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Abstract
The vector space of the multi-indexed sequences over a field and the vector space of the sequences
with finite support are dual to each other, with respect to an appropriate scalar product. It follows
that the polynomial operator in the shift which U. Oberst and J. C. Willems have introduced to define
time invariant discrete linear dynamical systems can be explained as the adjoint of the polynomial
multiplication.
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1 Introduction
Discrete algebraic dynamical systems theory essentially studies subsets B (called behavior ) of the
set of functions from a time set T (usually Nr,Zr) to Fl, where F is a field. In this paper, we will
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use the time set Nr only, for simplicity. For reference, we use the basic papers of Jan C. Willems
and Ulrich Oberst who have established the theory: [1, 2] and [3]. For more recent developments on
the subject, interested readers may consult [4, 5, 6, 7, 8, 9, 10]. In [1, 2], where the case r = 1 is
treated, these subsets are required to be linear, time invariant, closed with respect to the topology
of pointwise convergence. In [3], the general case r > 1 has been treated and algebraic structures
used to interpret these properties.

A key concept in defining discrete algebraic linear systems is the polynomial operator in the shift.
There is, in general, no much algebraic explanation about the construction of this operator in the
texts about discrete algebraic dynamical systems. An interpretation, in [3], which is of course true,
uses systems defined by the polynomial operator in the shifts itself but this does not explain its origin
because an object cannot be explained by referencing to itself.

Our goal is to give an explanation of this operator, parting from initial notions which do not depend
on it. We believe our approach is simpler and more natural. This gives us a deeper understanding
of this operator and allows to reconnect with classical algebraic structures, giving discrete algebraic
dynamical systems an elegant aspect.

2 Discrete Algebraic Dynamical Systems

2.1 Notations
Let N be the set of the natural integers , F a commutative field and r > 1 an integer. The set of the
multi-indexed sequences

W : Nr −→ F
W 7−→W (α) =Wα

is denoted by FNr

. It is an F-vector space. For W ∈ FNr

, the support of W is the set

Supp(W ) = {α ∈ Nr |Wα 6= 0}.

The subset of FNr

with finite support is denoted by F(Nr); it is an F vector subspace of FNr

.

For ρ = 1, . . . , r, let Xρ (resp. Yρ) be letters, called also variables. For simplicity, X (resp. Y ) will
denote X1, . . . , Xr (resp Y1, . . . , Yr) and for α ∈ Nr we define Xα (resp. Y α) by

Xα = Xα1
1 · · ·X

αr
r (resp. Y α = Y α1

1 · · ·Y αr
r ).

For α ∈ Nr, let δα be the mapping

δα : Nr −→ F

β 7−→ δα(β) =

{
0, if α 6= β,
1, if α = β.

(2.1)

Then δα ∈ F(Nr) with Supp(δα) = {α}.
Let D = F[X1, . . . , Xr] = F[X] be the F-vector space of the polynomials with the r variables

X1, . . . , Xr and A = F[[Y1, . . . , Yr]] = F[[Y ]] that of the formal power series with the r variables
Y1, . . . , Yr. The family (Xα)α∈Nr is an F-base of D, thus an element of D can be written uniquely as

d(X) =
∑
α∈Nr

dαX
α with dα ∈ F for all α ∈ Nr,

where dα = 0 except for a finite number of α. An element W (Y ) of A can be uniquely expressed as

W (Y ) =
∑
α∈Nr

WαY
α with dα ∈ F for all α ∈ Nr .
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Therefore, we get the F-vector spaces isomorphisms

D = F[X1, . . . , Xr] ∼= F(Nr)

Xα ←→ δα

and

A = F[[Y1, . . . , Yr]] ∼= FNr∑
α∈Nr

WαY
α ←→

∑
α∈Nr

Wαδα.

By these isomorphisms, we may identify Xα (resp. Y α) with the element δα of F(Nr) (resp. of FNr

).
If W ∈ FNr

, we may write W = (Wα)α∈Nr , where Wα = W (α) for all α ∈ Nr. Finally, we may write
the following identifications

W = (Wα)α∈Nr =
∑
α∈Nr

WαY
α =W (Y ).

The set FNr

(resp. F(Nr)) is also denoted by A (resp. D). Let k, l > 1 be integers. The cartesian
product A× · · · ×A (resp. D× . . . ×D) (l times) is denoted by Al (resp. Dl). The set of matrices
with k lines and l columns with coefficients in A (resp. in D) is denoted Ak,l (resp. Dk,l). Denoting
the variables X1, . . . , Xr simply by X, an element R(X) ∈ Dk,l is of the form

R(X) = (Rκλ(X))16κ6k,16λ6 l

where Rκλ(X) ∈ D for κ = 1, . . . , k and λ = 1, . . . , l. For an F-vector space V , the F-vector space of
the linear forms f : V −→ F is denoted by HomF(V,F).

2.2 Discrete linear dynamical systems according to Oberst
Now, we are going to give the definition of an algebraic discrete dynamical systems as formulated in
[3] (case r > 1) , which is the generalization of those of Willems (case r = 1).

For a polynomial P (X) =
∑
α∈Nr PαX

α ∈ D and an element W ∈ A, the element P (X)W of A
is defined by

(P (X)W )β =
∑
α∈Nr

PαWα+β (2.2)

for all β ∈ Nr.
For a polynomial matrix R(X) ∈ Dk,l and a vector W ∈ Al, the element R(X)W ∈ Ak is defined

by

R(X)W = (

l∑
λ=1

Rκλ(X)Wλ(Y ))κ=1,...,k. (2.3)

Definition 2.1. A discrete linear dynamical system (or simply a system) is a subset B of Al of the
form

B = {W ∈ Al | R(X)W = 0}. (2.4)

We call these systems discrete algebraic dynamical systems because the properties of time
invariance, linearity and completeness (or closure with respect to the topology of pointwise convergence),
([1]) is captured in the algebraic structure of B, more precisely because of the fact that B is a D-
submodule of Al.

This definition is based on the equation (2.3), which uses (2.2). So, the question is: what does
(2.2) mean ? Where does it come from and how can it be algebraically explained ?
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Let get a closer look at (2.2). When P (X) = Xα is a monic monomial, we get the element
XαW ∈ Al which verifies

(XαW )β =Wα+β ,

i.e. the value of XαW at β is the value of W at α + β for all β ∈ Nr. For the case r = 1, the values
of the power series XnW are those of W , but “shifted” to the left. For this reason, the action of Xα

on W is called (left) shift(s) and Xα a shift(s) operator, the number of shifts being the integer r. By
linearity, every polynomial P (X) ∈ D defines, by equation (2.2), a polynomial operator in the shift(s);
it is the linear mapping of D-modules, denoted again by P (X) such that

P (X) : A −→ A

W 7−→ P (X)W.

We remark that (2.3) is very similar to the “product” of the matrix R(X) and the vector W in the
sense that the term

∑l
λ=1Rκλ(X)Wλ(Y ) gives the κ-th row, like in the ordinary matrix-vector product.

Therefore, we may think R(X)W as a product of the matrix R(X) and the vector W , constructed from
the polynomial-vector multiplication (2.2) which we are going to explain.

In [3, p.20], the category Modf(D) of the finitely generated D modules and the category Syst(A)
of all systems which are subsets of Al for some integer l > 1 are introduced. Then, using the
contravariant functor

S = HomD(−,A) : Modf(D)op −→ Syst(A)

M 7−→ HomD(M,A)

(f :M −→ N) 7−→
{

HomD(f,A) : HomF(N, A) −→ HomF(M,A)
u 7−→ u ◦ f,

where Modf(D)op is the opposite category of Modf(D) ([11]), it is shown that the D-linear mapping
of D-modules, denoted by R,

R : Al −→ Ak

W 7−→ R(X)W

is the image under S of the D-linear mapping of D-modules defined by the right polynomial multiplicat-
ion by R(X), denoted by RT :

RT : Dk −→ Dl

d(X) 7−→ d(X) ·R(X),

i.e S(RT ) = R. In other terms, the action of the matrix R(X) on W , which is R(X)W , defined by the
(2.3) comes from the transformation by S of the right polynomial matrix multiplication by R(X). The
problem with this explanation is that the functor S is defined between two categories, one of which
being defined from systems, which are already defined using (2.3).

In this paper, we use a modified approach: we consider the category Vect(F) of the vector spaces
over F and use the functor

HomF(−,F) : Vect(F) −→ Vect(F)
E 7−→ HomF(E,F)

(f : E −→ F ) 7−→
{

HomF(f,F) : HomF(F, F) −→ HomF(E,F)
u 7−→ u ◦ f.

(2.5)

If for E,F ∈ Vect(F), there exists a scalar product 〈−,−〉 : E × F −→ F, then the linear mapping
u ◦ f in (2.5) coincides with the classical adjoint (without the use of categories and functor) of the
linear mapping f .
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3 Main Theorem

3.1 Scalar product
In order to make an effective use of (2.5), we shall construct a scalar product 〈−,−〉 : D×A −→ F .

Proposition 3.1. The bilinear mapping

〈−,−〉 : D×A −→ F

(d(X),W (Y )) 7−→ 〈d(X),W (Y )〉 =
∑
α∈Nr

dα ·Wα
(3.1)

satisfies the following properties:
(1) The homomorphism

D −→ HomF(A,F)

d(X) 7−→
{
〈d(X),−〉 : A −→ F

W (Y ) 7−→ 〈d(X),W (Y )〉
(3.2)

and

A −→ HomF(D,F)

W (Y ) 7−→
{
〈−,W (Y )〉 : D −→ F

d(X) 7−→ 〈d(X),W (Y )〉
(3.3)

are injective .
(2) The monomorphism (3.3) is an isomorphism of vector spaces.

Proof. (1) Let d1(X), d2(X) ∈ D such that 〈d1(X),W (Y )〉 = 〈d2(X),W (Y )〉 for all W (Y ) ∈ A. for
each α ∈ Nr , set W (Y ) = δα (see (2.1)). It follows that 〈d1(X), δα〉 = d1α and 〈d2(X), δα〉 = d2α i.e.
d1(X) = d2(X). Thus the homomorphism (3.2) is injective.
Let W1(Y ),W2(Y ) ∈ A such that 〈−,W1(Y )〉 = 〈−,W2(Y )〉. Then 〈d(X),W1(Y )〉 = 〈d(X),W2(Y )〉
for all d(X) ∈ D . Setting d(X) = δα for each α ∈ Nr, we get (W1)α = (W2)α i.e W1 = W2. Thus
(3.3) is injective.
(2) Let ψ ∈ HomF(A,F) and W (Y ) ∈ A defined by Wα = ψ(δα) for all α ∈ ω. For each d(X) ∈ D
we have

d(X) =
∑
α∈Nr

dαδα

and
ψ(d(X)) = ψ(

∑
α∈Nr

dαδα) =
∑
α∈Nr

dαψ(δα) =
∑
α∈Nr

dαWα = 〈d(X),W (Y )〉.

Therefore ψ = 〈−,W (Y )〉. Thus the monomorphism (3.3) is surjective, i.e. a vector spaces isomorph-
ism.

We say that 〈−,−〉 is a scalar product and the vector spaces A and D are dual (to each other).

3.2 Polynomial operator in the shift(s)
Here we prove our main theorem 3.3.

Part (2) of proposition 3.1 gives the isomorphism

A ∼= HomF(D,F), W (Y ) 7−→ 〈−,W (Y )〉.
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Considering W ∈ A as element of HomF(D,F), we have

〈d(X),W 〉 =W (d(X)). (3.4)

In other terms, with the identification A = HomF(D,F), we may view W as acting on Xα by

W (Xα) =W (α) =Wα. (3.5)

Let Vect(F) be the category whose object consists of all F-vector spaces and for two objects E,F
of Vect(F), the set of morphism from E to F is HomF(E,F ), which consists of all linear mappings
from E to F . We then have the covariant functor HomF(−,F) defined by

HomF(−,F) : Vect(F) −→ Vect(F)
E 7−→ HomF(E,F)

(f : E −→ F ) 7−→
{

HomF(f,F) : HomF(F, F) −→ HomF(E,F)
u 7−→ u ◦ f,

([11]). The following definition is in the same book :

Definition 3.1. Let E,F ∈ Vect(F) and f ∈ HomF(E,F ). The adjoint of f is the linear mapping
HomF(f,F).

Now we are going to look at the adjoints of particular linear mappings: take E = F = D and fix
d(X) ∈ D. We get the “ multiplication by d(X) ”, which is the linear mapping

d(X) : D −→ D, c(X) 7−→ c(X) · d(X)

which we also denoted by d(X). For the case d(X) = Xβ and β ∈ Nr. We get the “ multiplication by
Xβ ”:

Xβ : D −→ D, c(X) 7−→ c(X) ·Xβ .

The adjoint of the multiplication by Xβ is given by the following lemma:

Lemma 3.1. The adjoint of the multiplication by Xβ

Xβ : D −→ D

c(X) 7−→ c(X) ·Xβ ,

is the F-endomorphism

A −→ A

W (Y ) =
∑
α∈Nr

WαY
α 7−→

∑
α∈Nr

Wα+βY
α. (3.6)

Proof. We already know that HomF(D,F) = A. If W ∈ A, the mapping HomF(X
β ,F)(W ) =W ◦Xβ

is an element of A and from (3.5), we have that

(W ◦Xβ)(α) =W ◦Xβ(Xα) =W (Xβ ·Xα) =W (Xα+β) =Wα+β

for all α ∈ Nr (the symbol ◦ is the composition of mappings). This completes the proof of (3.6).
The adjoint of the multiplication by Xβ is then the shift(s) operator. We use symbol “◦ ” to mean

that Xβ operates on a power series. Thus,

Xβ ◦W (Y ) = HomF(X
β ,F)(W (Y )) =

∑
α∈Nr

Wα+βY
α ∈ A .
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Example 3.2. Fix α ∈ Nr and take W (Y ) = Y α. For each β ∈ Nr, we have

Xβ ◦ Y α =

{
Y α−β if β 6+ α,
0 otherwise,

where β 6+ α means that βi 6 αi for i = 1, . . . , r.

We have the following fundamental property:

(Xα ·Xβ) ◦W (Y ) = Xα ◦ (Xβ ◦W (Y )) (3.7)

for all α, β ∈ Nr and W (Y ) ∈ A.

Now consider the general case of the polynomial multiplication by d(X) ∈ D:

d(X) : D −→ D, c(X) 7−→ c(X) · d(X). (3.8)

If d(X) =
∑
β dβX

β , we may view d(X) as a linear combination of Xβ . Taking the adjoint, we have

HomF(d(X),F) =
∑
β

dβ HomF(X
β ,F),

and using (3.6), we have

HomF(d(X),F)(W (Y )) =
∑
β

dβ HomF(X
β ,F)(W (Y ))

=
∑
α

(
∑
β

(dβWα+β)Y
α.

We get the polynomial operator in the shift(s) defined by d(X), as in (2.2). We have thus proved
the following theorem :

Theorem 3.3. The adjoint of the polynomial multiplication by d(X)

d(X) : D −→ D

c(X) 7−→ c(X) · d(X),

is the polynomial operator in the shift(s), also denoted by d(X) and defined as

d(X) : A −→ A

W (Y ) 7−→ d(X) ◦W (Y ) =
∑
α

(
∑
β

dβWα+β)Y
α.

Using (3.7), the proof of the following proposition is left to the reader:

Proposition 3.2. The operation

D×A −→ A

(d(X),W (X)) 7−→ d(X) ◦W (Y )

is an external operation of D on A. It provides A, and therefore Al (where l > 1 is an integer) with a
D-module structure.
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We call this external operation circle or the circle multiplication. With this multiplication, we can
define the multiplication of a polynomial matrixR(X) ∈ Dk,l and a power series vectorW (Y ) ∈ Al by

R(X) ◦W (Y ) =

 R1(X) ◦W (Y )
...

Rk(X) ◦W (Y )

 =


∑l
λ=1R1λ(X) ◦Wλ(Y )

...∑l
λ=1Rkλ(X) ◦Wλ(Y )

 ∈ Ak .

with Rκ(X) = (Rκ1(X), . . . , Rκl(X)) ∈ Dl being the κ-th row of R(X), for κ = 1, . . . , k and
Wλ(Y ) the λ-th row of W (Y ) for λ = 1, . . . , l. This is a new notation for (2.3). One can then prove
the following corollaries ([3]):

Corollary 3.4. The mapping

◦ : Dk,l×Al −→ Ak

(R(X),W (Y )) 7−→ R(X) ◦W (Y ).
(3.9)

(again denoted by ◦) is D- bilinear.

Corollary 3.5. With the notations in (3.9), fix R(X) ∈ Ak,l. Then we get the D-linear mapping of
D-modules (denoted again by R(X)), called the right multiplication by R(X) in Al:

R(X) : Al −→ Ak

W 7−→ R(X) ◦W (Y ).
(3.10)

Using our notations, a discrete algebraic dynamical system is then a subset B of Al the form

B = {W (Y ) ∈ Al | R(X) ◦W (Y ) = 0},

where R(X) ∈ Dk,l. In other terms, it is the kernel of the linear mapping (3.10): B = kerR(X).
As a kernel of a modules homomorphism, its is a D-submodule of Al and we come back to the
definition 2.1 of a system.

4 Conclusions
a In the section 2, we have given a brief survey on the definition of dynamical systems and the

polynomial operator in the shifts.

b In the subsection 3.1, we have formulated the scalar product and the duality of the vector spaces
of multivariate polynomials and the vector space of the power series with the same number of
variables (the two sets of variables are denoted differently).

c In the subsection 3.2, we have interpreted of the polynomial operator in the shifts on the power
series, as the adjoint of the polynomial multiplication.
Possible future works are to prove whether the adjoint of the right multiplication by the polynomial
matrix R(X), denoted by R(X)T in [3] :

R(X)T : Dk −→ Dl

c(X) 7−→ c(X) ·R(X)
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is the left multiplication (3.10) by R(X) in Al :

R(X) : Al −→ Ak

W 7−→ R(X) ◦W (Y )

or not and study the case of the time set Zr which involve polynomials in X−1
1 , . . . , X−1

r .
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