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Abstract
Nanopositioning and nanomeasuring machines are 3D coordinate measuring systems with
nanometer precision at measurement volumes in the cubic centimeter range whose coordinate
base is formed by an interferometer system with a common mirror corner. This mirror corner
shows a typical deviation from the orthogonal coordinate base of up to 17 µrad with an
uncertainty of 0.07 µrad. After a brief description of nanomeasuring and nanopositioning
machines, a transformation model from the skewed coordinate system into the orthogonal
coordinate system is determined. Starting from this complete transformation model, the result of
model simplifications on the transformation behaviour is analysed and discussed. A
GUM-based uncertainty calculation shows that the linearised coordinate transformation does
not increase the error and the uncertainty significantly.
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1. Nanomeasuring and nanopositioning machines

In recent years, different concepts and designs of nano
coordinate measuring machines have been discussed and
successfully implemented [1–4]. The nanopositioning and
nanomeasuring machine NPMM-200 [5] was developed at the
TU-Ilmenau. It works in the sample scanning mode, where the
sample is moved on a stage relative to the fixed sensor on an x-,
y-, and z-stage with a working volume of 200mm× 200mm×
25 mm. With frequency-stabilized He-Ne laser-based Michel-
son interferometers the position and the angular deviations
of the stage are measured and closed-loop controlled with a
length resolution of 0.016 nm. The interferometer beams used
for the length measurement cross virtually and perpendicular
to in the measurement point of the sensor, which is called the
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Abbe-point [6]. On the moving stage itself a 3D mirror corner
is fixed. This mirror corner is a monolithic element made of
Zerodur with three reflective flats in the x-, y- and z-direction
(see figures 1 and 2) which are the measuring reflector for the
used interferometers.

1.1. Uncertainty model

In order to achieve a measurement uncertainty in the low
nanometre level the complete machine as well as the envir-
onmental disturbances must be described precisely. A vector-
based uncertainty model has turned out to be a very suc-
cessful way to find the model equations for nano measur-
ing machines [7, 8]. Thereby, the difference in position (the
distance) between two measured points is described by two
closed vector chains. Those vector chains consist of different
subvectors. Every subvector describes one effect by an equa-
tion, for example the influence of the change in the refractive
index of air, thermal expansion, or the deviations of the ortho-
gonality of the mirror corner. Thereby, the non-orthogonality
of the mirror corner has been described up to now with a sim-
plified coordinate transformation.
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Figure 1. 2D model of the NPMM-200 working principle in the x-
and z-direction. The mirror corner, carrying the sample, moves
relative to the sensor in a working volume of 200 mm × 200 mm ×
25 mm. The position of the mirror corner, which is fixed to the stage,
is measured with three laser interferometers. Angular deviations are
measured and corrected with multibeam interferometers.

Figure 2. Photograph of the NPMM-200 without the vacuum
chamber. (1) Mirror corner (z-mirror is not shown); (2)
y-interferometer; (3) x-interferometer; (4) upper part of the
metrological frame; (5) optical surface sensor.

This paper addresses a systematic way to determine the
complete coordinate transformation. In the end, different sim-
plifications are compared and the influence on the measure-
ment uncertainty is discussed in detail.

2. Coordinate system

The coordinate system of the NPMM-200 is represented by the
x-, y- and z-mirror of the mirror corner and the measurement
beams of the interferometers. Due to unavoidable inaccuracies
in the manufacture of the mirror corner, these mirrors are not
perfectly perpendicular to each other.

These mirrors set up a skewed coordinate system. This
skewed coordinate system is described by a set of normed basis
vectors

〈⃗
g1, g⃗2, g⃗3

〉
which corresponds to the normal vectors

of the mirrors
〈⃗
gx, g⃗y,−g⃗z

〉
(see figure 3).

Figure 3. Vector components and vector bases of the non
perpendicular mirrors of a mirror corner.

⟨⃗
gO1, g⃗O2, g⃗O3

⟩
orthonormal vector base;

⟨⃗
g1, g⃗2, g⃗3

⟩
skewed vector base;⟨⃗

gx, g⃗y, g⃗z
⟩
normal vector of the mirrors.

To calculate the coordinates of ameasurement pointP in the
orthonormal coordinate system

〈⃗
gO1, g⃗O2, g⃗O3

〉
the coordin-

ates measured by the interferometers (xs ys zs) must be con-
verted to coordinates (xO yO zO) in the orthonormal coordinate
system. The vector base of the skewed coordinate system is
described as a linear combination of the basis vectors of the
orthogonal coordinate system:

g⃗1 = a 1
1 g⃗O1 + a 2

1 g⃗O2 + a 3
1 g⃗O3 (1)

g⃗2 = a 1
2 g⃗O1 + a 2

2 g⃗O2 + a 3
2 g⃗O3 (2)

g⃗3 = a 1
3 g⃗O1 + a 2

3 g⃗O2 + a 3
3 g⃗O3. (3)

By the Einstein notation [10], this system of equations can be
shortened:

g⃗l = a m
l g⃗Om. (4)

The transformation coefficients a m
l are the elements of the

transformation matrix (a m
l ) :

(a m
l ) =

 a 1
1 a 2

1 a 3
1

a 1
2 a 2

2 a 3
2

a 1
3 a 2

3 a 3
3

 . (5)

Those elements of the transformation matrix can be cal-
culated by means of the angles φ12, φ13 and φ23 between
the basis vectors

〈⃗
g1, g⃗2, g⃗3

〉
. The angles φ12, φ13 and φ23

are derived from the angles between mirror normal vectors〈⃗
gx, g⃗y, g⃗z

〉
:

φ12 = φxy

φ13 = π−φxz (6)

φ23 = π−φyz.

The anglesφxy, φyz, φxz between the normal vectors of themir-
ror surfaces can be measured by using a self-compensating
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combination of penta prisms and an electronic autocollimator
[9]. All matrix elements can be calculated directly by using the
following assumptions:

|⃗g1| = |⃗g2|= |⃗g3|= 1 (7)

φ12 = g⃗1 · g⃗2 (8)

φ13 = g⃗1 · g⃗3 (9)

φ23 = g⃗2 · g⃗3. (10)

Therewith the transformation matrix is completely given (see
equation (12)).

3. Interferometrical measured components

Based on the working principle of the NPMM-200, the inter-
ferometers are aligned perpendicular with the mirror surface
in order to achieve the maximal reflected laser light.

Hence, the movement of the mirror corner is measured in
the direction of the normal vectors of the mirrors. Those meas-
ured non-orthogonal covariant coordinates r1,r2,r3 must be
converted into orthogonal coordinates r 1

O ,r
2
O ,r

3
O (see figures

4 and 5):

rOm = r mO with m= 1,2,3 . (11)

It has to be taken into account that in the orthogonal
basis vector system, covariant and contravariant compon-
ents, and therewith the corresponding coordinates, are equal:

(a m
l ) =


√
sin2 (φ13)−

(
cos(φ12)−cos(φ13) cos(φ23)

sin(φ23)

)2
cos(φ12)−cos(φ13) cos(φ23)

sin(φ23)
cos(φ13)

0 sin(φ23) cos(φ23)
0 0 1

 , (12)

rOm = r mO with m= 1,2,3 .. (13)

4. Transformation of the non-orthogonal
coordinates in orthogonal coordinates

The covariant non-orthogonal basis vector system
〈⃗
g1, g⃗2, g⃗3

〉
has to be calculated using the orthonormal basis vector sys-
tem

〈⃗
gO1, g⃗O2, g⃗O3

〉
and the transformation matrix (a m

l ) (see
equation (4)). The covariant coordinates transform like cov-
ariant basis vectors [10]. Hence, it follows according to

equation (4):

rl = a m
l rOm . (14)

Or in matrix notation: r1
r2
r3

=

 a 1
1 a 2

1 a 3
1

a 1
2 a 2

2 a 3
2

a 1
3 a 2

3 a 3
3

 ·

 rO1
rO2
rO3

 . (15)

The orthogonal coordinates are calculated by using the inver-
ted matrix Acory:

rOm = (a m
l )

−1 · (rl) = Acor · (rl) . (16)

This inverted matrix is given in equation (17):

(a m
l )

−1
= Acor =


sin(φ23)√

C
cos(φ13) cos(φ23)−cos(φ12)√

C sin(φ23)

cos(φ12) cos(φ23)−cos(φ13)√
C sin(φ23)

0 1
sin(φ23)

− cos(φ23)
sin(φ23)

0 0 1

 (17)

with

C= 1+ 2cos(φ12)cos(φ13)cos(φ23)− cos2(φ12)

− cos2(φ13)− cos2(φ23). (18)

Relating to the interferometer setup the measured non-
orthogonal coordinates r1,r2,r3 are now referred to xs,ys,zs,
and the orthogonal coordinates rO1,rO2,rO3 are referred to
xO,yO,zO. With equations (16) and (17) the desired orthogonal
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Figure 4. 2D vector components which are measured by the
interferometers used in a nanomeasuring and nanopositioning
machine. r⃗ position vector; r1, r2 vector components measured in
covariant coordinates .

Figure 5. Detailed view on 2D vector components which are
measured by the interferometers used in a nanomeasuring and
nanopositioning machine (see figure 4).

coordinates can be calculated directly from the measured non-
orthogonal coordinates:

xO =
(
xs ys zs

)
·


sin(φ23)√

C
cos(φ13)cos(φ23)−cos(φ12)√

C sin(φ23)
cos(φ12)cos(φ23)−cos(φ13)√

C sin(φ23)

 , (19)

yO =
(
xs ys zs

)
·

 0
1

sin(φ23)

− cos(φ23)
sin(φ23)

 , (20)

zO =
(
xs ys zs

)
·

 0
0
1

 . (21)

5. Simplification and evaluation

By applying the Taylor approximation to the elements of the
transformation matrix Acorr (see equation (17)) and neglecting
the higher-order terms, the transformation matrix can be sim-
plified. The angles φij have a small deviation ∆φij from 90

◦
.

Hence the trigonometric functions are simplified to

sin(φij)≈ 1

cos(φ13)cos(φ23)− cos(φ12)≈−cos(φ12) (22)

cos(φ12)cos(φ23)− cos(φ13)≈−cos(φ13)√
C≈ 1.

By replacing the exact matrix elements with the approxima-
tions (see equation (22)) the simplified transformation Asim is
given:

Asim =

 1 −cos(φ12) −cos(φ13)
0 1 −cos(φ23)
0 0 1

 . (23)

With φij = 0.5π+∆φij and cos(0.5π+∆φij) =
−sin(∆φij)≈−∆φij the transformation matrix can be lin-
earised:

Alin =

 1 ∆φ12 ∆φ13

0 1 ∆φ23

0 0 1

 . (24)

The angles given in equation (6),

∆φ12 =∆φxy

∆φ13 =−∆φxz (25)

∆φ23 =−∆φyz,

lead to the transformation matrix in the angles between normal
vectors of the mirrors on the mirror corner:

Alin =

 1 −∆φxy −∆φxz
0 1 ∆φyz
0 0 1

 . (26)

If φij > 90◦ the angles between the mirror normal angles are
smaller than 90

◦
. Figure 3 shows the following case:

• Angle between x-mirror normal vector and y-mirror nor-
mal vector< 90◦ resp. angle between x-mirror and y-mirror
> 90

◦
. ∆φxy < 0

• Angle between x-mirror normal vector and z-mirror nor-
mal vector< 90◦ resp. angle between x-mirror and z-mirror
> 90

◦
. ∆φxz < 0

• Angle between y-mirror normal vector and z-mirror nor-
mal vector< 90◦ resp. angle between y-mirror and z-mirror
> 90

◦
. ∆φyz < 0

4
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Figure 6. Difference in length measurement ∆llin between the
correct coordinate transformation and the linearised transformation,
dependent on the angle between the base vectors
∆φ=∆φ12 =∆φ13 =∆φ23 for different measurement distances.

5.1. Comparison of coordinate transformations

The different transformation matrices Acor, Asim, and Alin (see
equations (17) (23) (24)) are compared with a simulated set of
data. Thereby a measurement vector r⃗, which goes diagonally
through the measurement volume in the orthogonal coordinate
system of the NPMM, is used:

r⃗= (xO, yO, zO) = (200 mm, 200mm, 25mm). (27)

Its length l can be calculated directly:

|⃗r|= l=
√
x2O+ y2O+ z2O. (28)

This vector is transformed into the skewed coordinate system
by the correct transformation matrix in order to calculate the
components which would have been measured by the interfer-
ometers in covariant coordinates:

r⃗= (xs, ys, zs) = A−1
cor ·

 xO
yO
zO

= aml ·

 xO
yO
zO

 . (29)

Afterwards, these coordinates are transformed back with
the simplified and the linearised transformation matrix:

r⃗sim = Asim · r⃗ r⃗lin = Alin · r⃗ (30)

and the difference in length of the vector is calculated:

∆lsim = |⃗rsim| − |⃗r| ∆llin = |⃗rlin| − |⃗r|. (31)

As a worst-case estimation all angles between the base vectors
are varied between 0 µ rad ≤∆φ≤ mm 1000 µ rad:

∆φ=∆φ12 =∆φ13 =∆φ23. (32)

Even for very large angular deviations (1000 µrad) the
difference between the simplified and the linearised trans-
formation is below 0.028 nm for a length of l= 250mm.
Since this difference is much smaller than the achievable
uncertainty with the NPMM-200, only the linearised trans-
formation matrix is compared with the correct transformation
matrix.

Figure 6 shows the difference between the correct trans-
formation and the linearised transformation matrix dependent
on the angle ∆φ. The difference between the correct length
and the linearised results increases significantly with rising
non-orthogonality. For angular deviations below mm50 µrad,
the difference in length stays below mm1 nm.

5.2. GUM-based uncertainty

For further examination, the overall measurement uncertainty
is calculated following the rules of the guide to the Expres-
sion of Uncertainty in Measurement (GUM) [11]. Thereby
the length l of the vector r⃗ is a function l(xi) of different
input quantities xi. Those input quantities are, for example,
the length measurement itself, which is influenced by non-
linearities of the interferometers and changes in the refract-
ive index of air, or the discussed deviations of the orthogonal
coordinate system of the mirror corner. Without any correla-
tions the associated uncertainty u(l) of the length measurement
can be calculated directly:

u(l) =

√√√√ n∑
i=1

(
∂l
∂xi

· u(xi)
)2

. (33)

Thereby n is the number of input quantities. The deviations
of the orthogonal coordinate system have been measured
in different experiments and the non-perpendicularity of the
NPMM-200 mirror corner is maximally mm16.77 µrad with
an uncertainty of u(φ) = mm0.14 µrad (k = 2) [9]. Based on
these values, the influence of the different coordinate trans-
formation is determined. In table 1 the deviation and uncer-
tainties are given for all three angles. The complete uncer-
tainty model with all input quantities is given in [7, 8]. All
input quantities beside the angular deviation of the coordin-
ate system are neglected and the value of the length measure-
ment itself is assumed to have no uncertainty. As shown in
section 5.1 the measurement vector r⃗ is transformed into the
skewed coordinate system and is transformed back with uncer-
tain transformation angles. So the length l is 283.945 417 mm
with an uncertainty of u(l) = 14.2 nm (k = 2), where k is the
coverage factor for the uncertainty calculation [11]. Thereby
φ12 has the highest influence on the uncertainty (see uncer-
tainty budget in table 1).

The length and the uncertainty are calculated, as well,
for the simplified and linearised coordinate transformation.
For both, the difference in length ∆lsim and ∆llin is –58 pm
(see table 2). The difference in the uncertainty is negligiblly
small,∆u(l)= 0.300 pm. All coordinate transformations show
a comparable expanded uncertainty of ≈ 14.2 nm which is

5
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Table 1. Uncertainty budget for the correct coordinate
transformation matrix for a simulated measurement vector in the
skewed coordinate system (xS, yS, zS).

xi Value Uncertainty Contribution

∆φ12 16.77 µrad 0.07 µrad 6.83 nm
∆φ13 11.19 µrad 0.07 µrad 1.28 nm
∆φ23 –4.75 µrad 0.05 µrad 1.28 nm
xS 199.998 827 mm 0 nm 0.0 nm
yS 199.999 665 mm 0 nm 0.0 nm
zS 25.000 000 mm 0 nm 0.0 nm

l= 283.945 417 mm ± 14.2 nm (k= 2)

Table 2. Calculated length for the different coordinate
transformations (correct, simplified, linear) and the associated
uncertainties.

Transformation Length (l) Expanded uncertainty
(k= 2)

Correct 283.945 417 290 mm 14.131 676 nm
Simplified 283.945 417 232 mm 14.131 376 nm
Linear 283.945 417 232 mm 14.131 376 nm

much larger than the difference in length between these three
coordinate transformations.

5.3. Conclusion

As is shown in figure 6, and by comparison of the uncer-
tainty budgets (see tables 1 and 2 ), the difference in length
between the simplified transformation and the correct coordin-
ate transformation is smaller than the errors which occur
from the measurement uncertainty of the mirror normal vec-
tors. Hence, the linearised coordinate transformation can be
used without a significant influence on the measurement
result and the corresponding expanded uncertainty, as long
as the non-orthogonality stays within the measured range.
The expanded uncertainty (see table 2) is given with more
digits compared to the advice of the GUM in order to show
that there is a difference in uncertainty between the used
models.

Since the linearised coordinate transformation can be faster
in terms of computation time it opens the door for faster
real-time control applications in the NPMM-200. This can
increase the measurement performance without influencing
the uncertainty budget significantly. For current and future
nanofabrication tasks, which are performed on the NPMM-
200, the real-time control performance is of the highest
importance [12, 13].

6. Summary

A systematic approachwas used to determine the correct trans-
formation matrix for the covariant coordinates measured by
the interferometers of the NPMM-200. This transformation
matrix is further simplified and linearised. AGUMuncertainty
budget shows that there is no significant difference in the cor-

rected length and the corresponding uncertainty by using the
linearised coordinate transformation.
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[11] BIPM 1995 Genève: BIPM Guide to the Expression of
Uncertainty in Measurement

[12] Kuehnel M, Fröhlich T, Füßl R, Hoffmann M, Manske E,
Rangelow Ivo W, Reger J, Schäffel C, Sinzinger S and
Zöllner J-P 2018 Towards alternative 3D nanofabrication in
macroscopic working volumes Meas. Sci. Technol. 29
114002

[13] Weidenfeller L, Schienbein R, Reinhardt C, Kirchner J and
Manske E 2018 Development of laser positioning system of
high accuracy in the nanometer range Proc. SPIE 10544
105440E

6

https://orcid.org/0000-0002-1159-0670
https://orcid.org/0000-0002-1159-0670
https://doi.org/10.1016/j.precisioneng.2011.04.004
https://doi.org/10.1016/j.precisioneng.2011.04.004
https://doi.org/10.1088/1742-6596/311/1/012002
https://doi.org/10.1088/1742-6596/311/1/012002
https://doi.org/10.1088/0957-0233/26/8/085904
https://doi.org/10.1088/0957-0233/26/8/085904
https://doi.org/10.1088/2051-672X/4/3/034004
https://doi.org/10.1088/2051-672X/4/3/034004
https://doi.org/10.1016/0141-6359(79)90037-0
https://doi.org/10.1016/0141-6359(79)90037-0
https://doi.org/10.1524/teme.2009.0961
https://doi.org/10.1524/teme.2009.0961
https://doi.org/10.1088/0957-0233/23/7/074004
https://doi.org/10.1088/0957-0233/23/7/074004
https://doi.org/10.1088/1361-6501/aadb57
https://doi.org/10.1088/1361-6501/aadb57
https://doi.org/10.1117/12.2312704
https://doi.org/10.1117/12.2312704

	Coordinate transformation and its uncertainty under consideration of a non-orthogonal coordinate base
	1. Nanomeasuring and nanopositioning machines
	1.1. Uncertainty model

	2. Coordinate system
	3. Interferometrical measured components
	4. Transformation of the non-orthogonal coordinates in orthogonal coordinates
	5. Simplification and evaluation
	5.1. Comparison of coordinate transformations
	5.2. GUM-based uncertainty
	5.3. Conclusion

	6. Summary
	Acknowledgments
	References


