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A Novel Augmentative Backward Reward Function with 
Deep Reinforcement Learning for Autonomous UAV 
Navigation
Manit Chansuparp and Kulsawasd Jitkajornwanich

Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science, 
School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

ABSTRACT
The autonomous UAV (unmanned aerial vehicle) navigation has 
recently gained an increasing interest from both academic and 
industrial sectors due to its potential uses in various fields and 
especially, the need for social distancing during the pandemic. 
Many works have adopted a deep reinforcement learning (RL) 
method with experience replay called deep deterministic policy 
gradient (DDPG) to control the motion of UAV, and gain high 
accuracy results in static and simplified environments. However, 
they are still far from being ready for real world adoption in that 
the UAVs have to operate under complex and dynamic condi-
tions. We also found that using only DDPG makes the learning 
process prone to oscillation and is inefficient for tasks having high 
dimensional action-state spaces. Furthermore, the goal reward 
mechanism in traditional reward functions brings a bias to the 
state, which resembles the one at the goal area and leads to 
erroneous action selection. To get closer to being ready for real 
world adoption, we proposed a novel method that enables UAVs 
to be capable of handling motion control in realistic environ-
ments. The first component of our proposed method is point 
cloud data (PCD) simplification with truncated icosahedron struc-
ture which converts enormous PCD into a few essential data 
points. In the second component of our method, we replace the 
traditional goal reward mechanism with a new mechanism called 
Augmentative Backward Reward (ABR) function to dispense the 
goal reward to transitions proportionately to its participation. By 
integrating simplified PCD and ABR, we achieved significantly 
better results when compared with using only the-state-of-the- 
art, TD3. In addition, we tested the proposed method with 
another navigation task, BipedalWalkerHardcore, a testbed for 
RL, and the result is still better and steadier than of TD3. These 
results indicate that the proposed method is robust.
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Introduction

With the flourishing of deep learning, numerous smart applications, innovative 
devices and vehicles have been introduced in abundance (Falanga, Kleber, and 
Scaramuzza 2020). Furthermore, with the current pandemic in many countries, 
people nowadays need more modern solutions that are safer. The unmanned 
aerial vehicle (UAV) is one of those solutions to mitigate man’s burden. There 
are many hindrances in developing autonomous UAV, such as the expensive 
cost of UAV and its sensor, enormous size of receiving data, multidimensional 
movement, and catastrophic damage in the event of crash (MAHMUD 2021)

Many researchers have operated on autonomous UAV navigation and imple-
mented many techniques to reach a step closer to real world adoption. Traditional 
methods often used to navigate are path-motion planning algorithms like Rapid 
Random Tree (RRT) (Youn et al. 2020), A* (Erke et al. 2020), Grid-Graph based 
(Hajdu and Ballagi 2020) and Reinforcement Learning (RL) (Zijian et al. 2020). 
These methods can achieve sufficiently high accuracy results but with limitations 
that prior knowledge or certain information of the environment is required – that 
is, only discrete interaction with the environment is allowed and state-action 
spaces are finite, which in fact, in the real-world environment, all of these are 
often unknown and controversial. Hence, there are efforts to overcome these 
limitations (Tan, Yan, and Guan 2017). One of the most successful methods in the 
limelight is, advanced Deep Reinforcement Learning (DRL), the deep determinis-
tic policy gradient (DDPG) (Lillicrap et al. 2015). It can achieve quite good results 
even in continuous space problems.

Having said that, much research still indicates that only DDPG is insuffi-
cient for dynamics and complex environments. Some of them mentioned that 
it is irrational to assume all transitions are equal since it is ignoring the fact 
that there are differences in the value of each individual transition, thus more 
rational sampling strategy should be applied to replace uniform random 
strategy. Hou and Zhang (2019) applied prioritized experience replay (PER) 
technique which prioritizes the importance as TD Error of each transition to 
DDPG and the result shows that prioritizing the experience replay could make 
the network more stable. Additionally, Fujimoto, van, and Meger (2018) also 
pointed out to emphasize the same problem that the main concern of DDPG is 
its instability. DDPG is fragile regarding hyper-parameters and some kinds of 
tuning. A result heavily relies on correct setting of these for the certain tasks 
because the critic (Q-function) dramatically overestimates Q-value, and con-
sequently, can lead to the agent falling into the local optima or perhaps 
catastrophic forgetting of experience. There are other works that tried to 
alleviate instability problems with different methods, such as with recurrent 
networks (Kapturowski et al. 2018) and some mechanisms (Zijian et al. 2020). 
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Despite a number of techniques trying to accomplish the stability problem of 
DDPG, the clear path to real-world adoption is still obscure since it still also 
needs efficiency and complex environmental support.

Besides the control motion problem, in autonomous UAV navigation, the 
environmental perception is another problem. There are many kinds of 
equipment used to simulate vision of UAV such as RGB camera, depth 
camera, ranging sensor (RADAR), light detection and ranging sensor 
(LiDAR). The output of these equipment differs from one another, and are 
suitable for different tasks too. For navigation tasks, LiDAR is recently the 
most popular (Kolar, Benavidez, and Jamshidi 2020) due to its capability to 
accurately measure distance to the object by analyzing the reflected light 
regardless of whether it is day or night time, and also be able to generate 
half a million of 3D point-cloud data (PCD) per second. Moreover, to process 
thoroughly on huge data could be a heavy computational burden for the 
onboard computer of UAV. The data with that size could cause near infinite 
patterns of sight and be supernumerary for RL to learn.

Overall, the hindrances to real world adoption of UAV can be divided into 
two issues. First, current control motion algorithms (Zijian et al. 2020) achieve 
just a moderate success rate and only in simple environments, low state-action 
spaces. Second, an approach to deal with the huge size of PCD for navigation 
still does not exist. Therefore, we propose a comprehensive approach that 
makes autonomous UAV navigation reach real-world adoption more than 
ever. The main contributions of this work are as follows:

(1) Structuring of Realistic 3D Simulation for UAV Control Motion Problem

The environment, UAV and sensor used in this work were simulated in the 
same detail, size, and weight as reality by GAZEBO simulator (Koenig and 
Howard 2004). The LiDAR sensor is the same specification as the actual device. 
In addition, the physics system, gravity, aerodynamic, and magnetic field were 
set just as the same as the world’s. Changing the difficulty level can be done by 
changing the scenario of the environment such as a valley, forest, city, etc.

(2) Point Cloud Simplification with Truncated Icosahedron Structure

A structure that looks like a soccer ball (Truncated Icosahedron) is used to be a 
representative of PCD. With this structure, around three hundred thousand 
points turn into thirty-two sides joined to each other. This simulated ball 
covers and moves along the UAV. Each side of the ball warns the UAV 
whenever there is a point cloud found inside, that is, the UAV is touching 
something. This mechanism helps the UAV to pay attention only for what it 
needs to, so the number of patterns is affordable to learn.
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(3) Sequential Transition Learning

For typical RL, the agent stores what it currently perceives to the buffer as a 
transition and this transition is merely one frame information. It is difficult to 
know the meaning of this laconic transition, for instance, if we take a photo of 
two humans playing table tennis and ask someone “In the photo, in what 
direction the ball will move next, up or down?.” Thus, it is better to adopt 
sequential transition, which is the sequence of observations (o1; o2; . . . ; on), 
especially for some types of path-planning tasks.

(4) Augmentative Backward Reward Function

Often used reward functions for control motion problems commonly have three 
conditions – if arrived, collided and other. Usually, when the agent collides with 
an obstacle, it should get a punishment in the form of negative or less reward to 
dissuade this behavior and, when it reaches the goal, it gets a big amount of 
reward to urge this behavior. The problem is that giving big rewards like this to 
just one transition is irrational and this makes the agent have bias to that 
transition. For instance, if the goal is located at the left bend, whenever the 
agent meets the left bend, it will be heavily urged to turn left even though that is 
not a good decision. Therefore, we proposed the novel and more rational reward 
function, ABR function, which has a mechanism that can provide the dynamic 
reward proportion to the usefulness of transition in a backward fashion. 
Sequential transition, simplified PCD and ABR not only make the DRL robust 
against various environments but also gain desirable results.

Background

In a standard autonomous navigation problem, there only exist two things 
physically, environment and agent. Although the objective is simple, which is 
to control the agent to the goal, making it efficient needs many components. 
This section will describe the detail of each component.

UAV Model

UAV is an aircraft without any human pilot. The kind of UAV used in this work 
was quadrotor due to its advantage over other kinds such that it can maneuver 
comfortably like capable of taking-off and landing vertically and can surpris-
ingly lift the heavier payload compared to its own weight. As the name suggests, 
this UAV has four rotors located at the vertex of a square frame spinning to 
move six degrees of freedom (6DoF). This means that to control this UAV 
requires six variables lx; ly; lz; ax; ay; az

� �
. The first three variables denote linear 
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velocity along x, y, z axes, respectively. As shown in Figure 2.1, the other three 
variables denote angular velocity along x, y, z axes and the rotation along these 
axes were called roll pitch yaw angles (φ; θ;ψ), respectively.

In a realistic environment such as the one used in this work, the forces and 
moments produced by rotors were dampened during the flight by external 
forces including gravity and aerodynamic forces, so, to find the changes of 
UAV’s motion can be done as follows: 

C ¼

Fmx
Fmy
Fmz
Mmx
Mmy
Mmz

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

� ðEg þ EaÞ (2:1) 

Fmx ¼ mð_lx þ aylz � azlyÞ � Sxða2
y þ a2

zÞ � Syð _az � axayÞ þ Szð _ay þ axazÞ

Fmy ¼ mðly þ azlx � axlzÞ þ Sxð _az þ axayÞ � Syða2
x þ a2

zÞ � Szð _ax � ayazÞ

Fmz ¼ mð_lz þ axly � aylxÞ � Sxð _ay þ axazÞ þ Syð _ax þ ayazÞ � Szða2
y þ a2

xÞ

(2:2) 

Mmx ¼ Ix _ax � ðIy � IzÞayaz � Ixyð _ay � axazÞ � Ixzð _az þ axayÞ � Iyzða2
y � a2

zÞ

þ Syð_lz þ axly � aylxÞ þ Szðaxlz � azlx � _lyÞ

Mmy ¼ Iy _ay � ðIz � IxÞazax � Ixyð _ax þ ayazÞ � Iyzð _az � axayÞ � Ixzða2
z � a2

xÞ

� Sxð_lz þ axly � aylxÞ þ Szð_lx � azly þ aylzÞ

Figure 2.1. UAV position and Euler angles in 3D simulation environment.
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Mmz ¼ Iz _az � Ix � Iy
� �

axay � Iyz _ay þ axaz
� �

� Ixz _ax � azay
� �

� Ixy a2
x � a2

y

� �

þ Sx _ly � axlz þ azlx
� �

� Sy _lx � azly þ aylz
� �

C denotes vector of translational and rotational changes in UAV’s motion 
regarding to gravity force, Eg and aerodynamics force, Ea performed against 
UAV’s flight.

where F = force, M = moment, m = the mass of UAV, Ix; Iy; Iz = moments of 
inertia related to UAV axes, Ixy; Iyz; Izx = moments of UAV deviation, 
Sx; Sy; Sz= static moments related to UAV axes. 

Eg ¼ mg

� sinθ
cosθ sinφ
cosθ cosφ

0
0
0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(2:3) 

where g = gravitational acceleration ð9:81 =s2Þ. (Since gravity acts through the 
center of gravity point of the UAV, it creates no moment.)

Ea ¼
Fa
Ma

� �

α ¼ arctan lz
lx β ¼ arcsin ly

ly0 

TM ¼
cosα cosβ cosα sinβ � sinα
� sinβ cosβ 0
� sinα cosβ sinα sinβ cosα

2

4

3

5A ¼ 1
2 ρSf l2

y0   

Fa ¼ ATM
Cx
Cy
Cz

2

4

3

5þ

Xyay
Yxax þ Yzaz
Zyay

2

4

3

5 (2:4) 

Ma ¼ A
0 � za ya
za 0 � xa
� ya xa 0

2

4

3

5TM
Cx
Cy
Cz

2

4

3

5þ ATM
Cl
Cm
Cn

2

4

3

5þ

Lxax þ Lzaz
Myay
Nxax þ Nzaz

2

4

3

5

where α; β = UAV approach and slide angles respectively, ρ Altð Þ = air density at 
given altitude, Sf = the surface of UAV, xa; ya; za = distances between the 
aerodynamic center and UAV’s center of gravity, Cx;Cy;Cz = coefficients of 
components of aerodynamic forces: resistance, side and carrier force, Cl;Cm;Cn 
= coefficients of reclination, tilt and slumping aerodynamic moments, 
Xy;Yx;Yz;Zy; Lx; Lz;My;Nx;Nz = derivatives of components of the aerodynamic 
forces and moments respected to components of linear and angular velocities.
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Reinforcement Learning

This work is based on the RL framework (Sutton and En A. G 1999), in which 
the agent interacts with the environment to maximize the total reward. The RL 
problem can be formulated as a Markov Decision Process (MDP) (Bellman 
1957), it usually consists of five attributes (S;A;P;R; γ), where S is set of states, A 
set of action, P probability of doing action a at state s to reach 1. R reward 
receiving after transiting from s to s. γ 2 0; 1½ � discount factor which determines 
the agent’s preference to the reward achieved in the past, present, and future, if 
γ ¼ 0 the agent will be myopia and only learn on the actions that provide an 
intermediate reward. At each discrete time step t, the agent receives an observa-
tion ot, which may be a part or whole of state st, and take action at to 
environment with regarding to this state, after that the agent receives reward 
rt and is changed to a next state stþ1. This action UAV take is determined by 
policy μθ with parameters θ. In discrete state-action spaces, finding optimal 
policy can usually be affordable, such as by greedily selecting maximum-reward 
action – however, in continuous spaces, it will be a totally different story.

Deep Reinforcement Learning is RL having an experience replay buffer 
which is used to overcome the strong temporal correlations caused by sequen-
tially generated states in RL. The experience replay utilizes memory by storing 
past transitions and, in each iteration, the fixed sized transitions are randomly 
selected to update the network parameters. As a result, DRL achieves quite 
good results beyond human-level performance in certain tasks, Atari (Mnih et 
al. 2013) for example, and also has fewer limitations.

Deep Deterministic Policy Gradient (DDPG) for UAV Navigation

DDPG, as aforementioned, is the most promising method in the continuous 
domain. Lillicrap et al. (2015) broke the limitation of discrete action space in 
DQN (Deep Q Network) with DPG and proposed a state of art actor-critic 
framework. In DQN, the policy can be formulated as follow: 

μ sð Þ ¼ argmaxaQ s; að Þ (2:5) 

An optimal action is derived from taking argument max over the Q-values of all 
actions. DDPG bypasses this by directly outputting the action through the actor. 
For DDPG, the actor-critic framework consists of two eponymous networks and 
each network also has two sibling-like neural networks called eval-net and target- 
net. Actor which is used as a policy μ sjθμð Þ map a state to action and critic 
Q s; ajθQ� �

criticize how good the actor performs in the form of Q-value. To 
update the parameters, actor adopts DPG algorithm proved by Silver et al. (2014): 

ÑθμJ θμð Þ ¼
1
N

XN

i¼1
ÑaQ si; ajθQ� �

ja¼μ sið Þ
Ñθμ μ sjθμð Þ (2:6) 

e2084473-2322 M. CHANSUPARP AND K. JITKAJORNWANICH



where θμ, θμ0 ,θQ,θQ0 denote the parameters of the eval-net, target-net in actor 
and critic network respectively. N denotes batch size.

As shown in formula 2.6, it is simply the sum of Q-value so it needs to 
maximize this result. Critic update its parameters by minimizing this loss 
function that is just a simple TD-error, which presumably represents how 
surprising the transition is to the agent: 

LðθQÞ ¼
1
N

XN

i¼1
ðyi � Qðsi; aijθQÞÞ

2 (2:7) 

yi ¼ r si; aið Þ þ γQ0 siþ1; μ0 siþ1jθμ0
� �

jθQ0
� �

The target-net was used as a time-delayed copy of eval-net thus everything in 
both networks is exactly the same except the update parameters process which 
was performed at regular interval (soft update): 

θ0 ¼ ptauθþ 1 � ptauð Þθ0 ptau < 1                          (2.8) 

This update mechanism makes the learning process gradually change and 
make it more stable. DDPG also leverages the experience replay buffer to store 
past transitions (st; at; rt; stþ1) received by the interactions between agent and 
environment. The batch of transitions was randomly sampled from this buffer 
to be fed as inputs of the network update process.

Prioritized Experience Replay (PER)
Was proposed by Schaul et al. (2015). They settled the hypothesis that the agent 
can learn from certain transitions more than others. So, this opposes traditional 
DQN, which uses uniform sampling and that implies all transitions are equal. 
PER uses the absolute TD-error value as an index which can denote a surprise 
feature of each transition. Additionally, many RL algorithms already compute 
this value as usual for their network parameters update thus extending one 
attribute in transition is just a little computational burden. Although the TD- 
error value can represent the amount the agent can learn from the transition, 
selecting transitions greedily by its TD-error is still not a good choice since it can 
cause the lack of diversity in the batch of transitions. Therefore, PER prioritizes 
transitions in buffer with absolute TD-error being criterion and use it as 
probability of being selected. The transition then gets labeled with priority 
according to the loss, which is the by-product of network parameters update. 
In spite of this stochastic sampling, the diversity in the batch still cannot be 
guaranteed due to the fact that some transitions with large priority may be 
constantly replayed. Then, two hyper-parameters α and β were introduced to 
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adjust the influence of priority on sampling. These parameters were annealed 
during the training process to make the sampling more uniform. The prob-
ability of being selected for transition i can be calculated as follow: 

PðiÞ ¼
pα

i
PN

j¼1
pα

j

(2:9) 

where Ρ = probability, р = priority (obtained by taking absolute to the TD- 
error) N = number of transitions in buffer

Unfortunately, PER tends to make the network receive transitions with 
large TD-error frequently and, as a result, the change of the parameter in 
the network is enlarged and the network will be prone to rattle. Importance- 
sampling weights (A, Hado P van Hasselt, and Sutton 2014) can alleviate this 
by reducing the change of gradient magnitude. The importance-sampling 
weights can be calculated as follow: 

wi ¼
1

NβPðiÞβmaxJwj
(2:10) 

Multi Experience Pools-DDPG (MEP-DDPG)
Zijian et al. (2020) developed some kind of supervised learning model that 
integrates DRL with the human experiences or knowledge. MEP-DDPG parti-
tions the buffer into X separate pools where X � 1 is the number of expert 
humans giving the experiences and the last pool is used to store transitions of 
autonomous exploration. The batch is formed by randomly sampling transi-
tions from different pools and there is one hyper-parameter η which is used to 
proportion the amount of expert’s transitions and exploration transitions. At 
the early of training, η is set to 1 and be gradually decreased at each training 
step to 0, meanwhile the learning method gradually turned into initial DDPG 
in around the second half of the training. This storing and sampling mechan-
ism ensures that the agent learns from quality-transitions and the batch is 
diverse enough until the agent becomes full-fledged. Additionally, Zijian Hu et 
al. proposed Model Predictive Control-Simulated Annealing (MPC-SA) to 
generate expert experiences due to the limitation that each training process 
has numerous transitions and will be costly to gather it all by only manpower. 
Experts only give some guidance, and the rest will be taken care of and 
generated by simulated annealing algorithms. In sum, the MEP-DDPG is 
able to handle UAV navigation in a high complexity environment better 
than DDPG (around 60% and 37% success rate, respectively), but in a low 
complexity environment, it is slightly worse than DDPG.
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Twin Delayed DDPG (TD3)
Fujimoto, van, and Meger (2018) was introduced to address the problem that 
DDPG dramatically overestimates Q-values and lead to policy collapse because 
it directly associates with Q-function. The key to overcoming this error is just 
nothing but increasing and doubling some components of the initial DDPG. 
In TD3, there are three crucial tricks introduced, which consist of:

First, Target Policy Smoothing Regularization, if the error approximator 
like Q-function produces an incorrect narrow peak for some actions, this will 
quickly induce variance to the policy. TD3 corrects this by the regularization 
in which the action used in target Q-function is added with clipped noise to all 
dimensions and then clipped to the valid action range. This process will 
smooth out the Q-function over the changes in action, and as a result, it will 
be harder for the policy to exploit the errors: 

a
0

i ¼ clip μ
0

siþ1jθμ0
� �

þ clip P; � c; cð Þ; alow; ahigh

� �
P,N 0; σð Þ (2:11) 

where σ denotes policy noise, c denotes noise bound.
Second, Clipped Double-Q Learning, as the name suggests “Twin,” TD3 has 

two Q-functions instead of one and has the learning process which is almost the 
same as in DDPG but there are some different details. TD3 leverages two Q- 
functions by modifying the initial TD-error calculation in formula (2.7) to this: 

yi ¼ r si; aið Þ þ γ 1 � dið Þ
j¼1;2

min Q
0

j siþ1; a0ijθQ0j
� �

(2:12) 

where d denotes episode status, 1 = done, 0 = not done.
Both Q-functions in target-net use a single state-action pair and only the 

smaller Q-value is used. The loss is calculated by mean square Bellman error of 
the outputs of these Q-functions Q1;Q2: 

ÑθQ
j
ðθQ

j Þ ¼ 1N
XN

i¼1
ÑθQ

j
yi � Qj si; aijθQj

� �� �2 (2:13) 

Selecting the smaller target Q-value and regressing with that seems like under 
estimation. Even though the value estimate may not be accurate, it will surely 
not be dramatically over.

Third, delayed target and policy updates, the target-net was known that it 
could be used to reduce the error upon multiple updates, and the policy 
updates upon high-error value estimate (Q-value) cause divergence so the 
update rate of policy network (actor) should be lower than that of the value 
network (critic) to decrease the error before relaying it to the policy. Their 
results empirically showed an improvement performance from delaying the 
policy and target networks, which according to the two-time scale algorithm 
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(Konda and Tsitsiklis 2003), often contributes to the convergence in linear 
setting. With these three tricks, the overestimation in DDPG is alleviated and 
greatly improves both the learning speed and performance.

Methodology

Point Cloud Simplification with Truncated Icosahedron Structure

Truncated icosahedron, an object with the shape of a soccer ball, is a formation 
of twelve pentagons and twenty hexagons. This ball-shape object has ever been 
formed physically for many UAVs’ purposes such as protective cage (MAHMUD 
2021) and moving sport balls (Nitta et al. 2015); but, in this work, we propose a 
novel way to use a virtual truncated icosahedron structure for UAV, in which the 
ball shape is visualized to both simplifying point cloud data and at the same time 
avoiding collisions. The only perception UAV has in this work is from a simula-
tion of Velodyne VLP-16 LiDAR sensor, as can be seen in Figure 3.1. It comes 
with a 100-meter sensor range, 360°, 30° horizontal and vertical field of views and 
generates ~300,000 points/second. If we put this huge PCD straight through to the 
neural networks, it will be too complex to model. If we do fixed-interval sampling 
to a moderate number, some necessary data may be lost.

Hence, we leverage the ball shape, which is as shown in Figure 3.2, to extract 
only necessary data for navigation from the mass of the point cloud. The UAV will 
be covered with the impalpable ball shape structure, which has 32 faces and a 
radius with the same length as a safe flying distance pradius. Sensing observation 

Figure 3.1. Simulation LiDAR sensor adopted in this work, Velodyne VLP-16 model.
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received from the environment is in the form of vector f1; f2; . . . ; f32ð Þ, each fi 
denotes a distance between the nearest point cloud, which trespasses into the ball at 
face i, and if fi is 0, it means that no point cloud trespasses at that face–in other 
word, there is nothing needed to be taken into account. To calculate f , first, we 
segment only point clouds inside the ball with an implicit equation of the plane. 
This process is called an inclusion test. 

Fi pð Þ ¼ aipx þ bipy þ cipz þ d � d ¼ n� P (3:1) 

Each face of the ball is an oriented plane with a normal vector oriented outside 
ni ai; bi; cið Þ and p is the coordinate of the point cloud. P is a known point on 
the plane. If Fi pð Þ< 0 for at least one, then that point p lies outside the ball and 
will be ignored. After getting the region of interest of point clouds, next, we 
find what face the point belongs to by calculating a Euclidean distance of point 
cloud to the center point of each face ci as follows: 

fi¼1;32 ¼ j 2 J
min ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pjx � cix
� �2

þ pjy � ciy
� �2

þ pjz � ciz
� �2

q

(3:2) 

where J denotes the number of point clouds in the ball.
The point belongs to the nearest face and, likewise, the minimum distance 

point’s value is thus used to represent that face.

Sequential Transition Learning

With the assumption that in a navigation task, the agent should learn from the 
data which also provides directional insight instead of only one frame, sequential 
transition was adopted in their works (Kapturowski et al. 2018; Zhang et al. 2020a) 
and their experimental results showed that it helps improve the performance in 
various RL tasks. Hence, in this work, the state s which constitutes a transition is a 
sequence of previous observations. When the agent takes an action in the envir-
onment, it receives a current observation ot which consists of a simplified PCD 

Figure 3.2. Left: Truncated icosahedron structure, Middle: UAV in environment, Right: A UAV’s 
perception of surrounding objects.
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f1; . . . ; f32ð Þ, an altitude of UAV zt, two angles of the head’s UAV (or camera 
direction in headless UAV) with a goal position ht and a UAV position with a goal 
position gt. So, an observation has 35 attributes and looks like this 
f1; . . . ; f32; z; h; gð Þ. The observation will be stacked up to a fixed-size sequential 

state in FIFO manner then the state looks like this o1; . . . ; opframes

� �
. pframes is the 

length of frames in one state.

Augmentative Backward Reward Function

Besides the robust learning models, much research suggests the same thing that 
augmenting some processes could significantly help the model to converge to 
optimal policy (Zhang et al. 2020b; Zijian et al. 2020) so we develop a novel reward 
function called ABR function in this work. The development of this function was 
motivated by the irrationality of traditional reward functions (Zhang et al. 2020b; 
Zijian et al. 2020). Traditional reward functions usually have three conditions to 
give a reward including: when it arrives, when it collides, and others. The irrational 
part is when they arrive, where the only last transition of the episode will receive a 
“huge” chunk of reward. Although this part will help increase the success rate, it 
only works in the setting that is almost constant and very simple due to the fact 
that it produces a bias on the observation which is similar to the one at the goal. 
Every time the agent faces this observation, it will be heavily urged to take the same 
action as the one previously taken at the goal–even though it is bad. So, if the 
environment is simple enough to hardly find this observation except at the goal 
area, then the traditional goal reward mechanism can still increase the success rate 
to convergence. Our hypothesis is that when the agent reaches the goal, it is true 
that the agent should get more reward than usual to urge this behavior – but not 
just only the last transition. Every transition in the episode it participated in and 
contributed to the success (some of them contribute and some not) should be 
taken into account. The question is how to evaluate the contribution of each 
transition. Therefore, in ABR, the new goal reward mechanism was developed to 
dispense goal reward appropriately. With the new mechanism, when the agent 
arrives at the goal, all transitions in the episode will receive an additional reward 
‘proportional’ to its proficiency. ABR consists of the following processes. First, 
when the agent reaches the goal, all transitions in the episode are fed as input into 
the backward reward process. Transitions at index i, where i%pframes ¼ 0 are 

selected to extract pfeatures features e1; . . . ; epfeatures

� �
with convolutional neural 

network (CNN) to be a representative of trajectory τ of pframes steps motion, the 
architecture of CNN is as shown in Figure 3.3.

Next is to calculate the similarity between τ and each trajectory in history h 
with a cosine similarity algorithm as follows: 
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cod A;Bð Þ ¼ 1 �
A � B

k A k k B k
(3:3) 

ςi ¼ j 2 J
max

1 � cod τi;Hj
� �� �

(3:4) 

where cod denotes cosine distance function. A;B = vector. ς denotes cosine 
similarity between trajectory τi and past trajectories. H, J = number of 
trajectories in history.

If ςi is less than similarity threshold psimilarity then append τi into history H 
as a new found trajectory pattern. After that, insert floored sum reward 
P

lim itsi� pframes
k¼i rk

j k
of pframes previous transitions into an unique stack of 

reward of H at index j and sort the stack ascendingly. Additional reward 
radditional will be added to reward r of transition i until i � pframes in the buffer. 
The additional reward can be calculated as follows. radditional ¼ m� paddReward 
where paddReward denotes some small value, m = index of floored sum reward 
in the unique stack. The additional reward will be low or high depending on 
the rank of the sum reward in the unique stack; this mechanism drives the 
agent to move in a trajectory that gives a larger sum reward than the 
previous and the whole process of ABR can be illustrated as in Figure 3.4. 

Rðs; aÞ ¼
rcollided if collided
w1 Dpre � Dcur
� �

þ w2 � 1 z � PapproAlt
� �� �

=PapproAlt
� �� �

w3 1 � vh=180ð Þð Þ þ w4 vg
�

180
� �� �

8
><

>:
þ if not collided

vh ¼
360 � h if h> 180
h

�

vg ¼
360 � g if g > 180
g

�

Figure 3.3. Features extraction network structure. The parameters of one-dimensional convolu-
tional layer (Conv1) denote its filters and its kernel size respectively and for the other layers, it 
denotes dimensionality of output. Each layer’s activation function is Rectified Linear Unit (ReLU).
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(3.5) 

The reward function used in this work only has two conditions like this.
where Dpre;Dcur denote the previous and current Euclidean distances between 
the agent and the goal, z denotes an altitude of UAV, h; g denote angles of the 
UAV’s head and position to goal, respectively, papproAlt denotes an appropriate 
altitude or flight level. W1� 4 denote weight-parameters. If the agent arrives at 
the goal, it will receive reward from the above function and also all transitions 
in the episode will receive additional reward from ABR.

Model Architecture

The aim of this work is to develop a universal model, which can navigate the 
UAV in complex and various environments or whether it be static and 
dynamic in a realistic fashion. And as mentioned in section 2, it is obvious 
that only initial DDPG is insufficient to handle the high complex continuous 
problem like UAV navigation. Therefore, we chose TD3 as a DRL model due 
to both its efficiency and stability. We will leave the reason for not adding 
aforementioned techniques like PER in section 4. The main entities in this 
work consist of: UAV (as an agent), goal, and environment. One exploration 
episode will end when one of these following conditions occur: 1. An agent 
reaches within 2 meters radius around the goal and also does not exceed 6 
meters in altitude. 2. An agent collides. 3. An agent runs over the limit step. At 
each time step t, the agent receives an observation which is 35 attributes vector 
of simplified PCD with UAV’s altitude and angles. Subsequently, the agent 
selects an action that is 4-dimensional vector of three linear velocities and one 
angular velocity lx; ly; lz; az

� �
respectively with regards to the current state and 

Figure 3.4. The process flow of Augmentative Backward Reward function (ABR).
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policy. After the agent executes the action, the environment returns reward 
and observation t þ 1 as feedback. Then, the transition including 
st; at; rt; stþ1; dt; itð Þ is stored into a buffer. During the training, N transitions 

are sampled from the buffer to form a mini-batch to update parameters in the 
learning networks. After applying all techniques in 3.1,3.2 and 3.3, the pro-
posed method can be shown as in Figure 3.5 and Algorithm 3.1.

Algorithm 3.1: TD3 with Sequential transition and ABR Algorithm 

Initialize eval-networks of critic Q1;Q2 and actor μ with random parameters 
θQ1 ; θQ2 and θμ. Initialize target-networks with same parameters as in eval- 
networks θ0 ¼ θ

Initialize buffer B with size pbuffer and trajectories history H
For episode e = 1 to N do
Receive initial observation o1 from env and form state s 0; 0; . . . ; opframes

� �

Figure 3.5. The process flow of proposed method in autonomous UAV navigation task. The UAV (agent) 
ask the actor network for next action and then the critic network will evaluate that selected action.
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For t = 1 to T do
Select an action with exploration noise 

at ¼ clip μ stjθμð Þ þP; alow; ahigh
� �

:

.
Execute at and observe reward rt, new observation otþ1,

episode status dt.
Generate stþ1 by insert otþ1 to st in FIFO manner.
Store transition st; at; rt; stþ1; dt; itð Þ in B.
If dt == 1 (done) & it == ‘goal’ then

Select All transitions si; ai; ri; siþ1; dið Þ in e from B.
For k = 1 to t=pframes do

l = k + pframes.
e1; . . . ; epfeatures

� �
¼ τk = trajectory extracted from sl 

with CNN.
Find similarity ςk ¼ j2J 1 � cod τk;Hj

� �� �
.

if ςk < psimilarity then
Append τk to H.

end if
Calculate floored sum reward R ¼

Pl� pframes

j¼l
rj.

Insert R to unique reward stack of Hj & sort stack then m 
is return index. 

rl;l� pframesþ ¼ m� paddReward 

end for
end if
Sample mini-batch of N transitions si; ai; ri; siþ1; dið Þ from B 
randomly.
a0i ¼ clip μ0 siþ1jθμ0

� �
þ ε; alow; ahigh

� �
, 

yi ¼ ri þ γ 1 � dið Þ j¼1;2 Q0j siþ1; a0ijθQ0 j
� �

.

Update critic ÑθQ
j

θQ
j

� �
¼ 1

N
PN

i¼1
ÑθQ

j
yi � Qj si; aijθQj

� �� �2.

if t mod pupdateDelay == 0 then

Update actor θμ using deterministic policy gradient 

Ñθμ J θμð Þ ¼
1
N

XN

i¼1
ÑθμQ1 si; μ sijθμð ÞjθQ1

� �
:

Update target networks

θQ0 ¼ ptauθQ þ 1 � ptauð ÞθQ0 , θμ0 ¼ ptauθμ þ 1 � ptauð Þθμ0 .
end if
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if t > plimitStep or dt == 1 (done) then
break loop.

end if
end for

end for

Experiments

To approach the real-world adoption more closely, the proposed method was 
trained under the condition that is as realistic as possible. As aforementioned, 
it is unaffordable to learn from raw LiDAR sensing data hence, all UAV 
experiments in this work are operated under point cloud simplification with 
Truncated Icosahedron structure. At each episode, the positions of UAV and 
the goal were randomly set. The success rate (a probability of the UAV 
reaching the goal for the last 500 episodes) was used to measure the perfor-
mance of each method. And in this section, several experiments are conducted 
to compare the performances in UAV navigation tasks between the proposed 
method and related state-of-the-art methods.

Experimental Setting

In this work, the UAV control was operated via Robot Operating System 
(ROS) (Stanford Artificial Intelligence Laboratory et al. 2018) and the data 
in aspects of UAV were visualized by Rviz (Kam et al. 2015). In terms of 
environment, GAZEBO framework was in charge of it all. The programming 
language used to implement the proposed method was Python3. All processes 
ran on a laptop computer with Ubuntu 20.04, Core™ i7 CPU @2.20 GHz, 
GeForce GTX 1050 Mobile Graphic chip and 32 GB memory. List of attributes 
and hyper-parameters for this work are shown in Table 4.1

Experimental Results

Training In Static Environments
The 5000 episodes training of five methods: 1. DDPG with Sequential transi-
tion and Traditional Reward function, 2. TD3 with Sequential transition and 
Traditional Reward function, 3. TD3 with Sequential transition and No Goal 
Reward function (traditional reward function but no goal reward when the 
agent reached the goal point), 4. TD3 with Sequential transition and Equal 
Goal Reward function (traditional reward function but gives a small equal 
reward to all transitions instead of a chunk of goal reward to a last transition), 
5. TD3 with Sequential transition and ABR (proposed method) were con-
ducted on the static environment, valley, as shown in Figure 4.2.
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The experimental results demonstrate that DDPG’s performance was lower 
than that of TD3. DDPG achieved a 37.8% success rate, which was almost the 
same value as in the high complexity environment experiment of Hu et al. 2020, 
and the highest is 46% at around episode 3600. In terms of TD3, TD3 with 
traditional reward function achieved 42.2% and 57.3% highest at around episode 
1300. It is noticeable that after episode 3500 of TD3, the success rate dramatically 
falls down according to the increase of collision rate. From the observation, we 
found that at that period, the UAV changed the behavior to fly as close as 
designated altitude papproAlt, it may try to earn more rewards but nonetheless this 
raises the risk of collision instead. However, performances of these two methods 
are still considered as low if considering the real-world adoption. The success 
rate was increased by around 10% after we cut off the chunk of goal reward in 
the traditional reward function, TD+Seq+NGR achieved 53.6%. This result was 
according to our hypothesis that a chunk of goal reward produces bias to the 
observation similar to the one at goal. Next, we tried changing the chunk of goal 
reward into giving equal small reward to all transitions in the episode in which 
the agent reached the goal point. This simple goal reward dispensation helps 

Table 4.1 Attributes and Hyper-parameters for this work.

No. Name Symbol Value

1 UAV - Quadrotor

2 LiDAR sensor - Velodyne vlp
3 Environment - 1200 m2

4 Discount factor γ 0.99

5 Soft update rate ptau 0.005
6 Noise bound c 0.5

7 Action limit alow; ahigh -2,2

8 Number of frames in one state pframes 3

9 Number of features extracted from one state pfeatures 20
10 Similarity threshold psimilarity 98%

11 Additional reward multiplier paddReward 0.1

12 Delay to slow the update of actor and target networks pupdateDelay 2

13 Reward when collide rcollided -50

14 Appropriate altitude or Flight level papproAlt 3.5 m

15 Size of buffer pbuffer 106

16 Weight-parameters in reward function w1� 4 8,1,1,0.5 
respectively

17 Radius of Truncated icosahedron structure, Safe flying distance pradius 4 m
18 Maximum number of steps per episode plimitStep 300

19 Batch size N 100
20 Traditional reward function: goal reward, collision punishment (In case 

“other”, Formula 3.5)
- 50,-50

21 Small reward given to all transitions in success episode of equal goal reward 
function

- 1
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stimulate the agent reaching the goal more often, the success rate was boosted to 
69.2%. But when we used the more rational goal reward dispensation, ABR, the 
success rate was tremendously increased to 84.8%.

Training In Dynamic Environments
Besides complex geography, what it should be concerned in real world is 
moving objects that may obstruct the UAV’s flight like birds and planes. 
Consequently, we added three planes having speed and flight level close to 
UAV’s into the environments as shown in Figure 4.3.

As expected and shown in Figure 4.4, the success rate of UAV reaching 
the goal falls down to 61.6% when the UAVs are trained in dynamic 
environments with the proposed method and reach the highest 74% at 
around episode 2900 – the same situation as in episode 1300 occurs again, 
after episode 2900. The UAV tried to maintain the altitude at papproAlt, 
which is the same altitude level as planes and as a result the collision 
frequently occurs then it leads to decrease of success rate. Contrarily, the 

Figure 4.2. Experimental result in static environment. Left: Average success rate that UAV reach 
the goal point. Right: Average collision rate that UAV collide with environment surface. (The figure 
is designed for color version).

Figure 4.1. The 3D static simulation environment. Left: Top view of all whole map. Right: Main view 
of center of map. The white cylinder is goal point.
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result of TD3 with traditional reward function was 37% success rate, 
which is slightly lower than its result in the static environments, but the 
highest is 73.8% which is almost the same as of the proposed method. The 
success rates of TD3 with no goal reward and equal goal reward function 
were higher than that of the traditional reward function: 47.8% and 55%, 
respectively. The success rate of the DDPG method was only 0.6%; it 
looked unsteady and never reached even 20%.

TD3 with ABR in Other Tasks
To make sure that the proposed method is robust, we tested it on 
BipedalWalkerHardcore, a testbed for RL, in which it has many similar 
componentsm such as UAV navigation tasks. The aim of 
BipedalWalkerHardcore is to move a robot forward as far as possible by 
having obstacles like pitfall, ladder and stump existing in front. The observa-
tion robot receives 10 lines of LiDAR sensor and velocity in various angles. 
Due to the fact that there is no target point in this task thus we defined a 

Figure 4.4. Experimental result in dynamic environment. Left: Average success rate. Right: Average 
collision rate. (The figure is designed for color version).

Figure 4.3. The 3D dynamic simulation environment. Left: Top view of all whole map. Right: Main 
view of center of map.
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certain episodic reward as the target and goal. The result of 1000 episodes of 
training, which shown in Figure 4.5, indicates that just changing reward 
function to ABR in TD3 can improve the episodic reward from −89.61 to 
−70.91 (the average of the last 100 episodes).

Conclusion

This work proposed two novel methods to make Autonomous UAV 
Navigation closer to real world adoption. First, we leverage the truncated 
icosahedron structure (a soccer ball-like object) to extract only necessary 
data from precise LiDAR sensor data which is unaffordable for deep neural 
networks to learn. As proved in the past (Kapturowski et al. 2018; Zhang et 
al. 2020a), sequential transition was adopted in this work to let the agent 
learn rich data which is not laconic. Second, we address the problem of 
having bias at goal state in the traditional reward function with rational 
goal reward dispensation in ABR function. The experimental results indi-
cate palpably that TD3 is better than DDPG in high state-action spaces and 
extra rewards could help stimulate the agent reaching the goal point. On 
the other hand, if the goal reward mechanism is irrational, it will result in 
harm instead. This influence can be observed in the experimental results of 
TR, EGR, and ABR that the success rates are higher according to the level 
of rationality. The proposed method achieved 84.8% success rate to navi-
gate UAVs to the goal in static environments and 61.6% for dynamic 
environments. In addition, we have tested the proposed method on 

Figure 4.5. Experimental result of TD3 method and TD3+Seq+ABR method (Proposed) in other 
navigation task, BipedalWalkerHardcore. (The figure is designed for color version).
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another navigation task, BipedalWalkerHardcore and the result was as 
expected in which adding ABR to TD3 improves the episodic reward 
from −89.61 to −70.91. This is evident that the proposed method is robust.

However, we still have found the problem that the agent is apprehensive 
against risky scenes, in all methods we have tested including the proposed 
method. When the agent faces risky scenes such as high hills in late episodes of 
training, it will move back and forth repeatedly until running out of quota 
steps. This behavior seems like the way the agent used to avoid punishment 
and lead to stuck in local optima. The video of our experiments is available at 
https://youtu.be/WYpYSG0t7oU.

In the future, we intend to improve our method to gain more success rate 
and less collisions in even more challenging environments.
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