related to each other by a sequence of
Reidemeister moves. These are three special moves that involve one, two, or three strands, see figure 2:

• A twist (figure 2(a)) takes a strand and twists it, changing the crossing number by 1,
• A poke (figure 2(b)) pulls one strand over another, changing the crossing number by 2,
• A slide (figure 2(c)) slides a strand over (or under) a crossing of two strands, not changing the crossing
number.

Furthermore, the most basic characteristic of a knot is the minimal number of crossings that one gets
upon its projection onto an (appropriately chosen) plane. The simplest knots are the unknot, trefoil and
figure-eight knot, denoted respectively 01, 31 and 41, whose (minimal) numbers of crossings are given by the
main number in this notation (i.e. 0, 3 and 4), while the subscript labels inequivalent knots with the same
number of crossings. The unknot, trefoil and figure-eight are the only knots with fewer than five crossings.
For a fixed, larger number of crossings there are many topologically inequivalent knots, e.g. there are two
knots with five crossings (denoted 51 and 52). In addition to these unique prime knots, new ‘composite’
knots can be formed as the sum of two or more prime knots. This can be thought of as taking two or more
prime knots, cutting them open at one position, and tieing the open ends of each knot together; see figure 3.

The number of inequivalent knots (and indeed already the number of inequivalent prime knots) with a
given number of crossings grows rapidly, so more elaborate characteristics must be employed to encode their
structure and to distinguish them. For example, there are 165 prime knots with 10 crossings, 1 388 705 prime
knots with 16 crossings, etc.

A given knot clearly has many representations; for example projections on various planes typically look
different, and in particular may yield different numbers of crossings. Therefore, one issue we have to deal
with is how to represent the structure of a given projection. The second issue one needs to deal with is how to
determine whether different representations represent topologically the same type of knot. Let us briefly
discuss these two points.

In order to determine a type of a knot, so-called knot invariants are constructed. Knot invariants are
various mathematical objects (numbers, polynomials, groups, homologies, etc) which depend only on the
topological type of a knot, and have the same form irrespective of the representative used to compute it. To
prove that a given quantity is a knot invariant, it is sufficient to show that it is invariant under each of the

5
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Figure 3. Obtaining new knots as the sum of prime knots. This knot is the sum of the the knot 52 (left) and the trefoil 31 (right).

Reidemeister moves. Note that if an invariant computed for two knots yields two different values, it means
that these knots are inequivalent. On the other hand, if two knots yield the same invariant, they may be either
equivalent or inequivalent. More powerful invariants distinguish more knots from each other, and a knot
theorist’s dream is to find a simple and practically computable invariant that would distinguish all knots.

For various purposes, in particular in order to compute various invariants, one needs to encode
topological structure of a knot succinctly. The most common strategy to this end is to capture the pattern of
crossings in a projection of a knot on a plane; it is clear that such a pattern determines a type of knot under
consideration. Note that there are two types of crossings: once we traverse a knot, we may pass under or over
each crossing that we come across. Keeping track of this information while we travel along the knot enables
us to reconstruct its structure, and one way to capture this information is to use the Dowker–Thistlethwaite
notation.

2.4.1. Dowker–Thistlethwaite
To encode the structure of a knot in this notation, we traverse the knot and label each of the n crossings from
1 to 2n, since each crossing is visited twice. We subject this labeling to the additional rule that the even label
gets a minus sign when the strand followed crosses over at the crossing. At the end of this process, each
crossing is labeled by one even and one odd number (and the even numbers are either positive or negative).
Order these two-tuples in order of increasing odd numbers. The Dowker–Thistlethwaite notation is defined
to be the sequence of the signed, even numbers in these ordered tuples.

While the Dowker–Thistlethwaite notation can be easily determined for a given diagram, it also has
certain disadvantages; for example, it is difficult to implement Reidemeister moves in terms of this notation,
and in order to analyze links some additional information must be provided. For these reasons, in most of
this work we represent the structure of knot projections in another way, namely representing knots as braids
and using braid notation.

2.4.2. Braids
Let us therefore summarize what braids are and how to use them to encode the structure of knots. Recall that
the (Artin) braid group Brn is a non-Abelian, infinite, finitely generated group acting on n strands with
generators σ1, . . . ,σn−1 and their inverses σ

−1
1 , . . . ,σ−1

n−1, which satisfy the relations

Braid relation 1: σiσi+1σi = σi+1σiσi+1 , (11a)

Braid relation 2: σiσj = σjσi for |i− j| ≥ 2 , (11b)

and similarly for the inverses. See figure 5 for depictions of the braid relations.
For a set of n parallel strands, the generator σi can be thought of as moving the ith strand over the

(i+ 1)st, and its inverse σ−1
i as moving the (i+ 1)st strand over the ith strand. A group element

σ±1
i1

σ±1
i2

σ±1
i3

· · · can be represented as a pattern of interlacing strands and is referred to as a braid, see figure 4
(left). A braid can be turned into a knot diagram by connecting beginnings and endpoints of all strands by a
set of n parallel arcs, as in figure 4 (right). This operation is also referred to as closure. Furthermore, a
theorem by Alexander states that each knot can be represented as a braid, and there is an effective algorithm
that turns a knot into a braid. Note that a braid that we obtain upon such an operation may be regarded as a
different knot projection, which of course represents the same knot type.

As mentioned above, two different projections of the same knot can be related by a series of Reidemeister
moves. There is an analogous statement on the level of braids, which is formalized in Markov’s theorem. This

6
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Figure 4. A braid σ1σ
−1
2 σ1σ

−1
2 (left) and its closure (right).

Figure 5. Braid relations.

Figure 6.Markov moves.

theorem states that two braids that represent the same knot can be transformed into each other by a series of
Markov moves. There are two types of Markov moves, shown in figure 6:

• conjugation; and
• stabilization/destabilization.

Conjugation sends a braid word ww ′ to w ′w. This can be achieved by repeating the following two-step
procedure for every generator σij in w= σi1σi2 · · ·σil : First, we multiply ww ′ by σ−1

i1
on the left and σi1 on the

right, giving

σ−1
i1

ww ′σi1 = σ−1
i1

σi1σi2 · · ·σilw
′σi1 = σi2 · · ·σilw

′σi1 . (12)

In the last step, we removed the consecutive inverses σ−1
i1

σi1 . Repeating this for σij , j= 2, 3,…, l will result in
sending ww ′ to w ′w. Note that the conjugation move corresponds, on the level of the knot or the braid
closure, to inserting consecutive pairs of inverse generators, i.e. it acts trivially on the braid closure.
Conjugation can be thought of as turning a knot into a braid by ‘cutting it open at a different position’. Of
course, one can in general conjugate a braid word w= σi1σi2 · · ·σil with any generator σik , not just with σi1 ,
then σi2 , etc, sending it to σ

−1
ik

wσik (or σikwσ
−1
ik

). On the level of the braid closure or the knot, this inserts the

identity σ−1
ik

σik .
Stabilization and destabilization are given by

Stabilization: w→ wσn , Destabilization: wσn → w (13)

for w∈Brn. This changes the braid (in fact, it even changes the underlying braid group from Brn to Brn+ 1, or
the other way around), but not the knot. Note that if we did not change the braid group from Brn+ 1 to Brn in
a destabilization move, we would be left with one strand (the (n+ 1)th) which would not be acted on by any

7
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of the braid generators. As a consequence, we would have a two-component link: the first component would
be a braid that describes a knot equivalent to the one we started with, and the second component would be
the unknot, corresponding to the closure of the (n+ 1)th strand. Since this is not desired, we take
destabilization to remove the generator σn and change the braid group.

Note that there is a close connection between the Reidemeister moves and the Markov moves together
with the braid relations:

• Reidemeister move 1 (twist) corresponds to Markov move 2, i.e. (de-)stabilization.
• Reidemeister move 2 (poke) corresponds to adding a trivial element σiσ

−1
i at some position in a braid word.

• Reidemeistermove 3 (slide) corresponds to the action (11a) of first braid relation on the closure of the braid.

At this stage, we can finally relate braid representations of knots to language. We simply interpret
generators σ±1

i of Brn as letters, and braids of the form σ±1
i1

σ±1
i2

σ±1
i3

· · · (which represent knots after the
closure) as words. In practice and in what follows, we represent a braid generator σ±

i simply by±i, so that a
word is represented by a string of integer numbers i ∈ [−(n− 1),n− 1] that represents the braid.

There are several crucial points from the language perspective that should be stressed. First, we wish to
identify, and treat as equivalent, different words (braids) that represent the same knot. This means that the AI
needs to learn to identify such equivalent words. To conduct such a learning process we also need to generate
equivalent words. To this end, we can take advantage of Markov moves. In particular, in the unknot problem,
we can generate various representations of the unknot by applying a series of Markov moves to the empty
braid. Furthermore, the topological character of knottedness makes the problem global rather than local:
even a single change of a word in the sentence may change the type of knot under consideration; there is no
notion of a ‘small’ error, which makes the learning process hard; but this is also true for applications to NLP.

2.5. The UNKNOT problem
In this section we introduce the main problem that we study: the UNKNOT problem.

2.5.1. Why unknotting?
While the problem of distinguishing knots is interesting in its own right, much of our motivation comes
from the smooth 4-dimensional Poincaré conjecture (or, SPC4, as it is often called). Indeed, many problems
in topology of 4-manifolds, including SPC4, can be described (and, sometimes, completely reduced) to the
language of knots in S3.

At the most basic level, the reason is that every closed smooth 4-manifoldM4 can be represented by a
Kirby diagram, which basically consists of knots drawn on a 3-sphere S3. More precisely, to build anM4 one
starts with a 0-handle, i.e. a 4-ball B4, and then can attach 1-handles, 2-handles, 3-handles, and/or finally a
4-handle, which is also a 4-ball. In fact, since this last step involves no ambiguity, we do not need to attach
the 4-handle. Either way, the relation to knots in S3 comes after all k-handles with k≤ 3 are attached8.

There are many candidate counterexamples to SPC4, i.e. ‘exotic’ spheresM4 homeomorphic to S4 which
are not known to be diffeomorphic to S4. One way to show that such anM4 is the standard 4-sphere is to use
equivalence relations (Kirby moves) to reduce its Kirby diagram to that of S4, which has no k-handles with
k= 1, 2, 3. This problem is basically the unknotting problem, or a close variant of it.

Since, as mentioned earlier, adding a 4-handle is a fairly unambiguous operation, one often works with
close relatives of SPC4 that involve B4 with S3 boundary in place of S4. For example, the corresponding
version of SPC4 is known as the smooth relative 4-dimensional Poincaré conjecture. If true, it implies the
original SPC4. As in the case of SPC4 itself, there are many candidate exotic9 4-balls, i.e.M4 homeomorphic
to B4 which are not known to be diffeomorphic to it. For example, every knot K ⊂ S3 which is fibered and
ribbon gives such a candidateM4 since, according to Casson and Gordon [26], it bounds a fibered disk
D⊂M4 in someM4 which is homeomorphic to a 4-ball B4 but is not known to be diffeomorphic to it.
Therefore, if a fibered ribbon knot K does not bound any fibered disk in B4, then the smooth relative
4-dimensional Poincaré conjecture is false.

Conceptually, this is the same reason why knots in S3 can tell us about smooth structures in one
dimension higher that we already mentioned earlier. A knot K= ∂Σ appears as a boundary of a surface
Σ⊂M4, and the question is whether Σ can be a disk in B4 or only in homotopy-B4. Whether K⊂ S3 = ∂B4

bounds a disk in B4 is controlled by the 4-ball genus (a.k.a. slice genus), g4(K), which is defined to be the
minimal value of g(Σ), such that Σ⊂B4 is bounded by K. A knot K with g4(K)= 0 is called slice.

8Recall, that a four-dimensional k-handle is Bk × B4−k, which attaches onto the boundary of lower-index handles along ∂Bk × B4−k.
9An exotic 4-ball has no smooth radius function with 3-sphere levels.
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Then, the strategy [27] to disprove (relative) SPC4 could be to take a knot K ⊂ S3 that is slice (i.e. bounds
a disk) in a homotopy 4-ballM4, withM4 6= B4, and show that K is not slice in B4. For this, one needs
obstructions to sliceness, i.e. lower bounds on g4(K). One such bound comes from deformations and spectral
sequences in Khovanov homology, namely the Rasmussen’s s-invariant [28]. It bounds the 4-ball genus:

|s(K)|
2

≤ g4(K). (14)

More generally, one may hope to find exotic 4-balls by looking for knots that exhibit different genus bounds
in B4 and inM4 ' B4. In [27], this strategy was applied to co-cores of 2-handles, which are disks inM4 ' B4

bounding knots and links in S3. All thoseM4 were soon shown to be standard [29].
One can also consider knots with the trivial Alexander polynomial,∆K(x)= 1. In the early 1980’s

Freedman showed that all such knots are topologically slice [30]. Therefore, demonstrating that any such
knot has g4(K)> 0 would immediately imply the existence of an exotic 4-ball. A similar conclusion follows if
any fibered ribbon knot, as discussed above, has g4(K)> 0.

2.5.2. Complexity
After describing some motivation for unknotting, let us see how hard it can be.

More than 20 years ago, Hass–Lagarias–Pippenger [31] proved that the unknotting problem, i.e. the
decision problem whether a given knot K is actually an unknot, is in complexity class NP (‘Nondeterministic
Polynomial-time’ Turing machine). This is the complexity class that, famously, contains P (class of
problems10 for which ‘polynomial-time’ algorithms are possible) but is not known to (and, in fact, widely
not believed to) be equal to it. Problems in class NP are like Sudoku puzzles; they may not have a simple
algorithm to solve, but a proposed solution can be verified in polynomial time. In other words, while
problems in class P are the ones for which an answer can be found in polynomial time, problems in class NP
are the ones for which checking the answer can be done in polynomial time, provided that the answer is yes.
The result of [31] means that the unknotting problem joins the class of problems like protein folding, SAT
(satisfying truth assignment), or the traveling salesman problem, which are also in class NP.

A close cousin of the class NP—which, though not too likely, may be equal to it—is the class coNP. It
consists of decision problems whose negative answers can be checked in polynomial time, i.e. if the answer is
no. If NP 6= coNP, then NP 6= P (but the other direction is not known). The unknot recognition problem
turns out to be not only in class NP but also in the complexity class coNP. This was first shown by Kuperberg
[32] assuming the generalized Riemann hypothesis (GRH). This assumption was later relaxed in [33], where
it was also pointed out that, in the unlikely event that either the unknotting problem or its negation (called
knottedness) is NP-complete, then NP= coNP. NP-complete problems are problems that are in NP with the
property that any other problem in NP can be mapped onto this problem in polynomial time. To summarize:

unknot recognition ∈ NP ∩ .coNP. (15)

This result is particularly interesting because many decision problems that originally started in this
intersection—e.g. deciding whether an integer number is prime or composite—were later found to be in
class P [34]. Therefore, there is a chance that the unknotting problem we are trying to tackle here actually
admits a polynomial time algorithm. Approaching this problem via AI/ML can hopefully help us find such
an algorithm, if it exists.

In fact, it has been a long standing problem whether the unknot recognition is truly more difficult than a
similar problem for braids, the braid word problem. The latter is known to be in class P according to the
Garside-Thurston theorem, which says that one can identify the trivial braid in polynomial time,
O(|word length|2 n logn) for the Artin braid group Brn. This can be improved to O(|word length|2 n) with
the BKL algorithm [35]11.

At the same time, perhaps one should not be overly optimistic. For example, it was shown recently that
imposing an upper bound on the number of Reidemeister moves immediately makes the unknot recognition
problem NP-hard [36] (NP-hard problems are problems that are at least as hard as any problem in NP). This
paper also helps to understand how the unknotting problem compares to deciding whether two vertices of a
given finite graph are connected or not, which is in class P. Indeed, if we think about knot diagrams as
vertices of an abstract graph, with edges representing Reidemeister moves, then the unknotting problem is
equivalent to deciding whether a vertex belongs to the same component of the graph as the ‘origin’ (the

10 It includes problems like multiplication and sorting.
11Note that the closure of a trivial braid group element is the unknot, but there can be non-trivial braid elements, whose closure is still
the unknot. This is why the BKL algorithm does not solve the unknot problem in polynomial time.
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vertex associated with a trivial diagram of the unknot). If this abstract graph was finite and explicitly
presented, then the unknotting problem would be in class P, but [36] can be viewed as an indication that
these two problems are qualitatively different.

Finally, since earlier we talked about computation of delicate knot invariants, it should be noted that
many closely related problems were recently shown to be parsimoniously #P-complete [37]. This is one of the
more esoteric complexity classes, based on #P which is larger than NP but is contained in PSPACE
(‘Polynomial-space’). And, ‘parsimoniously complete’ refers to a more specific version of the completeness
relation, such that for every solution of problem A there is a unique solution of problem B. Note, the class
PSPACE also contains NP and coNP that we discussed earlier, as well as the probabilistic version of the
polynomial time solver (BPP). Interestingly, both [32] and [37] use the representation variety
π1(S3 \K)→ G in a crucial way. When G= SL(2,C), this is the familiar A-polynomial that plays an
important role in Chern–Simons theory [38].

3. Generating knots and unknots

In this section we describe the algorithm that we use to generate representatives of non-trivial knots and
unknots, or alternatively the prior from which they are drawn. Details of all of the algorithms and
subroutines are presented in appendix A.

In describing the prior we attempt to find a balance between being explicit about our subroutines and
explaining how they are sewn together to form our databases consisting of non-trivial knots and unknots.
Crucial subroutines include:

• RANDOMMARKOVMOVE, Algorithm 1, performs a randomMarkov move drawn from a uniform distribution,
changing the braid but not the topology of its closure.

• BRAIDRELATION1, Algorithm 2, applies the first braid relation in (11a) to all sequences of generators in the
braid word where it can be applied.

• SMARTCOLLAPSE, Algorithm 3, iteratively removes consecutive inverses, free strands, twists (i.e. performs a
destabilizationmove), and non-consecutive inverses (associated with inverses on opposite ends of the braid)
until the braid no longer changes.

• KNOTIFY, Algorithm 4, performs a sum over link components (as illustrated in figure 3) by iteratively inter-
weaving link components associated with a braid closure until only one component is left, i.e. the braid
closure is a knot.

These play a role in the algorithms used to draw random non-trivial knots and unknots:

• RANDOMUNKNOT, Algorithm 5, starts with the empty braid and iteratively applies RANDOMMARKOVMOVE and
BRAIDRELATION1 a total ofM ∈ Z+ times before applying SMARTCOLLAPSE, until the braid has length nletters.

• RANDOMKNOT, Algorithm6, generates a braidB of length nletters by randomly drawing braid generators from a
uniform distribution, and then applies RANDOMMARKOVMOVE and BRAIDRELATION1 a total ofM ∈ Z+ times,
followed by SMARTCOLLAPSE.

Braids produced by RANDOMUNKNOT have topologically trivial closure; we perform checks of necessary
conditions by computing the Arf invariant, Alexander polynomial, and whether or not the knot is alternating
and comparing to the unknot values (0, 1, False). Braids produced by RANDOMKNOT could potentially have
topologically trivial closure, though the probability of this occurring should be exponentially suppressed in
nletters. We check that the braids are topologically non-trivial by computing the same invariants and ensuring
that at least one of them differs from the unknot values.

We use RANDOMKNOT and RANDOMUNKNOT together with the topological checks to produce databases of
over 104 non-trivial knots and unknots of various length, with

nletters ∈ {12,24,36,48,72,96}. (16)

Any value is possible, though generation time goes up significantly with nletters. Since the reformer
architecture needs the input length to be divisible by 2× bucket size, we choose a multiple of 12 for the
length, which will allow us to try different bucket sizes. Of course we could just use a multiple of 10, say, and
pad the input. However, since we generate our data anyways, we might as well generate it.

3.1. Distribution of knots
It would be interesting to study the distribution of knots introduced by the flat prior from which the Markov
moves are drawn. In particular for small crossing numbers, all topologically inequivalent knots have been
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Figure 7. Distribution on the number of crossings induced by our prior, and also by a uniform distribution on all knots of 9 or
fewer crossings.

classified. This means one should in principle be able to check for our database of knots of this length, which
of the inequivalent knots are produced (and how often). However, identifying the specific knot associated to
our randomly generated braids is a hard problem that requires computing and comparing knot invariants
(or ML). In general this problem is difficult and beyond the scope of our paper.

However, knots with nine or fewer crossings have a particularly nice property: they may be uniquely
identified by their Jones polynomial [39], and therefore nletters = 9 braids drawn from our prior have knots
closures that may be identified. By computing the Jones polynomials of the prime knots of nine or fewer
crossings (e.g. using knots in the Rolfsen table and their mirrors, which are obtained by inverting every
generator of the corresponding braid word) one may compute the Jones polynomials of all knots of nine or
fewer crossings by taking products. Drawing 6455 nletters = 9 braids from our prior, we may identify the knot
closure of each by its Jones polynomial. We see from figure 7 that the distribution on the number of crossings
induced by our prior is much flatter than the one induced by a uniform distribution on knots with nine or
fewer crossings, which grows exponentially. We provide detailed counts of which knots have been generated
how often with our RANDOMKNOT generator (algorithm 6) in the histograms in figure 8.

4. Unknot decision problem

Given the motivations in section 2.5.1, in this section we study the UNKNOT decision problem. That is,
given a representative of a knot, we wish to use supervised learning to determine whether or not it is the
unknot. In section 5, we will study braid representatives of knots and utilize reinforcement learning to find a
sequence of Markov moves and braid relations that explicitly reduces it to the unknot (if possible), or to a
braid word that is as short as possible otherwise.

We train Reformers, shared-QK transformers, and feedforward networks, on 10 000 braids drawn from
the prior of section 3 with N ∈ {12, 24, 36, 48}, using the parameter values presented in table 1. We label
non-trivial knots as class 0 and unknots as class 1 and allow network outputs to vary between 0 and 1. For the
Reformers and shared-QK transformers we use reformer-pytorch [40]. Specifically, for the Reformer runs
we use the ReformerLM class, which applies an embedding layer and a Reformer module, which we then
follow with a fully connected layer to map it to a single output, and finally a Sigmoid activation to ensure the
output is between 0 and 1. Binary cross-entropy is used for the loss function, and we pick a decision
threshold of 0.5.

Let us comment on the embedding layers used. As described in section 2.1, NLP (which is one of the
main areas where the reformer architecture is used) is dealing with words or letters (i.e. categorical data).
These need to be converted to numerical data. This can be done via a one-hot encoding, where each
word/letter is a vector of zeros (whose length corresponds to the number of words/letters in the dictionary,
with a single one at the ith position, indicating the position of the word/letter in the dictionary). If a linear
layer is applied to this one-hot encoded vector, it picks out the ith column of the corresponding matrix. An
embedding layer combines the one-hot encoding with the linear layer, i.e. it corresponds to a matrix of
dimensions (embedding_size)×(dictionary_size). Looking up the ith word/letter hence returns a
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Figure 8. Drawing 6455 N= 9 braids from our prior yields knots with nine or fewer crossings, 4664 of which are prime. Plotted
are the number of occurences of knots in the Rolfsen table for knots with three through nine crossings, with mirrors counted for
knots that are not self-mirror.

Table 1. Parameter values for reformer and feedforward runs. Depth is the number of attention modules in the reformer, which
themselves consist of multiple layers. Full attention means that a shared-QK transformer is used, rather than a reformer, i.e. full
shared-QK attention is used rather than LSH attention. nhashes and bucket size are only meaningful when not using full attention.

Parameters Reformer value Feedforward NN values

Full Attention {True, False} N/A
nhashes {1, 4} N/A
Bucket Size {2, N/2} N/A
Causal {True, False} False (dense layers)
Width fixed by other hyperparameters 850
Depth 10 10
Embedding Dimension 250 250
Epochs 50 50
Optimizer RMSProp RMSProp
Learning Rate .0001 0.01

vector of length embedding_size. Note that in the case of braids, the numbers we assign to the generators
are not completely arbitrary: While the numbering of the generators is arbitrary (although it is conventional
to have σi operate on strands i and i+ 1), there is information in the fact that σi and σ−1

i are inverses. We
encode these generators as i and−i, which are also inverse under addition. This fact could of course also be
learned by the embedding layer during training (in the same way that it can learn that hot and cold are
opposites in NLP), but we nevertheless noted that using an embedding layer is not necessary and we could
use the (normalized) input directly as well.

A second point is that the attention layers have no notion of how the (embedded) input was ordered in
the original NLP. It can hence be beneficial to add this information to the chosen embedding. How beneficial
this is depends on the language and its grammar; it is for example less important in Latin as compared to
English. In the case of braids, most braid generators do commute but not all, see (11b). Encoding the
position can be done via another embedding layer, which adds some vector to the embedded input. In this
way, the positional encoding is done via another embedding layer of dimensions (max_input_vectors)×
(embedding_dimension), where max_input_vectors is the (maximum number of) input vectors that
the reformer attends to. The Reformer can now reconstruct the position of the (embedded) input by looking
up the vector that has been added to the input12.

12 In practice, the reformer uses a more memory-efficient positional encoding known as Axial Positional Encoding. This works similarly
but uses some tricks (factorizations) that allow to not store the full positional embedding matrix.
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Figure 9. Overview of the performance of the Reformer models for the UNKNOT decision problem. Shaded regions are
confidence intervals associated to hyperparameters listed in table 1 that are not displayed on the plots. Figures (a) and (b) display
experiments for all values of N in the table. 95% confidence intervals are displayed.

We studied the dependence of performance on various parameters. We find that the performance
difference between full attention (shared-QK Transformers) and Reformers is negligible. Moreover, the
non-autoregressive model (i.e. causal = False) performs marginally better than the autoregressive one.
Here autoregressive means that the future tokens are masked in the attention and the Reformer has to predict
the next token only based on the previous ones (often in NLP, one wants to predict the next letter/word
following the user input up to now). Since knots live in the closure of braids, there is no well-defined future
words (the knot is turned into a braid by ‘cutting it open’ at an arbitrary position), and hence one would
expect the non-autoregressive transformer to perform better.

The dependence of the performance on nhashes or the use of full attention is plotted in figure 9(a). We find
that a single hash performs slightly worse than four hashes, but that four hashes already performs similarly to
full attention.

In figure 9(b), we see that the Reformers and shared-QK Transformer do outperform the feedforward
network by a few percent, but the advantage is not as big as one might have expected. This is our first
evidence that the UNKNOT problem is not particularly difficult for machine learning; we will see more in
section 5. Interestingly, from figure 10 we see that the performance gap between the NLP architectures and
the feedforward networks is biggest at small braid length N, and the performance gap is almost negligible at
large N. Second, quite strikingly we see that performance increases with N, which is not what one would
naively expect; see figure 9(c).

To try to better understand the latter point, we ran a slightly different set of experiments. Rather than
fixing the total number of braid words to be 10 000 for each N ∈ {12, 24, 36, 48}, we fixed the total number of
letters trained on for each N. That is, for N = 12 we take 10 000 braids, but for N = 48 we take 2500 (and
similarly forN = 24 and N = 36), so that the networks see the same total number of braid letters (generators)
for each of the different values of N. All the parameters remain as in table 1, and the performance is plotted
in figure 9(d). We see that the performance still does increase with N, but it is much less drastic than before.
While we know that NNs benefit from a larger training set, i.e. from seeing more distinct braid words as a
whole, this suggests that after a certain threshold, the NN knows what to look for in the global structure,
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Figure 10. Performance comparison between Reformer and feedforward network for different braid lengthsN. Shaded regions are
confidence intervals associated to hyperparameters listed in table 1 that are not displayed on the plots.

Table 2. Parameters for the Reformer used to study network confidence.

Parameter Values

nhashes 4
Causal False
Bucket Size 6
Depth 10
Embedding dimension 250
Epochs 250
Optimizer RMSProp
Learning rate .0001

while still benefitting from being exposed to more subpatterns within braid words. It would be interesting to
investigate this further by looking at the attention modules of the reformer to see which parts of the braid the
NN actually pays attention to at which stage of the decision process, but this is beyond the scope of the
current paper.

The first fact, namely that the performance gap gets smaller for larger N, is hard to disentangle from the
point we have just discussed: Both the feedforward NN and the reformer benefit from the effect discussed
above. Hence, as the braid words get longer and the performance increases, the performance gap has to
shrink as both networks approach 100% accuracy.

4.1. Confident predictions, hard knots, and the Jones polynomial
We now study network confidence and its correlation with the Jones polynomial, focusing on the simplest
case N = 12 because computing the Jones polynomial is #P-hard [41]. Specifically, we train a Reformer on
non-trivial knots as well as unknots drawn from the braid priors of section 3, using the parameters
summarized in table 2.

We test the trained network on 1000 non-trivial knots and unknots from a test set. Results are presented
in figure 11. Since we label non-trivial knots and unknots as 0 and 1, respectively, these should be the
locations of peaks in the output distributions of well-trained networks. The experimental distributions
presented in figure 11 show this correlation. Indeed, the networks are performing well, with precision >95%
(see blue curve in figure 9(c)). We would like to point out the following central observations about the NN
predictions for both unknots and non-trivial knots:
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Figure 11. A study of Reformer outputs for N= 12 knots. Top left: Output distribution for knots. Top right: Output distribution
for unknots. Bottom: Correlation between network outputs and the maximum absolute value of Jones polynomial degrees.

• Very high confidence.Over 900 of the non-trivial knots (unknots) have outputs within 10−3 of their target
value 0 (1). This shows that for over 90% of the non-trivial knots and unknots, the network is very confident
in its prediction.

• Hard knots13 revealed by small peaks on the wrong label.
For both the non-trivial knot and unknot distributions, we see small peaks at the wrong end of the spec-
trum, at 1 for non-trivial knots and 0 for unknots.While this looks almost negligible on the plots because the
peak at the correct values is very large, when one restricts the output distributions to the case of the network
making wrong predictions, most of the wrong predictions for non-trivial knots (unknots) occur in the bin
closest to 1 (0). For these non-trivial knots or unknots, it is not that the network is unsure of its prediction;
rather, it is quite sure, but the prediction is wrong. We checked that this was not simply a function of ini-
tialization by running the same experiment with 10 different random initalizations. We found that 22 of the
1000 non-trivial test set knots have output> .95 for all 10 runs, and similarly 22 of the 1000 test set unknots
have output< .05 for all 10 runs. It is therefore natural to conjecture that these examples are fundamentally
hard for the NN, i.e. they possess some adversarial property that makes the NN predict the wrong answer
with high confidence.

Since knotswith 9 or fewer crossingsmay be identified by their Jones polynomials, we ran experiments for
N = 9 braids to identify the hard braids. Specifically, we ran five Reformers, each with 4 hashes, embedding
dimension 250, and depth 10, on 5000N = 9 braids from our prior with an 80/20 test-train split. We trained
each for 50 epochs and kept the bestmodel, and accuracy was∼ 93%on the test set for all five runs. However,
of the 1000 braids (with non-trivial knot closures) in the test set, 30 of them had outputs above 0.9 for all
five experiments. These hard knots are

(31,19,242), (41,3,37), (62,1,34), (63,1,30), (813,1,5), (820,4,19), (17)

where the first entry of the tuple is the knot number in the Rolfsen table, the second (third) is the number of
‘hard’ (total) instances of the knot in the test set. For knots that are not self-mirror, mirrors are included in

13We emphasize that this likely has nothing to do with the notion of hardness discussed in the previous section. Here, we mean ‘hard’ as
in difficult for the NN to classify correctly.
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the counts.We find that there are no hard knots with 9 crossings, and that∼ 2/3 of the hard knots are trefoils,
despite the fact that only∼ 1/3 of the knots in the test set are trefoils. While more statistics are necessary to
draw a firm conclusion, this preliminary analysis seems to suggest that knots with fewer crossings are more
likely to be hard. A possible explanation for why of all things the simplest non-trivial knot, i.e. the trefoil,
seems to confuse the networks could be that at fixed lengthN, knots with a smaller number of crossings in the
minimal representation (three for the trefoil) contain more crossings that can be undone or disentangled.
This is of course also the case for the unknot, where all crossings can be removed. This similarity might
cause the NN to being tricked and ‘overlooking’ that there is still a non-trivial component left in the braid
representation of the trefoil knot after removing all superfluous crossings.

• Network uncertainty. The network is uncertain when its output is around 0.5. To set a more precise
threshold, let us say that the network is uncertain if 0.3< output< 0.7. As described in the first point,
there are very few knots for which a given NN is uncertain to begin with. Moreover, the uncertain knots are
not robust to initialization: across the 10 random initializations just mentioned, we find that there are no
unknots or non-trivial knots for which all of the networks are uncertain.

We also study correlations between network outputs and the Jones polynomial. Specifically, for all knots
in the ensemble we compute the Jones polynomial using SageMath [42] and compute the maximum of the
absolute value of the degrees of the monomials. Since the Jones polynomial of the unknot is just the constant
polynomial 1 (in the normalization of SageMath), we think of this as serving as a measure of the complexity
of the Jones polynomial and hence of the non-triviality of the knot. In the bottom plot of figure 11, we
stratify the knots according to this measure of the degree and plot it against the mean of the network outputs.
There is clearly a direct correspondence: on average, the higher the complexity of the Jones polynomial, the
more confident the network is that the knot is, in fact, non-trivial. We emphasize that this correlation was
learned by the network and not put in by hand: the Jones polynomial did not enter anywhere into the
training process.

4.2. Going up to go down: hard knots in Dowker–Thistlethwaite notation
Interestingly, some unknots admit a precise notion of ‘hardness’: there is no sequence of Reidemeister moves
that simplifies them without increasing the number of crossings at some point. We provide an example
where this phenomenon is illustrated for a simple braid representation of a knot around equation (21) in
section 5.1, but at this point we do not have a systematic way of constructing examples of such braids.
However, 176 examples of such knots with 15 crossings have been constructed in the Dowker–Thistlethwaite
representation in [43, 44]. It is an interesting question how this property is related to the representation of
the knot, which is, however, beyond the scope of this paper. In particular, we do not know whether this
property is preserved when moving from the Dowker–Thistlethwaite representation to the braid
representation of a knot. Translating Dowker–Thistlethwaite to braids is not straight-forward and might
require moving some of the strands, thereby destroying the hardness property.

In order to study these ‘hard’ knots nevertheless, we therefore have to use the hard Dowker–
Thistlethwaite knots of [43, 44]. However, creating a training set in Dowker–Thistlethwaite notation would
require new methods of generating random non-trivial knots as well as unknots in this notation. In order to
use our existing methods, we generate knots and unknots in braid notation and translate them into
Dowker–Thistlethwaite notation. This direction is, in contrast to the other direction, straight-forward.

With this data set, we trained a Reformer and simple feedforward network on the Dowker–Thistlethwaite
representations of length 15 drawn from our prior on braids. The Reformer was acausal, with bucket size 8
and four hashes, depth 10, with five heads, and embedding dimension 250. Evaluated on a test set of 1000
non-trivial knots and unknots, the trained Reformer had accuracy 90% on knots and 87.7% on unknots, and
the feedforward network performed slightly worse. Moreover, these results are∼ 5% lower than Reformers
or feedforward networks trained on the knots represented as braids, suggesting that braids may be a better
representation of knots for machine learning than Dowker–Thistlethwaite notation.

The reason for doing the analysis on knots in Dowker–Thistlethwaite notation, however, was to test it on
the ‘hard’ Dowker–Thistlethwaite knots, as just defined. Using the trained Reformer to make predictions for
the 176 known hard Dowker–Thistlethwaite knots from [43, 44], none of which were explicitly used in the
training set, the Reformer achieved only 2.2% accuracy—it was almost always wrong! Concretely, the mean
and standard deviation of outputs for these unknots were .03 and .14, respectively, demonstrating that the
network is quite sure of its wrong predictions. While this performance could be blamed on the out-of-sample
prediction of hard unknots, we also observed that including a fraction of the hard unknots does not improve
prediction accuracy for the other hard unknots. This gives a second reason, aside from the definition above,
to think that these unknots are fundamentally hard.
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5. Unknotting with reinforcement learning

Instead of just using the Reformer (or FFNN) as a black box whose output is the likelihood with which the
NN thinks the input is or is not the unknot, we also studied unknotting via reinforcement learning. We will
discuss in detail the environment, states, actions, and reward we implement for this RL task. For an
introduction to RL and these concepts we refer the reader to [11, 12].

5.1. The RL environment
5.1.1. State space
The states of the reinforcement agent are all braid words of a given length 2Nmax for starting braids of length
Nmax (the reason for the factor of 2 will become apparent once we discuss the actions below). Since the start
state will be a braid whose closure is a knot, rather than a link, and this property is preserved under our
actions, we are only considering braids with single-component closures. For such braids, a braid word of
length N has at most 2 N generators and is thus an element of (at most) BrN+ 1. Therefore, there are (at
most):

Nstates = 1+
2Nmax∑
N=1

(2 N)N, (18)

possible states. Out of these, the only terminal state is the state corresponding to the empty braid word in
Br1. Here, the subtlety with the destabilization move discussed around (13): Even if we start with a braid
word w ∈ BrNmax corresponding to a one-component knot, after reducing its length to some N< Nmax the
braid is taken to be an element of BrN rather than BrNmax to preserve the single-component property14.

5.1.2. Reward function
The purpose of using RL is that we want to find an equivalent braid representation of any input knot with as
short a braid word as possible. The reason for this is two-fold:

• Whenwewant to useNNs to analyze braids that represent knots (not necessarily just for the unknot question
addressed in this paper), the (input dimension of the) NN can be smaller if the input word is shorter.

• Since the unknot is represented by an empty braid word in Br1, we can use this to detect whether a knot is
the unknot.

This makes it natural to use the negative length of the current braid word as a reward (or rather
punishment): The fact that shorter braid words are punished less strongly means that the agent will attempt
to minimize the length of the braid word. Moreover, since each move receives a punishment, the agent is
incentivized to reduce the length of the braid word as fast as possible. As discussed in section 4.2 and
exemplified around (21) below, there do exist knots for which the braid word has to become longer before it
can be simplified. It is hence important that the agents maximize their (long-term) return rather than just
their (short-term) reward. As we shall see next, the action space necessarily contains illegal actions for some
states. We punish such illegal actions with a negative reward of 4Nmax.

Let us make one further comment on the length of the braid word: there is a fast algorithm due to
Dehornoy [45] that solves the word problem for braids. He defines a notion of a reduced braid, which is
unique within each equivalence class of braids. This means that two braids with the same reduced braid word
can be transformed into each other using the braid relations (11). Since the reduced braid word for the
empty braid is the empty braid word, this gives a sufficient criterion for any braid to describe the unknot: if
its reduced braid word is empty, then there exist a sequence of braid relations that will turn the knot (given as
a braid) into the unknot. We find that this sufficient criterion is extremely weak for our unknots. Essentially
none of the braids representing the braid word have an empty reduced form. Since we use Markov moves
together with braid relations to generate the unknots, and since Markov moves do change the braid, this
result is not too surprising. But it begs the question of whether a better measure for triviality of the braid
would be the reduced braid word rather than just the length of the braid word. Our experiments clearly show
that this is not the case; if we base the rewards on the reduced braid word obtained from Dehornoy’s
algorithm, the agent learns slower and performs worse. This might be due to the case that the reduced word
length changes more erratically when braid-altering actions are performed than the non-reduced braid word
length. This erratic change in reward might make it harder for the agent to learn.

14Of course, our algorithm can be run on multi-component links by first identifying all components (which is easy) and then running
the algorithm on each component individually. This will simplify each component as much as possible (but will not contain information
on e.g. the linking number).
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5.1.3. Action space
Remember that performing the Markov moves depicted in figure 6 change the braid but not the braid
closure, i.e. not the knot. However, just using Markov moves does not guarantee that the unknot which
corresponds to the empty braid word can be reached. Indeed, any given braid configuration of the unknot
will be reducible to the empty braid word by using Markov moves together with the braid relations (11). As a
simple example, consider the braid word:

w= [1,2,1,−2]. (19)

Just Markov moves alone will not simplify this to an empty braid word corresponding to the unknot.
However, if we use the first braid relation, this braid can be seen to be equivalent to the braid:

w ′ = [2,1,2,−2]. (20)

Now, removing the consecutive inverses [2,−2] will lead to the braid word [2, 1]15, which, after two
destabilization moves, collapses to the empty braid word.

This means that we need in principle four different kinds of actions for the agent: the two types of braid
relations (11), as well as the two Markov moves. Let us count the number of possible actions: In order to
carry out the two braid relations, we need to specify the position in the braid at which the relations are to be
used, adding Nmax actions each. Markov move 1, i.e. conjugation, consists of two consecutive actions:
multiplying by a generator and its inverse on either side of the braid word, and subsequently simplifying the
braid. This adds two (composite) actions. Markov move 2, if allowed, either adds or removes a strand from
the braid, adding another two actions.

However, there is another subtlety here: If we perform conjugation as a composite action of adding
consecutive inverses on the closure of the braid and removing a different set of consecutive inverse operators,
we prescribe an order in which these operations are to be carried out. Fixing this order means that some
braids of unknots cannot be simplified to the empty braid word anymore. As an example, consider
w= [−1,2,1,−2]. This cannot be simplified by applying conjugation (i.e. cyclic shifts), braid relations, and
destabilization moves. However, if we (i) insert consecutive inverses at the second to last position, (ii) use
braid relation 1 on positions 2-4, (iii) remove consecutive inverses at positions 1 and 2, (iv) conjugate by−2
on the left and 2 on the right and remove consecutive inverses at the ends of the braid, and (v) performing
two destabilization moves, the braid word w becomes the empty braid word:

w= [−1,2,1,−2]
(i)−→ [−1,2,1,2,−2,−2]

(ii)−→ [−1,1,2,1,−2,−2]
(iii)−−→ [2,1,−2,−2]

(iv)−−→ [1,−2]
(v)−→ ∅

. (21)

This is an example of the previously mentioned fact that for some knots the length of the braid word (i.e. the
number of crossings) has to be increased before it can be decreased and illustrates that we need to allow the
insertion of consecutive inverse operators at some point in the braid, without specifying a priori the order in
which they are removed, or whether one applies other operations, such as using the first braid relation and
does not remove the generators at all. Naively, this requires adding the possibility of inserting 2Nmax

generators σ±1
i σ∓1

i at any of the Nmax positions of the braid, thus adding 2N2
max actions.

In total, this set of actions would have

Nactions = 2N2
max + 2Nmax + 4, (22)

actions, which can be several thousands. In our experience, RL works particularly well for small action
spaces, while the state space can be very large16. In the case at hand, the action spaces can become quite
sizable. Moreover, they contain many illegal actions, since most braid relations can only be applied at very
few positions in the knot. This large number of illegal actions means that the braid is often not changed by an
action, which in turn requires a very long exploration phase by the agent in order to realize which actions are
valid based on which input states. To counter this, we do not use the set of actions described above but rather
introduce a different set of high-level actions that does not grow as fast with Nmax.

We have tried several agents with different types of composite actions, but we will only discuss the one
that works best here. First, we add cyclic shifts to the left and right in the braid word, thus including Markov

15Note that we could equally well have removed the generator 2 at the first position together with the generator−2 at the last position,
since we are interested in the closure of the braid. This would have left us with the braid word [1, 2], which describes an inequivalent
braid, but the same knot.
16 For small state spaces, the problem can often be brute-forced and RL is not necessary.

18



Mach. Learn.: Sci. Technol. 2 (2021) 025035 S Gukov et al

moves of type 1. This way, we have covered the Markov moves of type 1 with 2 actions. Next, we need to
address equivalences of the braid. Here, we can potentially save a huge number of actions, if we find a more
efficient way to describe the insertion of consecutive inverses (which introduced 2N2

max actions) and for the
braid relations (which introduced 2Nmax actions).

For the consecutive inverses, we can get away with only Nmax actions in the following way: Since
conjugation, i.e. cyclic shifts, are already included in the actions, it does not matter where the inverse
operators are inserted, so we insert them at the beginning and the end of the braid word. This reduces the
number of actions by a factor of Nmax, since we need not specify the position anymore. Theoretically, this
reduction comes at the cost of performing up to dNmax/2e cyclic shifts after adding the inverse pair of
generators in order to move them to any desired position in the braid word. In practice, we only care about
the braid closure anyways, so this shift will never be necessary. Hence, it seems as if we need to add 2Nmax

actions, Nmax that send w→ σiwσ
−1
i and another Nmax that send w→ σ−1

i wσi. However, it is enough to
include only the first Nmax: The second Nmax can be obtained from the former by performing a cyclic
right-shift, commuting the pair of inverse operators, and performing a cyclic left-shift:

σiwσ
−1
i → σ−1

i σiw→ σiσ
−1
i w→ σ−1

i wσi. (23)

We have thus reduced the number of actions coming from insertion of consecutive inverses from 2N2
max to

Nmax. However, note that inserting consecutive inverses increases the length of the braid word by 2 (this is
also true for the original 2N2

max actions). Since we use NNs to approximate the state and action value
functions, and since we need to fix the input dimension of these NNs, we allow a maximum intermediate
length of 2Nmax for a braid word with original length Nmax.

In addition, we bundle several simplifications (i.e. removing trivial link components, relabeling braid
generators, performing destabilization moves, and removing inverses of a pair of operators that are either
consecutive or separated by other braid generators with which the generator and its inverse commute) into
one action called SMARTCOLLAPSE. These operations are repeated until the braid does not simplify further.
Note that we did not add a stabilization move. While we do not know whether there are situations where one
needs to perform a stabilization in order to eventually get to the empty braid word, we observe empirically
that the performance of the agents went slightly down when adding this extra action. Of course, longer
training or better hyperparameter tuning, plus maybe allowing for longer intermediate braid words, should
overcome this drop in performance. However, from the drop in performance we do not see evidence that, for
the knots in our database, stabilization contributes significantly to simplifying braid words of unknots to the
empty braid word. If in doubt, one could of course add this extra action at the cost of a few percent accuracy
or finding better hyperparameters.

Next, let us address reducing the 2Nmax actions coming from the braid relations. This can be achieved as
follows:

(a) Start at the beginning of the braid word.
(b) Use a braid relation at the first possibility.
(c) Use conjugations (i.e. cyclic shifts) to move the position where the braid relation has been applied to the

end of the braid word.

This reduces the number of actions from 2Nmax to 2. The price to pay is that if the network wants to
perform a braid relation at a specific position, it might have to perform, in the worst case, Nmax additional
cyclic shifts in order to move the position where the braid relation is to be applied far enough to the left such
that it is the first occurrence.

Note that one could be tempted to not do the cyclic shift in the third step, but instead remember where
the last action was performed and start from that position the next time. However, this would break the
Markov property (since the next action on a state would then depend on how the state was reached) and this
would make the problem not (necessarily) amenable to be solved with RL.

To summarize, this leaves us with

Nactions = 5+Nmax (24)

actions on a braid word [i1, i2, . . . , ik] = w ∈ Brn+1, ij∈[−n, n]:

• SMARTCOLLAPSE (see Algorithm 3): removes twists, performs destabilization, removes inverses.
• shift left (conjugation+ remove inverses):

w
an+1−−→ (−i1) ◦w ◦ (i1) = [i2, . . . , ik, i1].
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• shift right (conjugation+ remove inverses):

w
an+2−−→ (ik) ◦w ◦ (−ik) = [ik, i1, i2, . . . , ik−1].

• braid relation 1 and shift right: let m be the position where the braid relation can be applied and s=
[im+1, im+2, im+3] be the three-letter substring to which it is applied, yielding s ′. Then

[i1, i2, . . . , im, s, im+4, . . . , ik]
an+4−−→ [im+4, . . . , ik, i1, i2, . . . , im, s

′].

• braid relation 2 and shift right: let m be the position where the braid relation can be applied and s=
[im+1, im+2] be the two-letter substring to which it is applied, yielding s ′. Then

[i1, i2, . . . , im, s, im+3, . . . , ik]
an+5−−→ [im+3, . . . , ik, i1, i2, . . . , im, s

′].

• Nmax Markov moves of type 1, i.e. conjugations by an arbitrary generator im ∈ [−Nmax,−Nmax +
1, . . . ,−1,1, . . . ,Nmax]−, do not remove inverses:

w
am−→ (im) ◦w ◦ (−im) = [im, i1, i2, . . . , ik,−im].

Note that the only action that simplifies (i.e. reduces the length of) a given braid word is SMARTCOLLAPSE.
All other actions serve the purpose of applying braid relations and Markov moves that will eventually allow
SMARTCOLLAPSE to simplify the braid word. Also note that now the only illegal actions are the ones that try to
add a pair of inverse generators to a braid word that is already of length 2Nmax. In order to get to such a braid
word, the agent has to perform Nmax of such actions before encountering an illegal move for the first time.
We do not know whether there exist knots whose braids require increasing the length (i.e. the number of
crossings) by more than a factor of two at some intermediate step, before the knot can be simplified and
collapsed to the unknot. However, especially for larger Nmax, this will incur quite a sizable punishment over a
large number of steps, which makes it unlikely that the agent would follow this policy unless we choose a
discount factor of 1 (or very close to 1). While the SMARTCOLLAPSE action might not (be able to) change the
braid, we do not consider this an illegal action.

5.2. The RL algorithm
Many RL algorithms have been developed to solve a Markov Decision Process. We have tried:

• A3C (asynchronous advantage actor-critic) [46] and the synchronous version A2C, with feedforward and
reformer NNs.

• DQN (deep Q-networks) [47], with and without dueling, with feedforward and recursive (LSTM) NNs.
• PPO (proximal policy optimization) [48], with feedforward NNs.
• TRPO (trust-region policy optimization) [49] with GAE (generalized advantage estimation), with feedfor-
ward and reformer NNs.

We used different libraries based on Tensorflow/Keras [50], Pytorch [51], and ChainerRL [52]. We
performed thorough (but not excessively extensive) box searches for the hyperparameters and tried varying
the NN architecture. Based on these experiments we found that PPO and DQN performed worse. Moreover,
DQN showed oscillatory behavior in the reward (and the actual performance). A2C and A3C performed
approximately on the same level (with A3C slightly outperforming A2C), and both were much better than
DQN and PPO. By far the best algorithm was TRPO. We tried using conventional FFNN as well as the
Reformer NN with TRPO. While the reformer seemed to perform slightly better, it trains much slower. Since
the results with a classic FFNN were already very good, we ended up using the latter in a ChainerRL
implementation of the algorithm with the hyperparameters of [53]17. We train the agents for 5× 106 steps on
a standard GPU, which takes around 24 h.

Since we ended up using TRPO, let us briefly explain the ideas behind this algorithm. As is the case for
example in A3C, TRPO uses a NN to approximate the state value and action value functions. However, while
A3C uses gradient descent to minimize the mean square error for the loss function and uses this as a baseline

17TRPO promises to require little tuning of hyperparameters. For us, the parameters of [53] (which are standard in ChainerRL) worked
well and we did not attempt to tune them further.
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Figure 12. Performance comparison of the TRPO, A3C and RW algorithms. Left: Fraction of unknots whose braid words could be
reduced to the empty braid word as a function of initial braid word length N. Right: Average number of actions necessary to
reduce the input braid word to the empty braid word as a function of N.

for the policy updates (which are also performed using gradients), TRPO follows a different approach. The
problems TRPO tries to address are the following: First, since gradient-based algorithms are by definition
insensitive to curvature, this can lead to problems for strongly curved loss landscapes. Second, the step size
should be a function of the curvature, making smaller updates in strongly curved regions and larger updates
in flatter regions. Third, TRPO can guarantee policy updates that improve the policy and will eventually lead
to the optimal policy.

To address the first point, TRPO uses standard SGD for the value function updates, but a second-order
update (based on conjugate gradients and a line search) for the policy function updates. The second point is
addressed by introducing trust regions. The algorithm determines, for a given size of the trust region, the
maximum step size that it wants to explore and then finds the optimal point within this trust region.
Concerning the third point, instead of optimizing the policy function, TRPO optimizes a surrogate function
(based on the KL divergence between the old and the new policy) that approximates the expected reward
(computed from the current policy) locally. The authors of [49] show that if this surrogate function bounds
the expected reward from below, this is guaranteed to lead to an improvement.

5.3. Results
In order to evaluate the performance of the RL agents, we run them on braid words that represent unknots.
The reason is that for these we know that there exists a series of moves that reduce the braid word to the
empty braid word. For non-trivial knots, we do not know what the simplest braid word is (this is the whole
point of using ML for this task), hence we cannot judge how well the algorithm performs on non-trivial
knots.

The agents receive braids of length Nmax ∈ {12,24,36,48,72,96}. Since, as discussed above, inserting a
pair of inverse generators can increase the length of the braid, we introduce a maximum length of 2Nmax as
input size for the NN and apply zero-padding. Note that zero is not a valid generator in our convention; since
we use± i to encode the generator σ±1

i , we start at i= 1. For that reason, 0 is a good pad value. We define
accuracy as the fraction of unknots for which the RL agents found a series of moves that reduced the input
braid word to the empty braid word. We also benchmark the trained agents against a random walker (RW),
which does not follow any sophisticated policy but draws the next action from the set of all actions with a flat
prior. We set an upper bound of 500 actions and check performance on the same 10 000 unknots for all
algorithms.

We present the results of the RL runs in figure 12. To keep the plot manageable, we only show the two
best-performing RL agents (TRPO and A3C), both with FFNNs, as well as the performance of the random
walker. Let us start by discussing the plot on the left in figure 12. For TRPO, we find that the fraction of
braids encoding the unknot that can be fully reduced to the empty braid word is around 85% for all unknots,
more or less irrespective of their length and number of generators (within the interval we tested). While
results for A3C are comparable for smaller braids (up to Nmax = 48), the accuracy drops significantly for
Nmax = 72 and Nmax = 96 from around 70% to 34%. Since there seems to be no fundamental obstruction
and A3C is working well for smaller Nmax, we expect that more complex NNs, longer exploration phases, a
discount factor closer to 1, and possibly tweaks to other hyperparameters could lead to better performance
also at larger Nmax. However, we did not attempt this since TRPO already performed at a constant, higher
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Figure 13. Comparison of the moves that are picked by an untrained agent vs a trained agent.

rate. Both RL runs are to be contrasted with the performance of the random walker. This shows a sharp drop
in accuracies, from around 64% accuracy for Nmax = 12 to around 10% for Nmax = 96. This illustrates that
the strategy (policy) learned by the agents significantly outperforms brute-force searches, especially for larger
Nmax.

We also plot the average number of actions the agent takes until obtaining the empty braid word on the
right in figure 12. For Nmax = 12, the trained TRPO agent takes an average of around 50 steps to fully reduce
a braid word of the unknot to the empty word. In contrast, the random walker needs twice as many steps
until it stumbles upon a solution. For this low Nmax, the A3C agent still performs very similarly to the TRPO
agent. For larger Nmax, the average number of actions needed by the A3C agent and the RW increases.
However, the average number of steps needed by the RW is by a factor of 1.3–1.8 larger as compared to the
A3C agent. Interestingly, the number of steps is almost constant for the TRPO agent and a factor of 2 or more
below the random walker. Note that this is only averaging the number of actions over those knots that could
actually be reduced to the unknot, which is around 8800 for TRPO, 3400 for A3C, and 1000 for RW at
N = 96. The results suggests that if the number of steps would be bound to be around 60 instead of 500, the
accuracy of the random walker would already be very low even for Nmax = 12. Since the computational
complexity of the actions (especially of SMARTCOLLAPSE) grows with the length of the braid word, the smaller
the number of actions, the faster the algorithm performs. Conversely, this means that a brute-force approach
to the unknotting problem becomes unfeasible for larger Nmax.

5.4. Actions taken to unknot
In reinforcement learning, the learning process of the AI agent is represented by the flow of the
state-dependent distribution on action space, i.e. a change in policy. Therefore, as a simple attempt in trying
to understand what the agent has learned, we look at the distribution of actions that the agent performs
before and after training, as summarized in figure 13. We look at the largest, most complicated braids at
N = 96. The actions are those summarized at the end of section 5.1. In the plot, we have counted all n actions
that perform Markov move 1 in one category labeled ‘Markov 1’ and divided by N.

The first thing to observe is that the untrained agent performs every actions equally often. This is to be
expected, since it is just choosing actions randomly from a flat prior. The fact that around 10% of the
unknots represented by braid words of length 96 can be reduced to the empty braid word by just performing
actions drawn from our base set of actions with a flat prior (see figure 12) sets a baseline against which we
should benchmark the performance.

For the trained agent, we see that shift left and SMARTCOLLAPSE are the most frequent actions. This makes
sense. First, SMARTCOLLAPSE is the only action that can actually reduce the length of the braid word (and thus
decrease the punishment); all other actions either leave the length unchanged or increases it by two. Second,
the large asymmetry between shifting left and right (the former is the most frequent action, the latter the
least frequent action and essentially negligible) is owed to the fact that applying braid relations 1 and 2 are
followed by many right shifts, which move the part that the braid relation has acted upon to the end of the
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braid word. Hence, the agent gets many right shifts for free, which it might have to counter with shifting left
in order to rearrange the braid such that the part where the agent wants to apply a braid relation to next is the
first possible occurrence.

Next, we observe that braid relation 1 is used around 10% points more often than braid relation 2. This is
explained by the fact that SMARTCOLLAPSE will remove non-consecutive inverses if the generators between a
generator and its inverse commute with the generator, in other words SMARTCOLLAPSE (wσiw ′σ−1

i ) = ww ′ if
σi commutes with all generators in w ′. Hence, the agent gets again many commutation moves for free in
smart collapse and hence needs to perform these less frequently.

Finally, we find that Markov move 1 is performed rather infrequently. This is interesting and tells us that
the braid relations seem far more important than Markov move 1 when it comes to simplifying our braids.
Note that these increase the braid length and with it the punishment, and hence the agent is also reluctant to
perform these. The fact that the agent performs them nevertheless (and even more frequently than shift
rights, which do not change the punishment) illustrates that the agent is indeed maximizing its long-term
return and the fact that some braids need to become longer before they can be simplified as illustrated in an
example in section 5.1.

6. Conclusion

In this paper we have proposed studying knot theory using techniques from natural language processing
(NLP), as is natural since any knot may be represented by a braid word. The statement that any (projection
of) topologically equivalent knots are related by a sequence of Reidemeister moves gives rise to a natural
action on the space of braid words, comprised of Markov moves and braid relations. From the NLP
perspective, then, the problem of knot equivalence becomes a question of whether two words (more
specifically, their closures) are equivalent in the language. Transformers and Reformers are natural
architectures for such studies.

The entirety of the paper focused on a fundamental problem in knot theory, the UNKNOT problem,
which asks whether a given knot is trivial or non-trivial. This is equivalent to the question of whether a given
representation of knot may be continuously deformed to the simple circle without ripping or tearing, which
requires the existence of a sequence of Reidemeister moves that performs the simplifications, or alternatively
an equivalent sequence of moves on a braid representative. Much of our interest in this problem stems from
its relation to the smooth four-dimensional Poincaré conjecture, a fundamental open problem in geometric
topology. From the perspective of computational complexity, the UNKNOT problem resides in
NP∩ co− NP, though if one bounds the number of Reidemeister moves from above it is NP-hard. Further
information on both our motivation and complexity issues are discussed in the main text.

In section 3, we gave a detailed description of the induced prior for our method of randomly generating
braids (and consequently knots) based on drawing braid generators from a flat prior and performing a
sequence of Markov moves (again chosen randomly with flat prior). Letting N be the number of letters in the
braid word, N = 9 braids have knot closures that, when simplified, have 9 or fewer crossings. Such knots
happen to be uniquely identifiable by their Jones polynomials, which allowed us to compare the distribution
of knots drawn from our prior to the flat prior on knots with 9 or fewer crossings. The latter induces a
distribution on the number of crossings that increases exponentially, whereas our prior induces a much
flatter distribution.

In section 4, we studied the UNKNOT decision problem, aiming at solving the binary classification of
whether or not a given knot is the unknot. We performed systematic experiments using Reformers,
Shared-QK Transformers, and feedforward neural networks, finding that the NLP architectures
outperformed feedforward networks, but only by a few percent, perhaps suggesting that the UNKNOT
problem is still relatively easy as an ML problem; accuracy above 90% was easy to achieve in all cases, and for
the NLP architectures accuracy in the mid to high 90 s was achieved. Interestingly, we saw the
counter-intuitive result that performance clearly increased with increasing N, where N is the number of
letters in the braid word. These experiments had a fixed number of braid words, which meant that the neural
network saw a larger total number of letters for increasing N. Fixing instead the number of total letters seen
by the networks, we found the increase in performance with increasing N is less drastic. Still, this result
surprises us, and a better conceptual understanding may provide a useful perspective on the UNKNOT
problem. For N = 12 knots, we also found that the certainty with which the networks predicted the
non-triviality of a knot was directly correlated with the maximum of the absolute value of the Jones
polynomial degrees. We emphasize that this correlation was learned, and no information about the Jones
polynomial was put in by hand.
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A notion of a ‘hard’ knot also emerged from our analysis: in some cases, the network applies the wrong
knot-vs-unknot label to a knot, and it is quite sure of its wrong prediction. For instance, in our convention,
non-trivial knots were labeled with a 0, and in some rare cases the network would make a prediction of, e.g.
∼ 0.999, on a non-trivial knot, indicating that the network is quite sure that it is an unknot. To test whether
this was an accident, we repeated the experiments with ten randomly initialized neural networks and found
that many of the incorrectly labeled non-trivial knots were incorrectly labeled in all of the experiments. This
suggested that some knots may be fundamentally ‘harder’ than others, or possess an adversarial property that
tricks the NN into assigning the wrong label with high confidence. Since knots with 9 or fewer crossings may
be identified by their Jones polynomial, we were able to identify ‘hard’ knots associated to N = 9 braids. We
found that no knots with 9 crossings were hard, and that∼ 2/3 of the hard knots were trefoils, despite the fact
that only∼ 1/3 of the knots in the test set were trefoils. This suggests that knots with less than N crossings
may be more likely to be hard knots. We speculate that a possible reason why small knots seem to be harder
for the NN is because at fixed length N, these knots contain many superfluous crossings which can be
removed, simplifying the knot tremendously. This might trick the network into thinking that the knot can be
completely simplified to the unknot, overlooking the non-trivial trefoil hiding within the mostly trivial braid
word. In that case, it would be interesting whether this adversarial property is robust against changing the
description of the knot from a braid closure to e.g. Dowker–Thistlethwaite, Gauss codes, etc. To study this a
bit more, we looked at the NN performance when using the Dowker–Thistlethwaite notation. Overall, we
found that the performance of the networks were slightly worse than for those trained with braids. Moreover,
we used the 176 unknots of [43, 44], which require increasing the number of crossings before one is able to
reduce the knot to the trivial unknot with no crossings. We find that indeed knots with this property are hard
for the NN, and the NNs tend to consistently misidentify such knots as non-trivial.

In section 5, we studied the unknotting problem using reinforcement learning. The idea is to train an
agent that, given a knot (encoded as a braid), can find a sequence of moves that simplifies the braid as much
as possible. We define simplicity via the length of the braid word. Since every unknot can be presented as the
empty braid word in Br1, this allows us to identify unknots using this agent: if the agent can find a sequence
of actions that turns a braid word into the empty braid word, the given knot is provably the unknot. This has
the advantage that the result can be verified for unknots, in contrast to the black-box models of section 4,
which can only assign a probability to a knot being the unknot.

While using braid relations and Markov moves would be enough to reduce any braid representing the
unknot to the empty braid word, we use a different set of more high-level actions. The reason is that the
number of actions can become quite large, which makes the agent difficult to train. Using trust region policy
optimization (TRPO) and the base set of actions, we find that our trained agent can identify a set of moves
that reduces a starting braid word to the empty braid word in over 80% of the cases even for knots with up to
96 crossings (i.e. length of the braid word). This beats the next best RL algorithm (A3C) by more than a
factor of 2, and a brute-force algorithm that performs random actions by a factor of almost 8.

Interestingly, we find that the number of actions necessary to obtain the empty braid word from a
starting braid word that represents the unknot is constant over the range of braid words we consider (from
length 12 to 96). Moreover, we observe that, for our randomly generated unknots, using braid relations is
much more important to simplify the knot than using Markov move 1.
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Appendix A. Algorithms

Algorithm 1 RANDOMMARKOVMOVE

i∼ U({0,1})
if i= 0 then ▷ Conjugation Markov move

j∼ U({1, . . . ,max(abs(B)}).
k∼ U({0,1}).
B← [(−1)k j] +B+ [(−1)k+1 j]

else ▷ New strand Markov move
k∼ U({0,1}).
B← B+ [(−1)kmax(abs(B))]

end if
return B.

Algorithm 2 BRAIDRELATION1:

Require: Braid B, int start, bool take_closure.
i← start
while imod length(B) ̸= start - 1 do

if not takeClosure and i
?
= length(B) then ▷ Reached end of Braid

return B
end if
[p1, p2, p3]= [i, i+ 1, i+ 2] mod length(B)

if [B[p1], B[p2], B[p3]]
?
= [±k,±(k+ 1),±(k)] for some k ∈ Z then

[B[p1], B[p2], B[p3]]← [±(k+ 1),±(k),±(k+ 1)]

else if [B[p1], B[p2], B[p3]]
?
= [±(k+ 1),±(k),±(k+ 1)] for some k ∈ Z then

[B[p1], B[p2], B[p3]]← [±(k),±(k+ 1),±(k)]
end if

end while
return B.

Algorithm 3 SMARTCOLLAPSE: method to reduce braid length.

Require: Braid B.
New braid B ′← empty braid word.
while B ′ ̸= B as braid words do

B ′← B.
B←REMOVECONSECUTIVEINVERSES(B).
B←REMOVEFREESTRANDS(B).
B←DESTABILIZE(B).
B←REMOVENONCONSECUTIVEINVERSES(B).

end while
return B.
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Algorithm 4 KNOTIFY: turn braid representative of a link into a knot. Iteratively weaves together two strands not in the
same link component until the braid closure is a knot.

Require: Braid B.
CSL← component strand list; list of list of strands in each component of B.
while B ̸= [] and |CSL| ̸= 1 do

strands←{1, . . . ,max(abs(B))+1}
for CS∈CSL do
for strand ∈CS do
up, down← strand+1, strand−1
i∼ U({0,1}).
if up /∈ component and up ∈ strands then

B← B+ [(−1)i strand] ▷Weave together strand, strand+1.
break twice.

else if down /∈ component and down ∈ strands then
B← B+ [(−1)i (strand− 1)] ▷Weave together strand, strand−1.
break twice.

end if
end for

end for
CSL← component strand list; list of list of strands in each component of B.

end while
return B.

Algorithm 5 RANDOMUNKNOT: generate random unknot representative.

Require:nletters,M ∈ Z.
Braid B← empty braid word.
while |B| ̸= nletters do
if |B|> nletters then

B← empty braid word.
end if
for k ∈ {1, . . . ,M} do

B←RANDOMMARKOVMOVE(B).
if |B| − 1≥ 0 then

B←BRAIDRELATION2(B, start position∼ U({1, . . . , |B|})).
end if

end for
B←SMARTCOLLAPSE(B).

end while
return B.

Algorithm 6 RANDOMKNOT: generate random non-trivial knot representative.

Require: nletters,nstrands,M ∈ Z.
Braid B← empty braid word [].
while |B| ̸= nletters do
if |B|> nletters then

B← empty braid word.
end if
while |B|< nletters do

i∼ U({0,1}).
j∼ U({0, . . . ,nstrands− 1}).
B← B+ [(−1)i j]

end while
B←KNOTIFY(B)
if B ̸= [] then ▷ Knotify sometimes yields an empty word.
for k ∈ {1, . . . ,M} do

B←RANDOMMARKOVMOVE(B).
B←BRAIDRELATION2(B, start position∼ U({1, . . . , |B|})).

end for
B←SMARTCOLLAPSE(B).

end if
end while
return B.
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Figure B1. Knot or not? Five and ten crossing in rows 1–2 and 3–4, respectively.

Appendix B. Knot or not? A game for children

Every child needs to be introduced to low-dimensional topology at the earliest possible age. We have
developed a game to help you in your quest.

In Knot or not?, your child will develop aptitude for determining whether or not a given knot diagram is
topologically trivial, i.e. is it a non-trivial knot or the unknot? Mastery of the game will help your children
contribute to household chores, including (but not limited to) increasing parental health by unknotting their
headphones before a jog, or increasing a sibling’s well-being by unknotting their hair without resorting to the
scissor trick.
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Figure B2. Knot or not? Fifteen and twenty crossing in rows 1–2 and 3–4, respectively.

To play, show your child figures B1–B3 and ask them to determine whether a given knot diagram may be
unknotted. The figures have increasing difficulty due to an increasing number of crossings. Solutions may be
found in the footnote18.

18 Solutions are presented left-to-right, top-to-bottom, with K and U denoting non-trivial knots and unknots, respectively. Figure B1:
KUUKUKUUKUKK. Figure B2 UKUKKUKKUKUU. Figure B3 KUUKUKUUKKUK.
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Figure B3. Knot or not? Twenty-five and thirty crossing in rows 1–2 and 3–4, respectively.
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