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Chennai, India; bDepartment of Information Technology, Sri SivaSubramaniya Nadar College of 
Engineering, Chennai, India

ABSTRACT
In image classification and retrieval applications, images are 
represented by a set of features. These features are extracted 
from both spatial and wavelet transformed input images. The 
wavelet transform decomposes images into multiple resolutions 
by separating smooth and sharp information in individual chan
nels to give more details about the image. Each level of smooth 
and sharp decomposed channels is individually involved in 
texture feature extraction. It is difficult to achieve better results 
in image classification and retrieval applications with fewer 
discriminant details of the image. Even though each level of 
the smooth channel correlates with its successive decomposi
tion levels, these feature extraction methods do not consider 
the relationship between the multiple levels of decomposed 
images. This motivates the proposed work to extract the corre
lation between the different levels of wavelet decomposed 
images. The proposed work (i) encodes the local difference 
obtained from multiple radii across the different levels of wave
let decomposed channels, (ii) assesses the proposed texture 
feature extraction method using classification and retrieval 
experiments with five different wavelet filters over twelve 
image databases and (iii) analyses the importance of similarity 
measures involved in the proposed feature-based image retrie
val experiments.

ARTICLE HISTORY 
Received 26 February 2021  
Revised 25 October 2021  
Accepted 28 October 2021  

Introduction

Recent advancements in visual data capturing sensors provide digital images 
in different qualities, resolution, and costs. This encourages the growth of 
digital image accumulation over the fields of medicine (Ji, Engel, and Craine 
2000), satellite (Anys and He 1995), defense (Tuceryan and Jain 1993), sur
veillance (Kellokumpu, Zhao, and Pietikäinen 2008), industry (Tajeripour, 
Kabir, and Sheikhi 2007), web application (Liua et al. 2007), etc. These recent 
advancements in technologies also provide cost-effective storage for huge 
digital image collections. However, managing these huge digital image collec
tions is not feasible when the image relies only on human text annotation. This 
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kind of annotation is time-consuming and purely depends on human percep
tion (i.e., using human resources to create annotations for images). This 
increases the necessity of a non-human annotation system to manage the 
rapidly growing image collection. Thus, it and attracts the research commu
nities toward the automatic image searching and retrieving field (Hassaballah 
and Hosny 2019). Researchers have developed content-based image retrieval 
(CBIR) system to perform automatic visual annotation, image search, and 
retrieval over massive image datasets. The CBIR system generates visual 
annotation using the key elements/features (i.e., color, texture, shape, spatial 
layout, and interest points) available in both query and huge digital image 
collections. It performs an automatic search over the image collections for 
retrieving relevant images. The combination of more than one key feature 
gives a clear description of the image than a single key feature. Meanwhile, 
multiple key feature integrated CBIR systems have problems in assigning an 
optimal weight to the set of features involved in the integration process 
(Pavithra and SreeSharmila 2018; Bhunia et al. 2020; Vimina and Divya 
2020). Li, Yang, and Ma (2020) have extracted the image feature with the 
help of a convolutional neural network (CNN) classification model. Then, they 
used SURF to match similar images with the help of CNN features. SURF fails 
to match the same class of images, which are taken from different locations. 
Whereas Singh and Batra (2020) has extracted color moments (i.e, color 
feature), wavelet-based texture features from the image, then they have used 
the support vector machine (SVM) for the classification. The classification 
result is directly related to the retrieval results. If classification fails to give the 
correct category of an image, then it will greatly affect the retrieval perfor
mance. Similarly, the cascaded CBIR system faces difficulty in optimal feature 
selection at the first stage of the retrieval process (Bella and Vasuki 2019; 
Walia, Vesal, and Pal 2014). Ali Khan, Javed, and Ashraf (2021)has extracted 
the color, texture and shape features from the given image at the first level. The 
combination of the shape and texture features filtered some similar images for 
the second level of the process. In the second level, the shape and color feature 
combination along with the similarity measure will give more number of 
similar images as a result. If the first level fails to filter more similar images 
for the next (Second) level retrieval process, it will affect the final performance.

Thus, classification and retrieval systems rely on a feature that helps to 
extract the discriminant property of the image in low complexity that gives 
relevant results. Among the color, texture, shape, and spatial layout key 
descriptors, the texture is widely used in pattern recognition, image retrieval, 
and classification. Texture analysis is applicable for images represented in any 
color models (i.e., HSV, YCbCr, and Lab). In an image, texture information is 
analyzed by taking the structural and statistical (Liu et al. 2011) details from 
the image. These techniques effectively extract information about the different 
types of patterns available in the image in two ways, they are local and global. 
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The Local Binary Patterns (LBPs) (Ojala, Pietikainen, and Maenpaa 2002; 
Pietikainen et al. 2011) are called local texture descriptors. This descriptor 
locally estimates the patterns available around each pixel. On the other hand, 
the global texture features (i.e., Gray Level Co-occurrence Matrix (GLCM) 
(Haralick, Shanmugam, and Dinstein 1973) are obtained by measuring the 
statistical details directly from the original and transformed images. In general, 
texture details extraction techniques run over the single resolution intensity 
channel of the image. Even though the single resolution intensity channel is 
effectively used in global and local texture feature extraction, it fails to reveal 
complex details clearly (Bai et al. 2012). This makes the multi-resolution 
analysis as an important texture feature representation technique (since it 
gives complex details of the images in different resolution and separates low 
and high-level components effectively; Cong Bai et al. (2012)). The intensity 
palette (i.e., ‘Y’) of the YCbCr color space is decomposed into two levels and 
the histogram over the detailed coefficients of decomposed images acts as the 
texture feature (Cong Bai et al. 2012). The global texture features of Gabor 
transform of an image with different scale and orientation are acquired using 
mean and standard deviation (Manjunath and Ma 1996). The statistical 
measures such as histogram (Singha et al. 2012) contrast, correlation, angular 
moments, and diagonal distribution are estimated globally from discrete 
wavelet transform (Ouma, Tetuko, and Tateishi 2008). These features are 
greatly affected by illumination, rotation, and scale changes present in the 
image. This creates the necessity of invariant robust texture feature generation, 
which remains stable for the changes available in the image (Awad and 
Hassaballah 2016). The global texture feature extraction method (Pun and 
Lee 2003) presented the rotation and scale-invariant texture feature represen
tation from energy signatures of the log-polar wavelet packet decomposition 
result.

The local texture extraction over the discrete wavelet transform is attained 
by Completed-LBP (CLBP) (Taha H. Rassem, Alsewari, and Makbol 2017). 
This technique has good classification accuracy when the level of decomposi
tion is three. This increases the feature vector length and the time complexity 
in feature extraction. This local feature extraction technique has limited 
performance in classification and retrieval. There are a number of LBPs (i.e., 
CLBP (Rassem, Alsewari, and Makbol 2017), Directional Local Ternary Co- 
occurrences Pattern (Amit Singhal, Agarwal, and Pachori 2020), Frequency 
decoded local descriptor (Dubey 2019), Local Derivative Pattern (LDP) 
(Zhang et al. 2010), Local Ternary Pattern (LTP) (Srivastava, Binh, and 
Khare 2014; Tan and Triggs 2010), Local Tetra Pattern (LTrP) (Murala, 
Maheshwari, and Balasubramanian 2012) and Dominant Local Binary 
Patterns (DLBP) (S. Liao, Law, and Chung 2009)) introduced in the field of 
local texture feature extraction. The conventional LBP relies on the raw 
intensity values present in the center pixel and its neighborhood, and the 
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patterns are extracted from small subspaces like 3 � 3 (Bai et al. 2012). 
Instead of taking the pattern around the single raw pixel, pattern available in 
the radial direction was preferred for noise invariant texture feature extraction 
(Liu et al. 2012). Subsequently, the scale, rotation and noise invariant texture 
features are suggested by the Median Robust extended LBP (MRLBP). This 
technique took binary pattern by subtracting the neighboring pixel details 
from the median value of different sized subspace around the center pixel, and 
thus, it improves the accuracy of texture classification (Liu et al. 2016). 
Similarly, each sampling point is calculated from the mean value of the 
neighborhood values within the radius one (Liu et al. 2014). The number of 
sampling points depends on the size of subspace that is taken for local feature 
extraction. This feature gives rotation-and-noise-invariant discriminant bin
ary patterns from the pyramidal transformed images (Qian et al. 2011). The 
multi-scale local binary pattern has suggested a different combination of eight 
sampling points feature extraction that gives the number of images for GLCM 
feature extraction (Srivastava and Khare 2018). Additionally, radial-mean- 
value-based-neighborhood sampling points are introduced to classify the 
noisy texture efficiently (Shakoor and Boostani 2018). Recently, the weighted 
integration of local and global texture feature extraction on the approximation 
coefficients of Dual-Tree Complex Wavelet Transform (DTCWT) and 
DTCWT detail coefficients of the log-polar transform image provides the 
illumination, scale and rotation invariant texture features (Yang, Zhang, and 
Yang 2018). Even though this approach improves the classification accuracy, 
the level of decomposition (i.e., five levels) and approximated weight selection 
in feature integration increases the complexity of the technique. On the other 
hand, Discrete Wavelet Transform (DWT) based decomposition is applied 
over the gray scale images up to seven levels. Then, the texture features such as 
LBP, the mean, standard deviation, Kurtosis and skewness are extracted from 
the low- and high-frequency channel coefficients present in each level of the 
decomposed image (Yadav et al. 2015). The two-bin normalized histogram of 
the approximation and horizontal and vertical components of three-level 
wavelet decomposed RGB color space images are taken as texture features 
(Khokher and Talwar 2017). The conventional local feature representation 
technique extracted the texture patterns from a single image by changing the 
sub-image resolution and the number of neighborhood points considered in 
each resolution (i.e., sub-image resolution). Even in multi-resolution analysis 
techniques such as wavelet and pyramid transform (Dash and Jena 2017), 
texture features are gained from each level of the decomposed image sepa
rately. Then, they are concatenated for local feature representation. However, 
it does not communicate the relationship between the images in different 
decomposition levels. Even though this relationship records the discriminant 
details of the local patterns in different decomposition levels, the conventional 
feature extraction methods failed to record it (i.e., each level of decomposition 
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reveals the complex details present in a single raw image). This motivates the 
proposed work to extract the correlation between the images represented in 
different decomposition levels. Furthermore, the proposed feature extraction 
technique does not let the relationship between the center pixel and its 
neighborhoods on the different radii and decomposition levels. It performs 
this as the initial process to get local patterns in each level, and the relation
ships between these decomposition levels are captured. Furthermore, the 
feature vector length of the proposed work is compact compared to the 
other methods used in the literature.

In the image retrieval system, apart from the image feature representation, 
similarity measure plays an important role since this system searches similar 
images based on the shortest distance information. This increases the retrieval 
time of the CBIR system corresponding to the image dataset size. Because of 
this, it performs a linear search and fails to match with the high-level human 
understandings (Seetharaman and Kamarasan 2014). To settle down the draw
backs available in distance measures based CBIR using the low-level feature, 
supervised machine learning, and deep learning techniques are introduced in 
the field of image retrieval (Krizhevsky et al. 2012). These techniques split the 
datasets into two groups named training and testing sets and train the system 
to match with the high-level human views. The outcome of these models has 
minimized the search space and the retrieval time associated with the CBIR 
system. Due to the huge amount of complexity associated with the deep 
learning training model (Singh and Srivastava 2017), this work takes the 
machine learning techniques to simplify the retrieval task.

This work generates a content-based image retrieval system based on (i) 
different similarity measures (i.e., Approach 1) and (ii) supervised classification 
model (i.e., Approach 2) for the proposed texture feature. The proposed signifi
cant texture detail of an image is statistically assessed from the radial difference 
between the local patterns available in multi-resolution and different scales. In the 
proposed work, un-decimated wavelet transform is preferred for representing 
texture details in different resolutions. Then, the local texture structural patterns 
are determined from the circular neighborhood information available in different 
radii. Here, the radial difference between the multi-scale and multi-resolution 
image is encoded as a novel robust texture that is invariant to illumination, noise, 
and scale distortions, which are present in the image. Moreover, this work analyses 
the performance of the above mentioned two CBIR systems (i.e., Approach 1 – 
retrieval based on different similarity measures and Approach 2 – retrieval based 
on classification model) in terms of their retrieval accuracy, searching time, and 
search space using the proposed texture feature. This work takes five different 
kinds of similarity measures to analyze the CBIR systems as mentioned above. In 
image classification, instead of using the single classification model, this work 
preferred the majority voting technique to select the relevant class images. The 
paper is organized as follows: the structure of the proposed multi-resolution 
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radial-gradient binary pattern is discussed in section 2. Section 3 consists of 
experiments of various datasets and their results. Finally, the conclusion of this 
work is given in Section 4.

The Proposed Framework

The main contribution of this work lies in the part of texture extraction. The 
process involved in the proposed work are as follows.

Step 1 In the texture extraction technique, color space of the original image 
is converted into HSV, and SWT is applied over these converted images. Then, 
the resultant images are used to take the radial difference local patterns across 
different decomposition levels and scales.

Step 2 The extracted textures are stored in feature database.
Step 3 Using the extracted texture, a set of five similarity measures are 

calculated in Approach 1. The similarity measures are as follows: (i) Euclidean, 
(ii) Bray Curtis, (iii) Square Chord, (iv) D1 and (v) Chess board. In Approach 
2, the features from the database images are used for building the classification 
model using the supervised classification techniques.

Step 4 The proposed texture extraction technique accepts the query image 
and performs feature extraction over that image.

Step 5 The feature vector of the query image is collected from the proposed 
extraction technique.

Step 6 The feature vector of the query image is given as the input for 
Approaches 1 and 2. Approach 1 performs image retrieval using distance 
measures between the features of the query and database images. Approach 
2 uses the query image feature to test the classficication model build over the 
features of the database images.

The stepwise processes involved in the proposed work are indicated in 
numbers, which iare clearly depicted in Fig.1. Though the RGB (R-Red, 
G-Green, and B-Blue) color channel does not isolate the intensity details, the 
texture features are available on the intensity channel of the image. Hence, most 
of the texture extraction techniques suggested the HSV (H-Hue, S-Saturation, 
and V–Value) color channel for extracting the texture. This color channel 
separately holds the color values in H and S channels and intensity value in V- 
channel. The complex structure of the intensity channel is analyzed by the 
techniques that are used in the multiresolution analysis. In the multiresolution 
analysis, wavelets and pyramids are used to simplify the complex image repre
sentation (i.e., image consists of multiple objects in different sizes and bright
ness). The compressed and denoised version of the original image is illustrated 
in wavelet transform. Moreover, the wavelet is highly advantageous in separating 
high and low-level components effectively, compared to pyramid transform. 
This work preferred wavelet transform to characterize the texture details of the 
image. Among different kinds of wavelet transforms, the SWT or undecimated 
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decomposed image is shift-invariant. Shift-invariance is an important parameter 
for pattern matching, whereas DWT cutdowns (i.e., downsample by factor 2) the 
resolution by half in each level and produced shift variant results (Khare et al. 
2018). Though the decimation is not performed and the filter coefficients are 
diluted by introducing zeros between the original coefficents, the SWT main
tains the original image resolution at each level (Priyadharsini, Sharmila, and 
Rajendran 2018). The single-level SWT decomposition is achieved by applying 
the low and high-level filters over the image in row and column, respectively. 
Unlike DWT, SWT ensures that the approximation channel (LL channel), detail 
channels (horizontal (HL channel), vertical (LH channel) and diagonal (HH 
channel) resolutions are the same as the original image. Here, the approximation 
channel is further considered for the next level SWT decomposition.

Multi-Level Gradient Radial Difference Binary Pattern

The proposed multi-level gradient radial difference binary pattern measures 
the local pattern available in different scales around each pixel of the decom
posed image. Then, the relationship between the local texture patterns 

Figure 1. The schematic diagram of the proposed texture based image classification and retrieval 
model.
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presents in the low and the high levels of the decomposed image correspond
ing to each pixel location is obtained by taking the binary value from the radial 
difference information. This proposed technique encodes the local patterns 
around the pixel available across the different level decomposed image, which 
gives the discriminant texture. The equations involved in (proposed) multi- 
level gradient radial difference binary pattern are given below. 

MRRD1ði; jÞ ¼
Xp� 1

k¼0
S RDl1

n;k � RDl2
m;k

� �
2k (1) 

MRRD2ði; jÞ ¼
Xp� 1

k¼0
S RDl1

m;k � RDl2
n;k

� �
2k (2) 

MRRD LBP ¼ concatðhistðMRRD1ði; jÞÞ; histðMRRD2ði; jÞÞÞ (3) 

where, 
SðxÞ ¼ 1; RDl1

n;k � RDl2
m;k

SðxÞ ¼ 0; RDl1
n;k � RDl2

m;k

( )

and 
SðxÞ ¼ 1; RDl1

n;k � RDl2
m;k

SðxÞ ¼ 0; RDl1
m;k � RDl2

n;k

( )

RD
"k

l1
n;k ¼ Il1

n;k � ICl1
n;k; RD

"k
l2
m;k ¼ Il2

m;k � ICl2
n ; n�m (4) 

RD
"k

l1
m;k ¼ Il1

m;k � ICl1
m; RD

"k
l2
n;k ¼ Il2

n;k � ICl2
n ; n�m (5) 

l1 ¼ h; l2 ¼ h1; l1 ¼ l2; l2 ¼ l1; l1�l2; l1; l2 holds the information about 
the level of decomposition (h,h1). histðMRRD1ði; jÞÞ andhistðMRRD2ði; jÞÞ
denotes the histogram representation of the multi-resolution radial difference 
image1 and image2.

ICl1
m represents the center pixel of the m radius circle at l1 level decomposi

tion. m,n indicates the radius of the circular neighborhoods where m�n. 
p denotes the total number of equally spaced pixel values on the circular 
neighborhood. k takes the values from 0 to p-1. i,j denote the rows and 
columns of the image and they vary from 1 to the total number of rows and 
columns present in the image, respectively.

Then, the statistical information of the proposed MRRD binary pattern 
image is calculated by deriving a histogram over the texture pattern of the 
image. The histogram gives a feature vector with length of 256 for every single 
image. Here, texture details are available in two different images (i.e., MRRD1 
and MRRD2). Thus, histograms of these two images (2 × 256 = 512) are 
concatenated and form feature vector with the a length of 512. The uniform 
local binary pattern is elicited to minimize the length of the feature vector. It 
takes the binary pattern representation for each pixel in the proposed texture 
image. It considers the binary pattern in a circular manner and allows two 
successive transitions (0 to 1 or 1 to 0) within the pattern. The 8-bit binary 
pattern such as 00100000 and 00000011 is called a uniform binary pattern, 
whereas 01101011 and 01011001 do not have a uniform binary pattern. The 
number of equally spaced points on the circular neighborhood decides the 
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length of the uniform feature vector using pðp � 1Þ þ 3. Therefore, 8 points on 
the circular neighborhood give uniform binary pattern feature vector length as 
59 (i.e., 8(8–1)+3 = 59). Figure 2 illustrates the process of creating a proposed 
texture feature in a step by step manner.

The multilevel gradient radial difference binary pattern is obtained by 
performing the following steps:

(i) Take the difference between center point and equally spaced circular 
neighborhood pixels

The SWT coefficients of the image in each level are different. The level of 
decomposition and the coefficients values of the image in each level are 
proportional to each other. The coefficients of the image in Nth level have 
less value than the coefficients in the (N + 1)th level of the decomposed image. 
This work calculates the difference between the center point and the surround
ing pixels at different radii to preserve the local details around each pixel of the 
image in different decomposition levels. This is shown in Figure 2 (i). Here, l1 
and l2 are the decomposition levels and m and n denote the radius of the 
circular neighborhood from the center pixel. Equations (1–5) are used to 
calculate texture pattern information.

Figure 2. Multi-level gradient radial difference binary pattern.
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(i) Estimate the radial difference value of the circular neighborhoods at 
different radii across the decomposition levels

The difference value of the circular neighborhood collected from step 1 
involved in radial difference calculation. The radial difference is measured by 
subtracting the outer radial difference from the inner radial difference. The 
positive and negative values of the subtraction results are coded as 1 and 0, 
respectively. For example, two-level decomposed images with two different 
radii (i.e., 1 and 2) circular neighborhood information are taken for texture 
extraction. This technique considers radii 1 and 2 in two different images 
without compensating any detail present in these radii. This information 
encodes the relationship between the images represented in different decom
position levels since each level of the decomposed image discloses the unde
tected detail of that image. In this proposed work, the number of radii (r) 
considered for this texture feature extraction decides the total number 
(r×(r-1)) of texture images. The texture extraction from the three different 
radii information of the two different levels of decomposed images is recorded 
in six texture feature images.

(i) Update the local pattern information

The output image resolution is the same as the original image that is 
involved in texture extraction. The binary value obtained from step 2 is 
taken from the anticlockwise direction to get the decimal value of the local 
pattern. Figure 2 (iii) depicts the updated local pattern decimal value in the 
place of the center pixel. This is shown in Fig. 2(i). After updating all the pixel 
positions of the output images, the histograms of the images are concatenated 
to give the texture information.

Similarity Measure-Based Image Retrieval

The performance of the image retrieval system relies on feature and similarity 
measures used in the retrieval process. The texture feature obtained from 
section 2.2 acts as an input for the similarity measures used in the retrieval 
task. The similarity measure is taken between the proposed texture feature of 
the query and database images. The similarity measure result estimates the 
closeness details of the database images. Depending on the closeness value, the 
database images are sorted and displayed at the top of the retrieval results. This 
work takes five different similarity measures to estimate the relevant images 
from the closeness details.

(i) Euclidean measure
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SMEQðQ;DBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTF

f¼1
Qf � DBf
� �2

r

(6) 

(i) Bray Curtis measure

SMBCðQ;DBÞ ¼
XTF

f¼1

Qf � DBf
�
�

�
�

Qf þ DBf
(7) 

(i) Square Chord measure

SMSCðQ;DBÞ ¼
XTF

f¼1

ffiffiffiffiffiffi
Qf

p
�

ffiffiffiffiffiffiffiffi
DBf

p� �2 (8) 

(i) D1 measure

SMD1ðQ;DBÞ ¼
XTF

f¼1

Qf � DBf

1þ Qf þ DBf

�
�
�
�

�
�
�
� (9) 

(i) Chessboard measure

SMCBðQ;DBÞ ¼ max Q1 � DB1j j; . . . ; QTF � DBTFj jð Þ (10) 

where TF denotes the total number of features extracted in the texture 
extraction process and Qf ;DBf indicates the query and database images of 
fth the feature, respectively. The image retrieval system based on distance 
measure performs a consecutive linear search on the database images texture 
feature. This kind of retrieval system does not perform training on the 
database images.

Classification Model in Image Retrieval

The classification models are promoted in an image retrieval system to cut 
down non-relevant images from a similar image searching process. The 
classification model is placed above the similarity measure used in the retrieval 
task to achieve this benefit. This increases the image retrieval system’s overall 
performance by reducing the search space where the similarity measures do 
the linear search within the single class images. The classification model based 
on supervised learning tries to map the user requirement approximately with 
the database images. The classification model trains the database image fea
tures approximately according to human perception. Hence, the well-trained 
classification model automatically accepts the query image feature, classifies 
the feature to the appropriate class, and reduces the CBIR system’s retrieval 
time. This work uses the ensemble classifier such as random forest classifica
tion algorithm, which is based multiple parallel weak decision trees. The 
results of multiple decision trees are combined in the form of majority voting 
or averaging to make a firm decision over the given input. The random forest 
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algorithm’s training phase randomly divides the feature set of the database 
images into several small subsets. These subsets are individually used to train 
the number of decision trees, and the decision trees select the optimal feature 
from each subset on the top tree to split them well. Once the query feature 
enters this ensemble classification, it meets all the decision trees. The output of 
all these trees is considered to make a final prediction in that texture image 
classification.

The similarity measures are expressed in Equations (6)–(10) used to esti
mate the closeness between the database images and query image. The esti
mated low value indicates that the image is more relevant to the query image.

Experimental Results and Discussion

The proposed texture descriptor is tested over twelve different databases. The 
database details are given in Table 1. These twelve databases are grouped into 
five different categories, namely, natural images databases (i.e., Wang’s (Jia 
and Wang, 2003), Corel-10k (Tao et al., 2007), OT-Scene (Oliva and Torralba, 
2001), Free photo (Anderson Rocha et al., 2010), and GHIM (Liu, 2015)), 
texture images databases (i.e., (Brodatz, 1966), Color Brodatz (Safia and He, 
2013), and KTH-TIPS2b (Mallikarjuna et al., 2006)), land-use image databases 
(i.e., UC dataset (Yang and Newsam, 2010) and RS dataset (Laban et al., 
2017)), a single object with different rotation (i.e., Coil-100 (Nene et al., 
1996)), and objects under different illumination conditions (i.e., FTVL 
(Rocha et al., 2004)). Five various studies are carried out in the proposed 
texture extraction method using the twelve datasets. The studies are (i) effect 
of texture extraction method using the different families of wavelet filters, (ii) 
impact of different levels of decomposition involved in texture extraction, (iii) 
impact of radius values involved in proposed texture extraction, (iv) impact of 
varying sampling points involved in texture extraction, and (v) impact of 

Table 1. Database details.
Sl. No Database Name Image Category Total number of Images Resolution

1 Brodatz 13 1456 128 × 128
2 Color Brodatz 112 2800 128 × 128
3 Coil −100 100 7200 128 × 128
4 FTVL 15 2633 1024 × 768
5 Free Photo 9 3462 400 × 600 or 600 × 400
6 GHIM 20 10000 400 × 300 or 300 × 400
7 Wang’s 10 1000 256 × 384 or 384 × 256
8 Corel-10k 100 10000 126 × 187 or 187 × 126
9 OT-Scene 8 2688 256 × 256
10 UC dataset 21 1524 256 × 256
11 RS dataset 19 1005 600 × 600
12 KTH-TIPS2b 11 4762 200 × 200
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proposed texture extraction across varying levels of decomposition and dif
ferent radii. Finally, the performance of the proposed descriptor is tested 
against the feature extraction method available in the texture representation.

Impact of Different Families of Wavelet Filters in the Proposed Texture Feature

Here, the proposed descriptor takes the approximation coefficients of SWT 
based on different wavelet filters, namely, Haar (dbN, N = 1), Daubechies 
(dbN, N = 2,3,4,5,6), Coiflet (CoifN,N = 1,2,3,4,5), Symlet (symN, 
N = 1,2,3,4,5), and Biorthogonal (biorN, N = 1.1,1.3,1.5,2.2,2.4) with different 
filter lengths (i.e., N). Among the number of length details available in each 
family of filters, the wavelet filter with the best performing length is selected 
for the experimental analysis. Thus, Haar with length 1, Daubechies with 
length 6, Coiflet and Symlet with length 4, and Biorthogonal with length 2.4 
are selected for further analysis.

Image Retrieval
In image retrieval applications, the impact of texture extraction based on 
different families of wavelet filters is tested with five different kinds of distance 
measures (as given in Equations (9)–(13)) since distance measure plays 
a significant role in image retrieval. Table 2 presents the recall value associated 
with five different distance measures applied over the proposed texture feature 
extracted from the five different wavelet filters. The experimental results 
illustrated in Table 2 show that the image retrieval system based on 
D1_distance measure gives a more number of similar images on top of the 
retrieval results compared to other distance measures involved in the retrieval 
process. Next to D1_distance measure, the Bray Curtis distance measure- 
based image retrieval system has high precision in retrieval results. 
Meanwhile, the chessboard distance-based retrieval system fails to give more 
number of similar images in the top results. Thus, the D1_distance measure is 
preferred in further experiments of this work.

Image Classification
The random forest image classification method takes the proposed descriptor 
extracted from the different families of wavelet filters images. This experiment 
takes 100 different decision trees to build a random forest classification model. 
In addition to that, 80% of the feature dataset corresponding to each image 
dataset is involved in training the model. The remaining 20% of the feature 
dataset from each dataset is taken for testing the model. This classification 
model is tested ten different times, and the mean and standard deviation of the 
classification accuracy are taken for performance assessment, which is shown 
in Figure 3. The accuracy of the classification model is estimated using 
Equation (11). 
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Table 2. Performance analysis of the proposed method based on five different wavelet families 
and distance measures over 12 different image databases.

Database DM

Wavelet filters

H D C S B

AP(%) AR(%) AP(%) AR(%) AP (%) AR (%) AP (%) AR(%) AP(%) AR(%)

Wang’s D1 79.58 15.92 80.39 16.08 83.83 16.77 86.36 17.27 83.9 16.78
EU 75.43 15.09 78.47 15.69 81.45 16.29 82.47 16.49 80.13 16.03
SC 77.55 15.51 73.47 14.69 72.14 14.43 76.13 15.23 76.36 15.27
BC 78.15 15.63 79.15 15.83 81.4 16.28 85.14 17.03 82.14 16.43
CB 60.96 12.19 73.47 14.69 72.14 14.43 66.13 13.23 62.28 12.46

Corel-10 K D1 40.15 8.03 54.23 10.85 52.4 10.48 57.92 11.58 53.83 10.77
EU 37.14 7.43 50.74 10.15 49.3 9.86 54.16 10.83 49.36 9.87
SC 39.14 7.83 53.17 10.63 49.14 9.83 55.1 11.02 50.14 10.03
BC 39.41 7.88 52.5 10.5 50.34 10.07 55.47 11.09 52.16 10.43
CB 32.66 6.53 48.23 9.65 43.42 8.68 42.57 8.51 46.23 9.25

OT-Scene D1 67.8 13.56 67.05 13.41 62.47 12.49 72.45 14.49 70.29 14.06
EU 62.17 12.43 64.74 12.95 63.82 12.76 64.76 12.95 63.43 12.69
SC 63.14 12.63 64.13 12.83 63.76 12.75 65.47 13.09 65.14 13.03
BC 65.7 13.14 66.23 13.25 65.42 13.08 68.67 13.73 68.14 13.63
CB 58.23 11.65 59.24 11.85 58.72 11.74 60.43 12.09 60.7 12.14

Free Photo D1 75.64 15.13 78.25 15.65 79.24 15.85 81.24 16.25 79.62 15.92
EU 73.52 14.70 72.69 14.54 71.58 14.32 76.43 15.29 74.86 14.97
SC 74.61 14.92 73.49 14.70 75.24 15.05 78.24 15.65 74.93 14.97
BC 74.14 14.83 76.17 15.23 77.43 15.49 80.01 16.0 76.58 15.32
CB 70.4 14.08 70.86 14.17 70.46 14.09 74.96 14.99 70.41 14.08

GHIM D1 62.38 12.48 63.4 12.68 64.28 12.86 68.25 13.65 67.7 13.54
EU 58.16 11.63 58.72 11.74 60.72 12.14 67.18 13.44 63.43 12.69
SC 60.13 12.03 61.71 12.34 62.46 12.49 65.8 13.16 64.38 12.88
BC 60.51 12.10 62.7 12.54 63.82 12.76 66.47 13.29 65.78 13.156
CB 58.14 11.63 57.61 11.52 57.16 11.43 60.13 12.03 60.74 12.148

Brodatz D1 93.38 18.68 92.95 18.59 93.2 18.64 97.81 19.56 96.34 19.27
EU 91.53 18.31 90.41 18.08 89.43 17.89 93.47 18.69 93.27 18.65
SC 92.4 18.48 91.43 18.29 92.04 18.41 95.43 19.09 94.52 18.90
BC 93.14 18.63 92 18.4 92.46 18.49 96.85 19.37 95.14 19.03
CB 82.46 16.49 86.13 17.23 76.42 15.28 91.57 18.31 88.14 17.63

Colored Brodatz D1 88.18 17.64 84.83 16.97 83.4 16.68 88.54 17.71 87.68 17.54
EU 80.42 16.08 81.57 16.31 84.17 16.83 86.17 17.23 82.43 16.49
SC 86.47 17.29 82.46 16.49 81.27 16.25 85.06 17.01 80.37 16.07
BC 83.17 16.63 83.17 16.63 82.14 16.43 87.35 17.47 86.35 17.27
CB 80.27 16.05 69.2 13.84 74.93 14.99 74.99 14.99 76.21 15.24

KTH-TIPS2b D1 88.72 17.74 83.72 16.74 85.14 17.03 89.17 17.83 84.84 16.97
EU 81.72 16.34 81.27 16.25 81.43 16.29 83.23 16.65 82.36 16.47
SC 81.07 16.21 81.04 16.21 82.41 16.48 83.63 16.73 81.73 16.35
BC 84.82 16.96 83.16 16.63 84.35 16.87 86.72 17.34 82.91 16.58
CB 72.1 14.42 74.8 14.96 76.24 15.25 79.24 15.85 77.26 15.45

UC dataset D1 70.48 14.10 77.11 15.42 73.14 14.63 79.74 15.95 77.49 15.50
EU 58.04 11.61 70.43 14.09 70.38 14.08 72.47 14.49 74.18 14.84
SC 60.45 12.09 73.24 14.65 71.36 14.272 73.4 14.68 74.03 14.81
BC 62.14 12.43 76.15 15.23 72.95 14.59 76.84 15.37 74.16 14.83
CB 51.29 10.26 70.3 14.06 72.9 14.58 69.52 13.90 61.26 12.25

RS dataset D1 60.87 12.17 61.25 12.25 62.14 12.43 63.47 12.70 61.28 12.26
EU 53.38 10.68 57.2 11.44 59.43 11.89 60.03 12.01 59.72 11.94
SC 61.53 12.31 59.32 11.86 60.13 12.03 62.91 12.58 59.34 11.87
BC 58.62 11.72 60.74 12.15 61.24 12.25 63.17 12.63 60.05 12.01
CB 56.4 11.28 59.42 11.88 56.4 11.28 58.36 11.67 51.29 10.26

Coil-100 D1 75.74 15.15 75.56 15.11 74.79 14.96 78.72 15.74 75.34 15.07
EU 70.45 14.09 70.17 14.03 71.74 14.35 74.26 14.85 70.14 14.03
SC 72.64 14.53 71.61 14.32 74.18 14.84 74.83 14.97 73.43 14.69
BC 74.62 14.92 73.82 14.76 74.32 14.87 76.93 15.39 74.86 14.97
CB 67.14 13.43 68.73 13.75 70.12 14.02 71.43 14.29 69.14 13.83

(Continued)
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Classification accuracy ¼
TCP
TS

(11) 

where TCP is the number of correctly classified test samples and TS is the 
number of samples involved in testing the classification model.

The standard deviation gives lower and higher boundaries values of the 
classification accuracy. The classification model, which has high accuracy and 
small standard deviation, is considered the best model. According to image 
retrieval and classification experiments, the proposed texture feature extraction 
based on Symlet families of the filter is more suitable than the other families of 
filters involved in texture feature extraction. The Symlet wavelet has a linear phase, 
and the levels of artifacts available in boundaries of the decomposed images are 
less. Thus, the Symlet family wavelet filter based proposed descriptor is considered 
in further image retrieval and classification experiments of this work.

Table 2. (Continued).

Database DM

Wavelet filters

H D C S B

AP(%) AR(%) AP(%) AR(%) AP (%) AR (%) AP (%) AR(%) AP(%) AR(%)

FTVL D1 85.64 17.13 86.37 17.27 82.47 16.49 90.88 18.18 88.05 17.61
EU 83.24 16.65 83.42 16.68 80.4 16.08 85.43 17.09 82.61 16.52
SC 83.41 16.68 82.14 16.43 80.01 16.00 86.49 17.30 85.34 17.07
BC 85.06 17.01 85.41 17.08 81.1 16.22 88.37 17.67 87.07 17.41
CB 78.2 15.64 73.4 14.68 74.36 14.87 78.32 15.66 78.53 15.71

Bold faced values indicate the best results, H- Haar, D- Daubechies, C-Coiflet, S-Symlet, B-Biorthogonal, D1- D1 
measure, EU-Euclidean measure, SC- Square Chord, BC- Bray Curtis, CB- Chess Board, AP- Average Precision, AR- 
Average Recall.
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Figure 3. Proposed feature descriptors’ average classification accuracy and standard deviation 
using a random forest classifier [Haar (H), Daubechies (D), Coiflet (C), Symlet (S), Biorthogonal (B)].
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Impact of Different Levels of Decomposition in the Proposed Texture Feature

The effect of different levels of wavelet decomposed images in the proposed 
texture feature extraction is studied by conducting image retrieval and classi
fication experiments over them. Here, images decompose up to four levels. 
The proposed feature extraction algorithm is applied over four different levels 
in five different combinations (levels 1 and 2, levels 2 and 3, levels 3 and 4, 
levels 1and 3, and levels 1 and 4). Among the four different decomposed image 
combinations involved in proposed feature extraction, levels 1 and 2 give the 
most prominent image retrieval and classification experiments shown in 
Table 3 and Figure 4, respectively. Each level of wavelet decomposition 
depends on the previous level approximation channel information, which is 
not applicable for the first level of decomposition. The first level of wavelet 
decomposition directly depends on the original image. The further levels of 
decomposed images take the smoother version of the image obtained from the 
approximation channels. Moreover, levels of decomposition and system 

Table 3. Performance analysis of the proposed method based on different levels of wavelet 
decomposition.

Image Databases

12,21 23,32 34,43 13,31 14,41

AP(%) AR(%) AP(%) AR(%) AP(%) AR(%) AP(%) AR(%) AP(%) AR(%)

Wang’s 86.36 17.27 84.71 16.94 80.01 16.00 82.16 16.43 82.14 16.43
Corel-10 K 57.92 11.58 54.28 10.86 49.53 9.91 52.96 10.59 51.59 10.32
OT-Scene 72.45 14.49 72.08 14.42 67.28 13.46 70.19 14.04 69.18 13.84
Free Photo 81.24 16.25 77.24 15.45 71.16 14.23 74.86 14.97 72.17 14.43
GHIM 68.25 13.65 63.62 12.72 59.71 11.94 61.62 12.32 60.76 12.15
Brodatz 97.81 19.56 94.64 18.93 85.74 17.15 86.43 17.28 88.25 17.65
Colored Brodatz 88.54 17.71 84.69 16.94 79.19 15.84 83.81 16.76 80.18 16.04
KTH-TIPS2b 87.17 17.43 82.16 16.43 77.26 15.45 79.28 15.86 78.9 15.78
UC dataset 79.74 15.95 74.26 14.85 70.18 14.04 72.43 14.49 71.17 14.23
RS dataset 63.47 12.69 58.35 11.67 54.36 10.87 56.14 11.23 55.13 11.03
Coil-100 78.72 15.74 75.09 15.02 71.63 14.33 74.36 14.87 72.42 14.48
FTVL 90.88 18.18 87.63 17.53 84.37 16.87 86.34 17.27 85.43 17.09

Bold faced values indicate the best results, AP- Average Precision, AR- Average Recall

Figure 4. Classification accuracy of proposed descriptor obtained from different levels of decom
posed images.
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complexity are proportional to each other; each level of stationary wavelet 
decomposition increases the redundancy and requires more memory space for 
processing. Thus, this work considers the decomposed images from levels 1 
and 2 of the stationary wavelet in the following experiments.

Impact of Different Radius in the Proposed Texture Feature

The importance of radius used in the proposed work is studied by varying the 
radius values from 0.5 to 4 in each subspace. A different number of equally 
spaced neighboring pixel information is taken from each radius. For example, 
Figure 5 shows the equally spaced eight sampling points over radii 0.5, 2, and 
3. In this experiment, features are extracted from the following:

(1) Radii 1 and 2 from levels 2 and 1 and radii 2 and 1 from levels 1 and 2.
(2) Radii 0.5 and 3 from levels 1 and 2 and radii 3 and 0.5 from levels 1 and 

2.
(3) Radii 1.5 and 4 from levels 2 and 1 and radii 4 and 1.5 from levels 1 and 

2.

Here, padding of zero values in between the filter coefficients of each level 
gives redundant information. Thus, sampling points available in the small 
circle of the radius has a high correlation with the image point present in the 
center of the circle than the sampling points present in a higher radius. 
Figure 6 and Table 4 show that the sampling points available in radius 12 
have more information than the sampling points available in radii 0.5 and 3 
and 1.5 and 3 at decomposition levels 1 and 2. The result of this experiment 

Figure 5. Equally spaced eight sampling points at different radii.
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suggests that the sampling point available in a radius less than 2 has more 
correlation with the center point than the sampling points on radii 3 and 4. 
Thus, the radii 1 and 2 and 2 and 1 on levels 1 and 2 are considered in the 
proposed texture feature extraction in further experiments.

Impact of Different Sampling Points in the Proposed Texture Feature

Like radius, the number of equally spaced neighboring pixel points taken 
from the radius is also important in the proposed texture feature extraction. 
The sampling points on the preferred radius give specific details about the 
local region taken for the feature extraction process. Thus, the proposed 
texture feature extraction algorithm considers four, eight, and twelve equally 
spaced neighboring pixels in each decomposition level to represent the 
image. Then, the performances of the extracted features are tested in image 
retrieval and classification experiments. Table 5 shows that the image retrie
val system based on the number of sampling points equal to 4 has a low 
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Figure 6. Classification accuracy of the proposed descriptor obtained from different radii and levels 
of decomposed images.

Table 4. Performance analysis of the proposed method based on different radii.

Image Databases

1,2,2,1 0.5,3,3,0.5 1.5,4,4,1.5

AP(%) AR(%) AP(%) AR(%) AP(%) AR(%)

Wang’s 86.36 17.27 85.31 17.06 82.14 16.43
Corel-10 K 57.92 11.58 53.49 10.70 52.17 10.43
OT-Scene 72.45 14.49 69.17 13.83 65.32 13.06
Free Photo 81.24 16.25 76.24 15.25 71.37 14.27
GHIM 68.25 13.65 64.27 12.85 60.39 12.08
Brodatz 97.81 19.56 96.31 19.26 92.37 18.47
Colored Brodatz 88.54 17.71 87.39 17.48 86.31 17.26
KTH-TIPS2b 87.17 17.43 86.17 17.23 84.16 16.83
UC dataset 79.74 15.95 75.34 15.07 72.86 14.57
RS dataset 63.47 12.69 61.49 12.30 59.37 11.87
Coil-100 78.72 15.74 76.17 15.23 73.46 14.69
FTVL 90.88 18.18 88.37 17.67 85.73 17.15

Bold faced values indicates the best results, AP- Average Precision, AR- Average Recall
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precision rate than the proposed descriptor extracted from the sampling 
points 8 and 12. This indicates that the proposed descriptor, based on the 
sampling point 4, is not enough to hold more details about the image. The 
proposed descriptor, based on the sampling points 8 and 12, gives 
a performance that is closer to each other. The proposed descriptor based 
on the twelve equally spaced sampling points gives a slightly better perfor
mance in Color Brodatz (0.51% better) database than the performance based 
on the eight equally spaced sampling points on this database. The proposed 
descriptor based on the equally spaced sampling points 8 has slightly better 
performance in the remaining databases. The original precision rate and its 
betterment percentage against the twelve equally spaced sampling point 
based proposed descriptor is given as follows: Wang’s- (86.36%) (0.04% 
better), Corel 10k-(57.92%) (1.58% better), OT-Scene-(72.45%) (0.71% bet
ter), free photo-(81.24%) (0.2% better), Brodatz (97.81%) (0.25% better), 
Colored Brodatz (88.54%) (0.54% better), UC-dataset-(79.74%) (3.5% bet
ter), RS-dataset-(63.47%) (3.04% better), Coil-(78.72%) (4.48% better), and 
FTVL-(90.88%) (4.71% better) databases, whereas in classification (refer 
Figure 7), the proposed descriptor based on eight equally spaced sampling 
points has higher accuracy than the other two sampling points considered in 
the proposed texture feature extraction. In image classification, a Color 
Brodatz class proposed descriptor based on 8 and 12 equally spaced sampling 
points has an accuracy of 93.054% and 93.054%, and its corresponding 
standard deviations are 1.653% and 2.91%. The 12 and 8 sampling points 
based method has equal accuracy in the Color Brodatz database; its standard 
deviation measure reveals that the accuracy will span between 90.14% and 
95.96%, whereas eight equally spaced sampling point based retrieval accuracy 
lies between 91.40% and 94.7%. A deviation on classification accuracy is 
obtained in the proposed descriptor based on eight sampling points, which 
gives better performance than the 12 sampling points based on proposed 
texture feature extraction.

Table 5. Performance analysis of the proposed method based on different sampling points.

Image Databases

SP = 4 SP = 8 SP = 12

AP(%) AR(%) AP(%) AR(%) AP(%) AR(%)

Wang’s 82.46 16.49 86.36 17.27 86.32 17.26
Corel-10 K 48.24 9.65 57.92 11.58 56.34 11.27
OT-Scene 64.29 12.86 72.45 14.49 71.74 14.35
Free Photo 76.3 15.26 81.24 16.25 81.04 16.21
GHIM 60.71 12.14 68.25 13.65 69.24 13.85
Brodatz 92.16 18.43 97.81 19.56 97.56 19.51
Colored Brodatz 82.17 16.43 88.54 17.71 88.03 17.61
KTH-TIPS2b 81.69 16.34 87.17 17.43 88.16 17.63
UC dataset 74.39 14.88 79.74 15.95 76.24 15.25
RS dataset 57.36 11.47 63.47 12.69 60.43 12.09
Coil-100 70.16 14.03 78.72 15.74 74.24 14.85
FTVL 84.76 16.95 90.88 18.18 86.17 17.23

Bold faced values indicate the best results, AP- Average Precision, AR- Average Recall
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Impact of the Proposed Texture Feature Extraction across Different Levels of 
Decomposition and Different Radii

The impact of the proposed texture feature extraction method across the 
varying decomposition levels and different radii is examined against two 
kinds of features. They are (i) feature vectors extracted from the same level 
with different radii and (ii) different levels with the same radius. These two 
methods perform encoding using the procedure followed in the proposed 
descriptor. The first kind of the feature extraction method encodes the dis
criminant information available in the level 1 decomposed image from radii 1 
and 2. Subsequently, it encodes the details available in the level-2 decomposed 
image from radii 1 and 2 and concatenates them to form a feature vector. The 
second method encodes the details of decomposed images in levels 1 and 2 
with radius 1. Then, it encodes the details present in radius 2 from levels 1 and 
2 of the decomposed images. Finally, this information is concatenated to form 
the feature descriptor. This experiment highlights the importance of feature 
extraction across different levels of decomposition and radii. The image 
retrieval precision-recall rate and classification accuracy of the proposed 
descriptor is high compared to the performance of the other two feature 
extraction methods described above, which is clearly shown in Table 6 and 
Figure 8. Encoding local difference information available at the same radius 
present in levels 1 and 2 gives low performance since the level of decomposi
tion increases the redundancy. Hence, encoding the particular radius neigh
boring point’s local difference around each point of the decomposed images 
available across the different levels extracts only the redundant noisy details. 
On the other hand, encoding the different radius neighboring points’ local 
difference around each point of the particular level decomposed image fails to 
extract the correlation between the decomposed images on successive levels. 
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Figure 7. Classification accuracy of the proposed descriptor obtained from different sampling 
points of decomposed images.
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Thus, it has high retrieval precision and classification accuracy compared to 
the first kind of feature extraction method and low performance compared to 
the proposed texture feature extraction methods.

Performance Analysis of the Proposed Feature Descriptor against the State-of- 
the-Art Texture Feature Extraction Methods

The proposed feature descriptor performance in image retrieval and classifica
tion experiments is compared against the popular texture feature extraction 
methods such as LBP (Ojala, Pietikainen, and Maenpaa 2002), CLBP (Rassem, 
Alsewari, and Makbol 2017), LTP (Srivastava, Binh, and Khare 2014), radial 
difference LBP (Liu et al. 2012), pyramid+LBP (Qian et al. 2011), radial mean 
LBP (Shakoor and Boostani 2018), and LBP+DWT+GLCM (Khare et al. 
2018). Table 7 highlights the proposed work performance against other 

Table 6. Performance analysis of the proposed method based on different levels of decomposition 
and different radii.

Image Databases

L = 1,2 and R = 1 & L = 1,2, R 
= 2

L = 1,R = 1,2 &L = 2, 
R = 1,2

L = 1,2 R = 2,1 & L = 1,2, R = 1,2 
(PM)

AP(%) AR(%) AP(%) AR(%) AP(%) AR(%)

Wang’s 69.13 13.83 71.41 14.28 86.36 17.27
Corel-10 K 47.36 9.47 50.43 10.09 57.92 11.58
OT-Scene 64.27 12.85 68.19 13.64 72.45 14.49
Free Photo 72.19 14.44 74.85 14.97 81.24 16.25
GHIM 57.26 11.45 59.14 11.83 68.25 13.65
Brodatz 86.32 17.26 89.21 17.84 97.81 19.56
Colored Brodatz 77.29 15.46 81.24 16.25 88.54 17.71
KTH-TIPS2b 80.36 16.07 83.24 16.65 87.17 17.43
UC dataset 71.28 14.26 73.25 14.65 79.74 15.95
RS dataset 53.34 10.67 59.36 11.87 63.47 12.69
Coil-100 63.66 12.73 70.63 14.13 78.72 15.74
FTVL 70.62 14.12 82.32 16.46 90.88 18.18

Bold face indicates the best results, L- Decomposition level, R- Radius, AP- Average Precision, 
AR- Average Recall
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Figure 8. Classification accuracy of texture features obtained at different levels of decomposition 
and different radii.
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popular techniques involved in texture feature extraction. The image retrieval 
experiment on natural image databases reveals that the proposed feature 
extraction technique gives a more suitable image representation than the 
other feature extraction techniques. Wang’s and GHIM database images are 
averagely 86.36% and 68.25% correctly retrieved using the proposed descrip
tor. Subsequently, the LBP feature descriptor has high retrieval rates of 82.6% 
and 60.3% over Wang’s and GHIM databases. In Corel −10k database, the 
proposed texture feature extraction method achieves an average retrieval rate 
of 57.92%, which is 0.75% higher than the highest performing existing radial 
difference LBP (Liu et al. 2012) texture feature on this database. The OT-Scene 
database images are approximately 74.45% correctly retrieved by the proposed 
descriptor, whereas LBP (Ojala, Pietikainen, and Maenpaa 2002) and pyramid 
+ LBP (Qian et al. 2011) texture features give approximately 70.1% and 70.01% 
matched images at the top of the retrieval results. On average, 81.24% of free 
photo database images are correctly matched with the given query image, 
averagely 6.53% less than the radial difference LBP (Liu et al. 2012) texture 
features. The Brodatz texture database images are approximately 97.81% 
correctly retrieved by the image retrieval experiment based on the proposed 
feature extraction technique.

In comparison, the LTP (Srivastava, Binh, and Khare 2014) and CLBP 
(Rassem, Alsewari, and Makbol 2017) outperform the proposed descriptor 
performance in the Color Brodatz database by 6.68% and 1.48%, respectively. 
Moreover, radial mean LBP (Shakoor and Boostani 2018) represents the 
KTH-TIPS2b images very well; this improves the retrieval precision by 
7.49% compared to the proposed method. The image retrieval experiments 
over the UC and RS databases give high precision rates of 79.74% and 
63.47%, which are 12.7% and 4.37% higher than the second best- 
performing feature descriptor CLBP (Rassem, Alsewari, and Makbol 2017). 
Coil-100 and FTVL database images’ average retrieval precision values are 
high as 78.92% and 90.88% when the experiments use the proposed texture 
feature vectors as input to the image retrieval system. Like in image retrieval 
experiments, in image classification as well (ref. Figure 9), using the pro
posed descriptor gives higher image accuracy in natural image database 
(Wang’s-(86.23% � 0.321%), Corel-10k- (74.653% � 2.753), OT-Scene 
-(78.387% � 3.321%), Free photo-(86.37% � 2.84%), and GHIM- 
(70.3% � 1.04%)), land-use image databases (i.e., UC-(78.32% � 3.92) 
and RS (78.325 � 0.214%)), single object with different rotation (i.e., Coil- 
100-(79.321% � 0.32%)), and objects under different illumination condi
tions (i.e., FTVL-(94.234% � 0.452%)). The random forest classification 
algorithm based on CLBP (Rassem, Alsewari, and Makbol 2017) features 
more precisely classifies the Brodatz texture database than the proposed 
method. Moreover, LTP (Srivastava, Binh, and Khare 2014) features are 
more suitable for representing the Color-Brodatz database images; thus, it 
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gives an average accuracy of 96.45% with a standard deviation of 1.86%. The 
radial mean LBP (Shakoor and Boostani 2018) representation is well suitable 
to give high classification accuracy as 93.14% over the KTH-TIPS2b database 
images with a standard deviation of 2.14%. The SVM based classification 
method, which uses the color and wavelet texture feature (Singh and Batra 
(2020)) has given a small number of relevant images at the final result. In 
addition to the texture feature, it considers the color details from the image. 
The combination of color moments and wavelet texture feature fails to give 
more relevant images in the retrieval result. The hybrid system introduced by 
Ali Khan, Javed, and Ashraf (2021) has given less number of similar images 
at the search result. Moreover, extracting shape, color and texture features 
from Brodatz, and KTH-TIPS2b (texture image database) database has given 
very low retrieval results. The image retrieval experiments based on distance 
measure increase the image retrieval system’s time complexity since each 
query of the retrieval system will search the whole database to give the 
relevant images at the top of the retrieval results. The image retrieval 
system’s retrieval time is proportional to the number of images available in 
the image database. On the other hand, the image classification model 
decreases the distance-based retrieval method’s complexity by placing the 
classification model in between the feature extraction and the similarity 
measure process block of the image retrieval system. This reduces the time 
taken to find a prominent match among the different categories of images. 
Once the classification model is fixed above the similarity measure block, the 
classification model is trained by each image’s proposed feature vector and 
its corresponding class labels. The testing is done using the query image after 
completing the training process. Once features are extracted from the query 
image, the extracted features are given as input to the classification model. 
The classification model predicts the query image based on its class. Then, 
the similarity measure is calculated between the query and the predicted 
class images. This reduces the time complexity associated with the distance- 
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based retrieval system. The prediction rate of the classification model based 
image retrieval system depends on the classification accuracy of the classifier 
(i.e., prediction rate and classification accuracy are identical).

Conclusion

The proposed texture descriptor encoded the correlation between the multi 
radii local pixel differences around every point available in the two different 
levels of the stationary wavelet decomposed images. The image retrieval and 
classification experiments on different kinds of wavelet filters involved in 
proposed feature extraction reveal that the Symlet wavelet filter based sta
tionary wavelet transform gives a high retrieval rate and classification accu
racy. The study on the parameters involved in the proposed feature extraction 
method revealed that the eight equally spaced sampling points available in 
a radius less than two of the decomposed images in levels 1 and 2 hold the 
discriminant details about the image. Moreover, the proposed work was 
evaluated over twelve databases such as Wang’s, Corel-10k OT-Scene, Free 
photo, GHIM, Brodatz, Color Brodatz, KTH-TIPS2b, UC, RS, Coil-100 and 
FTVL-databases and they give 86.36%, 72.45%, 57.92%, 81.24%, 68.25%, 
97.81%, 88.54%, 87.17%, 79.74%, 63.47%, 78.72%, and 90.88% retrieval results, 
respectively. The proposed texture feature-based image retrieval system has 
approximately 7.49% (KTH-TIPS2b) and 6.53% (free photo) reduced perfor
mance compared to the retrieval system based on radial difference and radial 
mean texture feature. The future scope of this work can be efficiently encoding 
the correlation of the three different levels of decomposed images by taking the 
different number of sampling points over the multi-scale local regions for a 
large dataset.
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