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ABSTRACT
Information technological advances have significantly increased 
large volumes of corporate datasets, which have also created 
a wide range of business opportunities related to big data and 
cloud computing. Hadoop is a popular programming frame-
work used for the setup of a cloud computing system. The 
MapReduce framework forms a core of the Hadoop program 
for parallel computing and its parallel framework can greatly 
increase the efficiency of big data analysis. This paper aims to 
adopt a Petri net (PN) to create a visual model of the MapReduce 
framework and to analyze its reachability property. We present 
a real big data analysis system to demonstrate the feasibility of 
the PN model, to describe the internal procedure of the 
MapReduce framework in detail, to list common errors and to 
propose an error prevention mechanism using the PN models in 
order to increase its efficiency in the system development.
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Introduction

Modern advances in computer technology and Internet system have led an 
increasing number of corporations and small businesses to setting up webpages 
and posting their information on computers. This has resulted in an enormous 
volume of datasets that continue to grow, which in turn spurred the develop-
ment of concepts such as cloud computing and big data. At present, the research 
is focused on the development of business opportunities related to the analysis of 
big data. This kind of resource-heavy research has been made possible by the 
contributions of cloud computing made by corporations such as Google, Yahoo, 
and Apache (Jadhav, Pramod, and Ramanathan 2019; Valero 2018; White 2009).

Hadoop is a popular programming framework used for the setup of cloud 
computing systems. The MapReduce framework forms the core of the Hadoop 
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program for parallel computing. The Map function sorts datasets into <key, 
value> pairs that are then distributed to various nodes for parallel computing. 
The Reduce function collects the sorted datasets and yields the results. Because 
Hadoop is an open-source program, the system developer can rewrite 
a generation method of the <key, value> pairs, for sorting and sequencing of 
the data sets, and collecting and sequencing of the MapReduce framework. This 
requires that the system developer should have a comprehensive understanding 
of the MapReduce framework. In the absence of customization by the system 
developer, Hadoop uses its default settings. However, this can produce the 
results that were not anticipated by the system developer. This case underlines 
the importance of developing guidelines to help the developer construct the 
systems they envisage.

Despite its widespread applications, few researchers have verified whether the 
MapReduce framework is reachable or not. Rather, the majority of research work 
into MapReduce has focused on its space utilization and time efficiency. 
Computation tree logic (CTL) (Camilli et al. 2014) and linear temporal logic 
(LTL) (Hallé and Soucy-Boivin 2015), for example, are two analysis approaches 
that use mathematical models to track the conditional transitions for system 
verification.

This study employs a Petri net model to verify the reachability of the 
MapReduce framework and to assist the system developer in developing parallel 
MapReduce systems. Petri net theory was developed by Dr. Carl Adam Petri at 
the University of Bonn in Germany in 1962. A Petri net is a mathematical and 
graphical tool which is widely used in modeling and simulating system behaviors 
under various circumstances. It comprises places, transitions, arcs, and tokens; 
and offers a module of expressing a system which is concurrent, asynchronous, 
distributed, parallel, nondeterministic, or stochastic (Mazhar Rathore et al. 
2018). In the system simulation, a high correlation has been demonstrated to 
exist between liveness and deadlocks, which can be tested and analyzed using the 
attributes of Petri nets. Petri nets provide a visually interactive tool (Wu and 
Zhou 2010) and have been widely applied in a number of fields.

The use of Petri nets benefits the modeling and analysis of the MapReduce 
framework because Petri nets are well suited to the description of parallel 
computer models. They can also be represented by stringent mathematical 
expressions as well as intuitive graphical expressions. The complete represen-
tation of the MapReduce framework, the system development examples, and 
the common errors made by this study will hopefully be of great help to the 
system developer in the development of parallel MapReduce systems.

The remainder of this study is organized as follows. The origin of the 
MapReduce framework in Hadoop, the structure of the Petri net model and 
its attributes are explained in Section 2. In Section 3, the Petri net model is 
presented to explain how the MapReduce framework can assist us in the system 
development. In Section 4, the common errors that arise in the development of 
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parallel MapReduce systems and the means of preventing them are listed. The 
proposed approach is also compared with other common analysis methods. 
Section 5 outlines the contributions of this study and provides the system 
developer with a standard model with a low error rate.

Literature Review

In this section, we present a detailed introduction of Hadoop and the basic 
components with properties of a Petri net. Then, simple MapReduce programs 
are used to conduct reachability tests, and CLT as well as LTL, two common 
analysis methods, are presented. Finally, WoPeD (Workflow Petri Net 
Designer), the Petri net software tool, is introduced.

Framework of Hadoop MapReduce

Apache Hadoop is an open-source programming framework for distrib-
uted data-intensive applications implemented using Google’s MapReduce 
framework and Google File System. It can decompose distributed data sets 
and applications into multiple smaller tasks and then delegates them to 
various nodes for parallel processing (White 2009).

Hadoop uses the Hadoop Distributed File System (HDFS) to store data sets. 
The purpose of the HDFS is to develop a distributed file system that can be 
constructed using commercially available hardware. The HDFS features scal-
ability, cost efficiency, flexibility, and fault tolerance.

MapReduce is a distributed processing library that enables applications to 
be written for easy adaptation to parallel execution by decomposing the entire 
job into a set of independent tasks. An application written using the 
MapReduce library is organized as a set of independent tasks which can be 
executed in parallel (Neil, Gunther, and Tomasette 2014).

The framework of MapReduce has been implemented using the one published 
by Google. In the Map phase, Hadoop converts the input data into <key, value> 
pairs that are easy to manage. In the Reduce phase, its function is to collect all the 
<key, value> pairs for a specific key and transform them into a new <key, value> 
pairs, where the value of a key is the specific one. Their value is in a list [value1, 
value2, etc.] of all the values that are <key1, [value1, value2, etc.]> pairs whose key is 
the specific one across the entire input data sets (Neil, Gunther, and Tomasette 
2014). By managing the Map and Reduce frameworks, the system developer can 
control all of the distributed processing procedure in a system (Valero 2018). 
A flowchart of MapReduce is depicted in Figure 1.

The key points that have earned the MapReduce framework of Hadoop 
praise and success include the following items:
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● It is easy to grasp, even for software engineers without experience in 
distributed systems.

● Since Hadoop is an open-source framework, the system developer can 
customize its contents, such as <key, value> pairs generation method, as 
well as data distribution, thereby gaining greater control over their 
designs as well as greater flexibility.

● MapReduce can process a wide variety of problems, such as Google 
searches and data mining.

● The Hadoop system is highly scalable; i.e., it can comprise thousands of 
computers.

Petri Nets

An ordinary Petri net is described by using a four-variable network (Mazhar 
Rathore et al. 2018; Wu and Zhou 2010): PN = (P, T, A, M0), where P denotes 
a set of places, T denotes a set of transitions, A denotes a set of arcs, and M0 
denotes an initial marking. The places in a Petri net comprise a finite set: 

P ¼ p1; p2; � � � ; pnf g; n > 0:

Generally, places are depicted with circles to signify the status of an object in 
the system. The presence of a token on a place means that this condition exists 
in the system. The transitions comprise a finite set: 

T ¼ t1; t2; � � � ; tmf g; m > 0:

Transitions are depicted with bars and indicate that the event described 
changes the state of the system. At the same time, these transitions also 
indicate the start and the termination of the system procedure. A transition 
fires if it meets the conditions such as weight, whereupon a token transits from 

Figure 1. Flowchart of MapReduce (White 2009).
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its input Place i to its output Place j, which implies that the state of the system 
has been changed (Natesan et al. 2017; Xiong, Fan, and Zhou 2010).

An arc describes the correlations between places and transitions. It runs in 
a single direction and shows the direction of the token’s transition. A weight 
function w(pi,tj) can be added to an arc to show the weight it needs to transit 
from Place i to Place j. Initial Marking M0 denotes a set of tokens in the system. 
When a set of tokens changes, it indicates that the transition is fired. It means that 
the happening or action of an event, i.e. the dynamic behavior, is described in the 
Petri net.

A fundamental Petri net is used to describe the state change of a discrete 
event dynamic system, where a complete Petri net model includes places, 
transitions, arcs; and the flow of tokens are denoted as the state change of 
a dynamic system (Matsuzaki 2017; Saisai et al. 2016; Zhang, Zhang, and Ya 
2010; Birzhandi et al. 2019). The basic Petri net model is depicted in Figure 2.

In Figure 2, there are three places, two transitions, four arcs including two 
input arcs and two output arcs, two tokens, and one Petri net marking. This 
basic model is denoted as 

P ¼ p1; p2; p3f g

T ¼ t1; t2f g

A ¼ p1; t1ð Þ; p1; t2ð Þ; t1; p2ð Þ; t2; p3ð Þf g

M ¼ Mðp1Þ;Mðp2Þ;Mðp3Þ½ � ¼ ½2; 0; 0�

wðp1; t1Þ ¼ 3; wðp1; t2Þ ¼ 1; wðt1; p2Þ ¼ 1; wðt1; p3Þ ¼ 1:

Figure 2. Basic Petri net model.
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The transition of tokens in Petri nets is capable of modeling complex beha-
viors including various restrictions and parameters. As a result, Petri nets are 
widely applied in various fields.

Properties of Petri Nets

The properties of standard Petri net models can be divided into behavioral and 
structural properties (Mazhar Rathore et al. 2018). The former refer to the 
initial marking functions of Petri nets, whereas the latter describe the struc-
tures of Petri nets. Furthermore, our Petri net model can be described by using 
the following property.

Reachability
If the firing begins from M0, all reachable places will be derived after 
a series of firing transitions. Thus, the Petri net will be viewed as reach-
ability. This property is mainly used to determine whether the operations 
of a work procedure are feasible or not.

Verification equation: Mi = AT‧X+ M0

In the above equation, A is the incidence matrix of a Petri net, M0 is the initial 
marking of the model, and the Mi marking is the verification goal, where i denotes 
any marking of the Petri net. Using this equation, we can obtain the transition 
vector X that enables the marking to be reachable from M0. If all of the markings in 
the Petri net can be reachable from M0, then the Petri net has reachability.

Incidence Matrix
In terms of analysis, a Petri net is a mathematical and graphical tool that has 
a greater mathematical ability to describe algebraic equations using matrices. 
A Petri net can be replaced with an incidence matrix A, which is defined as 
output flow matrix A+ minus input flow matrix A−. The former one is an n × m 
matrix with n and m denoting the numbers of places and transitions, respec-
tively. Each incidence matrix indicates the relationship between a place and 
a transition, defined as

Input Flow Matrix: A−=[aij
−], aij

−=I(pi,tj)
Output Flow Matrix: A+=[aij

+], aij
+=O(ti,Pj)

and aij
+ = w(i,j), aij

− = w(j,i).
The incidence matrix is A=A+-A−,

where aij
+ is the weight of the arc from transition i to place j; while aij

− is the 
weight of the arc from place i to transition j. If the place and the transition have 
no correlation, both aij

+ and aij
− are 0s.
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Petri Net Model of MapReduce Framework

We convert the MapReduce framework into a Petri net model according to 
(Wu and Zhou 2010). This MapReduce model is a basic example describing 
the operations of the MapReduce framework. Below is the algorithm, and the 
Petri net model is depicted in Figure 3. We assume that this model has two 
nodes for the sub-jobs after a split.

Reachability Analysis Using Petri Net Model

We convert the visual Petri net model in Figure 3 into a mathematical matrix 
form and use the mathematical model for reachability verification. P0 ~ P7 and 
t0 ~ t5 denote the places and transitions, respectively.

Notations: P0 denotes Main, P1 denotes Mapper, P2 denotes Part 1, P3 denotes 
Part 2, P4 denotes Processed Data 1, P5 denotes Processed Data 2, P6 denotes 
Reducer, and P7 denotes Output. t0 denotes Input, t1 denotes Split, t2 denotes 
Process, t3 denotes Process, t4 denotes Merge, and t5 denotes Reduce.

A ¼ Incidence Matrix ¼
p0 p1 p2 p3 p4 p5 p6 p7

t0

t1

t2

t3

t4

t5

� 1 1 0 0 0 0 0 0
0 � 1 1 1 0 0 0 0
0 0 � 1 0 1 0 0 0
0 0 0 � 1 0 1 0 0
0 0 0 0 � 1 � 1 1 0
0 0 0 0 0 0 � 1 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Firing Sequence: t0, t1, t2, t3, t4, t5
M0 = [1 0 0 0 0 0 0 0]

t0
M1 = [0 1 0 0 0 0 0 0]

t1

Algorithm: MapReduce Framework

INPUT: The data a user wants to analyze.

OUTPUT: The data analysis results after MapReduce.

PROCEDURE:

Step 1: Start MapReduce program.
Step 2: The user inputs the data.
Step 3: The mapper begins the map function to generate <key, value> pairs.

Step 4: According to <key, value> pairs, cut the job into many small sub-jobs, and then split to every node.
Step 5: Part 1 and Part 2 process their sub-jobs.

Step 6: Merge all data sets from every node to the Reducer and perform the reduce function.
Step 7: Output the data after being reduced.
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M2 = [0 0 1 1 0 0 0 0]
t2

M3 = [0 0 0 1 1 0 0 0]
t3

M4 = [0 0 0 0 1 1 0 0]
t4

M5 = [0 0 0 0 0 0 1 0]
t5

M6 = [0 0 0 0 0 0 0 1]

Figure 3. MapReduce Petri net model.
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This presents the state changes in the Petri net model after various transi-
tions are fired. In the next step, we start to verify the reachability of the 
Petri net. 

M6¼AT � XþM0

0
0
0
0
0
0
0
1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

� 1 0 0 0 0 0
1 � 1 0 0 0 0
0 1 � 1 0 0 0
0 1 0 � 1 0 0
0 0 1 0 � 1 0
0 0 0 1 � 1 0
0 0 0 0 1 � 1
0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

t0

t1

t2

t3

t4

t5

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

þ

1
0
0
0
0
0
0
0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

From the above equation, we get t0 = 1, t1 = 1, t2 = 1, t3 = 1, t4 = 1, t5 = 1. 
M6 = AT‧X+ M0, such that marking M6 can be reachable from marking 
M0.

Software Tool – WoPeD

WoPeD (Freytag and Sänger 2014) is an open-source software system devel-
oped at Cooperative State University Karlsruhe under the GNU Lesser 
General Public License (LGPL) for the creation and analysis of Petri net 
models. The goal of WoPeD is to create a user interface that is easy to use for 
analysis, modeling, and simulation. The developed interface is depicted in 
Figure 4. WoPeD is the ideal Petri net analysis software for research person-
nel, professors, and students due to its user-friendly operation interface and 
easy-to-use procedure for checking the model vulnerabilities. It is widely 
applied all over the world and has been successfully used in numerous 
lectures and student projects.

The functions of WoPeD include the following:

● Process and Resource Editor
● PNML Compliance and Import/Export Formats
● Soundness Checker
● Interactive Simulator and Coverability Graph Visualization
● Quantitative Simulation and Capacity Planning
● Quantitative Simulation and Capacity Planning
● Research Support Tool
● AProMoRe Repository Front-End
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The Proposed Approach

This study is affiliated with the research project sponsored by the Ministry of 
Science and Technology (MOST), Taiwan; and entitled Cloud-Based Learning 
and Analysis System for Big-Data. Below, we apply the Petri nets to model and 
analyze this project.

The purpose of the project is to enable users to customarily analyze the 
selected datasets. This includes rewriting the methods of <key, value> pairs 
generation and data distribution as well as adding check mechanisms to ensure 
that the results can be the same as anticipated. The system operating procedure 
is listed as follows: input file; check file; check rules; conduct mapping; per-
form the fuzzification, fuzzy inference, defuzzification, and reduction of the 
integrated data in the various nodes; produce results; and output results. We 
further explain the system development processes to illustrate the benefits of 
the proposed models.

Parallel MapReduce System for Big-Data Analysis

We conduct more thorough system development using the basic MapReduce 
framework in Figure 3. During the analysis, the data sets must be fuzzified 
before the analysis calculations are performed by using fuzzy inference. The 

Figure 4. Screenshot of WoPeD.
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defuzzified data sets are then sent to the Reduce function for integration, 
which then yields the final results. Below is the algorithm, and the Petri net 
model is depicted in Figure 5.

Detailed Procedure for Parallel MapReduce Framework

This system requires the customized methods for <key, value> pairs 
generation and data distribution, thereby necessitating a thorough ana-
lysis of the MapReduce framework. The algorithm presented below is 
converted into the Petri net model for the MOST-project as depicted in 
Figure 6.

As can be seen, the Map framework includes an input format function to 
normalize the input data, a record reader to set the <key, value> pairs 
generation method, and a partitioner to determine the means of data 
distribution.

The Reduce framework contains the following steps: a shuffle function to 
compile the data, a sorting function to arrange the compiled data in 
alphabetic order, a reduce function for integration and simplification, 
and an output format function to normalize the data sets and to yield the 
final results.

Algorithm: MapReduce

INPUT: The data a user wants to analyze.
OUTPUT: The data analysis results after MapReduce.

PROCEDURE:

Step 1: Start MapReduce program.
Step 2: The user inputs the data.

Step 3: The mapper function begins the map function to generate <key, value> pairs.
Step 4: According to <key, value> pairs, cut the job into many small sub-jobs, and then split to every node.

Step 5: The nodes fuzzify the data.
Step 6: The nodes analyze the data using fuzzy inference.

Step 7: The nodes defuzzify the data.
Step 8: Merge all data from every node to the Reducer doing reduce function.
Step 9: Output the data after being reduced.

Algorithm: Map

INPUT: The data that a user wants to analyze
OUTPUT: Separate sub-jobs distributed to the various nodes

PROCEDURE:
Step 1: The mapper function begins the input format function to normalize the input data sets.
Step 2: The formatted data sets are sent to the record reader to generate <key, value> pairs.

Step 3: The partitioner divides the data sets and distributes them to the nodes in the system.
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Figure 5. Petri net model of parallel MapReduce framework.
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Inclusion of Check Procedure in the System

To prevent the system errors and to ensure that users have not input interdepen-
dent or contradictory rules’ analysis, which will lead to errors in <key, value> pairs 
generation method, we add a file checker and a rule checker to the system.

Figure 6. Internal structure of parallel MapReduce framework.
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File Checker
The purpose of the file checker is to ascertain whether the system contains the 
data uploaded by the user or not. During this execution, it ensures the 
following two cases:

Users have uploaded the data sets.
An output folder does not exist before the execution of the program. If it 

exists, the HDFS will not know where to put the results, and the Hadoop 
system will not run the program.

Below is the file-checker algorithm, and the Petri net model is depicted in 
Figure 7.

Rule Checker
The rule checker examines each of the rules input by users for interdepen-
dence or contradiction. For example, consider two rules below:

(1) If a is b then c is a.
(2) If a is b then c is not a.

These rules are conflicting and will lead to abnormalities in the system 
analysis and therefore to the unanticipated results. They might also cause 
unnecessary operations that will waste system resources and increase 
execution time.

If the rules are independent but placed in the wrong order, errors will arise 
in the results. For example, consider three rules below:

Algorithm: Reduce

INPUT: The data resulting from the Map operation
OUTPUT: The data analysis results yielded by the Reduce function

PROCEDURE:
Step 1: The nodes execute the shuffle function to compile the defuzzified datasets.
Step 2: The sorting function rearranges the compiled data sets.

Step 3: The data are sent to the reduce function for integration and simplification.
Step 4: The reduced data are sent to the output format function for normalization.

Step 5: The nodes execute the shuffle function to compile the defuzzified datasets.

Algorithm: File Checker

INPUT: The data that a user wants to analyze
OUTPUT: The data check results

PROCEDURE:

Step 1: The file checker is executed.
Step 2: The system is searching for the uploaded data that the user wants to analyze.

Step 3: If the data exist, then the next task begins; if not, then the system returns to its initial state.
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(1) If c is d then e is f.
(2) If e is f then g is h.
(3) If a is b then c is d.

Users intend to obtain the following rule: “if e is f then g is h.” However, 
problems in the order of execution may lead to problems in the analysis or the 
results. Below is the rule-checker algorithm, and the Petri net model is 
depicted in Figure 8.

Figure 7. File checker.

Algorithm: Rule Checker

INPUT: The analysis rules input by the user

OUTPUT: The rule analysis results

PROCEDURE:
Step 1: The rule checker is executed.

Step 2: Each of the rules input by the user is read in.
Step 3: The rules are checked for dependence or contradiction.

Step 4: If neither of these exists, then the next task begins; if dependence or contradictions exist, then the 
system returns to its initial state.
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Big Data Analysis System by Inclusion of Checking Mechanism

The addition of the file checker and the rule checker in the system model builds 
a big-data analysis system with checking mechanism. The algorithm is presented 
below, and the Petri net model is depicted in Figure 9. This complete MapReduce 
system analysis ensures that the model fulfills the requirements of reachability and 
has liveness, i.e. no deadlocks. The file checker and the rule checker prevent errors 
and the unexpected results from happening. At the same time, this complete model 
presents guidelines for the system developer so that fewer errors are made due to 
minor details, which increases the efficiency of system development.

Figure 8. Rule checker.

Algorithm: Big-data analysis system with checking mechanism

INPUT: The data that a user wants to analyze
OUTPUT: The data analysis results after MapReduce

PROCEDURE:

Step 1: Start MapReduce program.
Step 2: The user inputs the data.

Step 3: The file checker is executed.

(Continued)
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Main Results

In Section 4, we first list some common errors made by the system developer. 
Then the property analysis is discussed. Finally, our proposed approach is 
compared with other methods such as CTL (Guo et al., 2013) and LTL 
(Mukund, 1996; Naldurg et al., 2004).

Common Errors Detection

This sub-section lists the common errors made by the system developer. Many 
of these errors are based on the internal details that are easily overlooked by the 
system developer but can potentially lead to the unexpected results. The file 
checker and the rule checker presented in Section 3 can solve these problems.

File Error Detection
In Hadoop, the data sets uploaded by users are stored in the HDFS and serve as 
the input data needed for system operation. The first step is to read the data sets 
in the HDFS. If the system cannot find the files or an output file existing, then 
a system error will occur. Such an error is depicted in Figure 10.

Rule Error Detection
This is a big-data analysis system that allows users to upload files and analyze 
rules. However, the system developer must consider various situations in which 
incorrect rules have been input. They may be contradictory, or interdependent 

(Continued).

Algorithm: Big-data analysis system with checking mechanism

Step 4: The system is searching for the uploaded data that the user wants to analyze.
Step 5: If the data exist, then the next task begins; if not, then the system returns to its initial state.

Step 6: The rule checker is executed.
Step 7: Each of the rules input by the user is read in.

Step 8: The rules are checked for dependence or contradiction.
Step 9: If neither of these exists, then the next task begins; if dependence or contradictions exist, then the 

system returns to its initial state.
Step 10: The mapper function begins the input format function to normalize the input data.

Step 11: The formatted data are sent to the record reader to generate <key, value> pairs.
Step 12: The partitioner divides the data and distributes them to the nodes in the system.

Step 13: The nodes fuzzify the data.
Step 14: The nodes analyze the data using fuzzy inference.
Step 15: The nodes defuzzify the data.

Step 16: The nodes execute the shuffle function to compile the defuzzified data.
Step 17: The sorting function rearranges the compiled data.

Step 18: The data are sent to the reduce function for integration and simplification.
Step 19: The reduced data are sent to the output format function for normalization.

Step 20: The normalized data yield the results.
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but in the wrong order. The rule checker described in Sub-section 3.3 prevents 
such errors, an example of which is shown in Figure 11.

The rule checker must be activated before MapReduce is executed because 
the rules determine the methods of <key, value> pairs generation and data 
distribution in the Map function. The rule checker must ensure that all of the 

Figure 9. Big data analysis system by inclusion of checking mechanisms.
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rules input by users fulfill the following requirements before executing the next 
step of the procedure below:

(1) The rules must conform to the required format of the system.

Figure 10. File error.
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(2) The rules cannot contradict one another.
(3) The interdependent rules must be in the right order.

Figure 11. Rule error.
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<Key, Value> Pairs Error Detection
Once the rules input by users have been checked, the Map function is 
executed. Users must carefully check the accuracy of <key, value> pairs 
generation method. However, as this portion is hidden in the Map framework, 

Figure 12. <key, value> pairs error

100 Y.-Y. WANG ET AL.



it is often overlooked. If the system developer does not customize this portion, 
the MapReduce framework will use the default settings. However, the default 
approach may be different from what the system developer envisioned and 
lead to the unanticipated analysis procedure and results. Such an error is 
depicted in Figure 12.

Property Analysis

In this Sub-section, we discuss the properties of the proposed MapReduce- 
based Petri net models. Note that, all MapReduce details and solutions have 
been depicted in Figure 9.

Error Resolution
Errors appear in the Petri net model as shown in Figure 6. If users input data 
with an error, then the MapReduce system may have an error in the input 
place. We can add a file checker after the input place, and therefore avoid the 
file error as shown in Sub-section 4-1-1. If users input rules with conflict, then 
the system may have an error in the result. We can add a rule checker after the 
file checker, and avoid the rule error as shown in Sub-section 4-1-2. If the 
system developer does not rewrite the record reader for defining a new way to 
create <key, value> pairs, then the analysis result may be wrong; but the system 
still has the reachability as shown in Sub-section 4-1-3.

Reachability Analysis
We verify the properties and correctness of the MapReduce-based Petri net 
model through reachability analysis. Similar to those cases in Figures 1 and 6, 
we can construct the reachability graph of the MapReduce-based Petri net 
model in Figure 9, and the reachability graph of a composition model of the 
ones in Figures 7 and 8 to avoid some possible errors in the system. Their 
analyses suggest that the MapReduce-based Petri net models are live and 
reversible.

Comparison of the Proposed Approach with Other Methods

In this sub-section, we compare the proposed Petri net approach with com-
putation tree logic (CTL) and linear temporal logic (LTL). Both of these 
methods can be used to verify systems, but they lack the visual appeal and 
ease of system simulation of the MapReduce framework.

CTL is a branching-time logic which models the system evolution as a tree- 
like structure where each state can evolve in several ways. Future directions 
cannot be confirmed, and any branch could become reality. CTL is often used 
to analyze and verify software and hardware systems (Camilli et al. 2014).
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LTL is a modal temporal logic. In LTL, the future is viewed as a sequence of 
states, so the future is viewed as a path. For example, a condition will 
eventually be true, a condition will be true until another fact becomes true, 
etc. LTL can use mathematical models to track the state changes of a system for 
verification and employ various formal languages to describe different types of 
constraints, e.g. Boolean connectives (Hallé and Soucy-Boivin 2015).

Both CTL and LTL use the distributed search techniques to increase intrinsic 
availability and reduce the overall calculation time of system verification processes.

CTL and LTL are both subsets of CTL*, but are not equivalent to each other. 
For example:

● There are things we can write in CTL but not in LTL, things like ”on all 
paths is always true that exists a path such that . . .”.

● There are things we can write in LTL but not in CTL, like ”If it is infinitely 
often the case that p is then at some point q”.

Petri net models can be used to describe parallel systems, so Petri nets fully express 
the parallel computing of the MapReduce framework and present it as a visual 
model, which can also be converted into a mathematical model for further analysis.

This study uses Petri nets to analyze the MapReduce framework and to 
verify its reachability, which acts as guidelines for the system developer, 
making a detailed description of the internal procedure of the MapReduce 
framework so as to increase its development efficiency.

The characteristics of the proposed approach compared with other two 
commonly used methods are shown in Table 1.

Conclusion

This study has examined the parallel procedure of the MapReduce framework 
in detail and used Petri nets for visualized modeling and analysis. We applied 
the proposed approach to a real-world example of big data analysis system to 
demonstrate its feasibility. To prevent common errors, we have included a file 
checker and a rule checker in the framework. The guidelines and algorithms 

Table 1. Comparison of the proposed approach with CTL and LTL.
Analysis 
Method Proposed Petri Nets Computation Tree Logic (CTL) Linear Temporal Logic (LTL)

Presentation Visual or Mathematical Model Mathematical Model Mathematical Model
Ease of 

Simulation
Easy Difficult Difficult

Target of 
Analysis

Verification of reachability in 
detailed procedures of 
MapReduce using visual Petri 
net models and facilitation of 
tracking and error prevention 
for system developers

The temporal model of CTL is 
a dendritic structure in 
which future directions 
cannot be confirmed, and 
any branch could become 
reality.

In LTL, the future is seen as 
a sequence of states, so the 
future is viewed as a path. It is 
capable of using 
mathematical models to track 
the state changes of systems.
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provided by this study can help the system developer increase the efficiency in 
the system development.

This study has made the following contributions:

● Analysis of the MapReduce framework using visual Petri net models;
● Verification of the reachability in the MapReduce framework using Petri 

nets;
● Application of the proposed approach to verify the real parallel MapReduce 

system, listing common errors as well as including check mechanism to 
prevent errors;

● Detailed guidelines useful for the system developer.

In the future work, we will extend the Petri net model proposed in this study to 
other parallel MapReduce systems and provide more real-world examples to 
assist the system engineer in the development of parallel MapReduce systems.
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