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Abstract
In the present paper, using direct variational approach, and the monotone operator method, the
existence of nontrivial solutions for a quasilinear elliptic equation involving the p-Laplace operator
is obtained.
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1 Introduction
In the present paper, we deal withe the existence and nontrivial solutions of the Dirichlet boundary
problem

−∆pu+ |u|p−2u = f(x, u) in Ω (1.1)

u = 0 on ∂Ω (1.2)
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where Ω is a bounded smooth domain of RN , N ≥ 3, f : Ω × R → R is a continuous function and
1 < p < N .
The problems of type (1.1)-(1.2) are very important in applications mentioned below. These type
problems arises from the existence of the p-Laplacian or the p-Laplace operator ∆pu = div

(
|∇u|p−2∇u

)
which turns to the usual Laplace operator 42 = 4 for the case p = 2. However, in case p 6= 2 the
situation is very crucial, as for example, one encounters the lack of the Hilbert structure of the Sobolev
space W 1,p

0 (Ω).
The problems involving the p-Laplace operator have been investigated for the last two decades
intensively in different areas of applied mathematics and physics. For example, in the study of non-
Newtonian fluids, nonlinear elasticity, and reaction diffusions. For the detailed background, see, for
example, [1, 2] and references therein.
One of the most widely used tool for solving problems of type (1.1)-(1.2) is the Mountain-Pass
theorem. When applying this theorem, one usually needs that the functional corresponding to the
related problem must have the Palais-Smale property. One way to ensure this is to assume that f
satisfies some Ambrosetti-Rabinowitz-type condition [3, 4].
In the present paper, we study problem (1.1)-(1.2) in two different approaches. First, we use
variational approach and apply some specific assumptions on the nonlinearities f instead of the
classical conditions, such as Ambrosetti-Rabinowitz condition. Moreover, the first eigenvalue of
p−Laplace operator has a key role to get the first result related to problem (1.1)-(1.2). Then, we
proceed with monotone operator method to get the second result. Not using the classical tools
mentioned above and considering two different approaches for the same problems to get the existence
results are the difference of the present paper from the previous studies.
We continue to recall some necessary information needed through the paper. The Lebesgue spaces
of measurable functions Lp (Ω), for 1 ≤ p ≤ ∞, are defined by

Lp(Ω) = {u : Ω→ R measurable,

∫
Ω

|u|pdx <∞},

L∞(Ω) = {u : Ω→ R measurable, esssupx∈Ω|u(x)| <∞}.
Let define the norms

|u|p =

(∫
Ω

|u(x)|pdx
)1/p

and |u|∞ = esssupx∈Ω|u(x)|,

which makes Lp (Ω) and L∞ (Ω) Banach spaces, respectively.
Let W 1,p (Ω) be the usual Sobolev space, i.e., W 1,p (Ω) =

{
u ∈ Lp (Ω) : ∇u ∈ [Lp (Ω)]N

}
which is

endowed with norm

‖u‖ =

(∫
Ω

(|∇u (x)|p + |u (x)|p) dx

)1/p

. (1.3)

Then W 1,p (Ω) is a Banach space. W 1,p
0 (Ω) is the closure of C∞0 (Ω) in W 1,p (Ω). In W 1,p

0 (Ω) we
use the norm

‖u‖
W

1,p
0 (Ω)

=

(∫
Ω

|∇u (x)|p dx
)1/p

. (1.4)

Thanks to the Poincaré inequality, it is not difficult to see that (1.3) and (1.4) are equivalent. Therefore,
in the sequel the norm in W 1,p

0 (Ω) will be denoted by ‖·‖.
Let Ω be an open and bounded subset of RN , with N ≥ 3. Then W 1,p

0 (Ω) is embedded continuously
in Lq (Ω), denoted byW 1,p

0 (Ω) ↪→ Lq (Ω), for every q ∈ [1, p∗], where p∗ = Np/N−p. The embedding
is compact if and only if q ∈ [1, p∗) (see [5]).

It is said that u ∈W 1,p
0 (Ω) is a weak solution of (1.1)-(1.2) if any φ ∈W 1,p

0 (Ω),∫
Ω

((
|∇u|p−2∇u,∇φ

)
+ |u|p−2 uφ

)
dx−

∫
Ω

f (x, u)φdx = 0, (1.5)
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where “(·, ·)” is the standard inner product in RN .
The energy functional corresponding to problem (1.1)-(1.2) is defined as J : W 1,p

0 (Ω)→ R,

J (u) =
1

p

∫
Ω

(|∇u|p + |u|p) dx−
∫

Ω

F (x, u) dx,

where F (x, t) =
∫ t

0
f (x, s) ds. By using the condition (f1)(see below) together with standard arguments,

one can easily shows that J is well-defined on W 1,p
0 (Ω) and is of class C1

(
W 1,p

0 (Ω) ,R
)
. Moreover,

the derivative of J is the mapping J ′ : W 1,p
0 (Ω)→

(
W 1,p

0 (Ω)
)∗

given by the formula

〈
J ′ (u) , v

〉
=

∫
Ω

((
|∇u|p−2∇u,∇v

)
+ |u|p−2 uv

)
dx−

∫
Ω

f (x, u) vdx,

for any u, v ∈ W 1,p
0 (Ω). From the variational setting of problem (1.1)-(1.2), i.e. (1.5), and definition

of the derivative of J , it is obvious that weak solutions of (1.1)-(1.2) correspond to critical points of J .
Let λ1 be the first eigenvalue of −4p on W 1,p

0 (Ω), that is,

λ1 = inf
0 6=u∈W1,p

0 (Ω)

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

,

it is well known that λ1 > 0 [6].

2 Variational Approach
In this section, we give the first result of the present paper, based on the variational approach.

Proposition 2.1. Assume that f : Ω× R→ R is a continuous function such that

lim sup
|t|→∞

f (x, t)

|t|p−1 < λ1 uniformly a.e. x ∈ Ω. (f1)

Then problem (1.1)-(1.2) has at least one solution. If in addition f also satisfies

lim inf
t→0+

f (x, t)

tp−1
> λ1 uniformly a.e. x ∈ Ω, (f2)

then problem (1.1)-(1.2) has at least one nontrivial solution.

To obtain the result of Proposition 2.1, we need the following Proposition.

Proposition 2.2. (i) The functional J is coercive.

(ii) The functional J is weakly lower semicontinuous.

Proof. (i) From (f1), there exists a > 0 and b ∈ (0, λ1) such that

|f(x, t)| ≤ a+ b |t|p−1 ∀t ∈ R.

Integrating, we get

|F (x, t)| ≤ a |t|+ b

p
|t|p ∀t ∈ R. (2.1)

Then, using the definition of the first eigenvalue and Poincaré inequality, we have∣∣∣∣∫
Ω

F (x, u)dx

∣∣∣∣ ≤ a∫
Ω

|u| dx+
b

p

∫
Ω

|u|p dx ≤ c ‖u‖+
b

pλ1
‖u‖p .
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Therefore,

J (u) =
1

p
‖u‖p −

∫
Ω

F (u) dx ≥ 1

p
‖u‖p − c ‖u‖ − b

pλ1
‖u‖p

≥ 1

p

(
1− b

λ1

)
‖u‖p − c ‖u‖ .

Since λ1 > b, J is coercive.
(ii) Let {uk} ⊂ W 1,p

0 (Ω) be a minimizing sequence for J . Since J is coercive, {uk} is bounded
in W 1,p

0 (Ω). Thus, there exists u ∈ W 1,p
0 (Ω) such that passing to a subsequence, still denoted by

{un}, we have
uk ⇀ u in W 1,p

0 (Ω);
uk → u in Lp (Ω);
uk (x)→ u (x) a.e.in Ω;
and there exists w ∈ Lp (Ω) such that |uk (x)| ≤ w (x) a.e. in Ω and for all k ∈ N.
Since F is continuous, we have F (x, uk (x)) → F (x, u (x)) a.e. in Ω. Moreover, from (2.1), we

also have
|F (x, uk (x))| ≤ a |uk (x)|+ b

p
|uk (x)|p ≤ c (|w (x)|+ |w (x)|p) ∈ L1 (Ω)

a.e. in Ω and for all k ∈ N. Consequently, by the dominated convergence theorem, we obtain that∫
Ω

F (x, uk)dx→
∫

Ω

F (x, u)dx. (2.2)

On the other hand, since the norm ‖·‖ is weakly lower semicontinuous we have

‖u‖p ≤ lim inf
k
‖uk‖p . (2.3)

Thus, considering the relations (2.2) and (2.3) , we get

J (u) =
1

p
‖u‖p −

∫
Ω

F (u) dx

≤ lim inf
k

1

p
‖uk‖p − lim

k

∫
Ω

F (x, uk)dx

≤ lim inf
k

(
1

p
‖uk‖p −

∫
Ω

F (x, uk)dx

)
= lim inf

k
J (uk) .

Therefore J is weakly lower semicontinuous.

Proof of Proposition 2.1. From Proposition 2.2, we know that the functional J is coercive and weakly
lower semicontinuous. Therefore, it has a global minimum u on W 1,p

0 (Ω), which is a critical point [7].
We now show that under condition (f2), u is not identically zero. From (f2), there exists µ > λ1 and
δ > 0 such that

f (x, t) ≥ µtp−1 ∀t ∈ [0, δ] ,

and hence
F (x, t) ≥ µ

p
tp ∀t ∈ [0, δ] .

Let ϕ1 be the first eigenfunction corresponding to λ1 . Since ϕ1 ∈ L∞ (Ω), there exists t > 0
sufficiently small such that tϕ1 (x) < δ for a.e. x ∈ Ω. Therefore,

J (tϕ1) =
1

p
‖tϕ1‖p −

∫
Ω

F (tϕ1) dx ≤ tp

p
‖ϕ1‖p −

µtp

p

∫
Ω

|ϕ1|p dx

=
tpλ1

p

∫
Ω

|ϕ1|p dx−
tpµ

p

∫
Ω

|ϕ1|p dx =
tp

p
(λ1 − µ)

∫
Ω

|ϕ1|p dx < 0.
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Further, let u be the solution that minimizes J . Then

J (u) = min
v∈W1,p

0 (Ω)

J (v) ≤ J (tϕ1) < 0.

Since J (0) = 0, it follows that u 6= 0. This completes the proof.

3 Monotone Operator Method
In this section, we use another method, named monotone operator method, for problem (1.1)-(1.2).
Therefore, we recall the following theorem, which is the key tool to get our second result.

Proposition 3.1 (Browder). Let X be a reflexive real Banach space. Moreover, let T : X → X∗ be
an operator satisfying the conditions:

(i) T is bounded;

(ii) T is demicontinuous;

(iii) T is coercive;

(iv) T is monotone on the space X , i.e., for all u, v ∈ X we have

〈T (u)− T (v) , u− v〉 ≥ 0. (3.1)

Then the equation
T (u) = h∗ (3.2)

has at least one solution u ∈ X for every h∗ ∈ X∗. If, moreover, the inequality (3.1) is strict
for all u, v ∈ X, u 6= v, then the equation (3.2) has precisely one solution u ∈ X for every
h∗ ∈ X∗.

We now proceed for the next result of the present paper. For this, we will establish the operator
equations corresponding to problem (1.1)-(1.2). Let us define the operators J, F : W 1,p

0 (Ω) →
(W 1,p

0 (Ω))∗ by

〈J (u) , v〉 =

∫
Ω

(
|∇u|p−2 (∇u,∇v) + |u|p−2 uv

)
dx ∀u, v ∈W 1,p

0 (Ω) ,

〈F (u) , v〉 =

∫
Ω

f(x, u)vdx ∀u, v ∈W 1,p
0 (Ω) ,

and set
T := J − F.

Then, from the monotone operator theory, the solution function u ∈ W 1,p
0 (Ω) of (1.1)-(1.2)

satisfying the operator equation
T (u) := J (u)− F (u) = 0 (3.3)

is also the solution of the integral equation∫
Ω

(
|∇u|p−2 (∇u,∇v) + |u|p−2 uv

)
dx−

∫
Ω

f(x, u)vdx = 0 ∀v ∈W 1,p
0 (Ω) . (3.4)

Namely, the existence of weak solution of problem (1.1)-(1.2) is equivalent to the existence of solution
of the operator equation (3.3) (see [8, 9])

Proposition 3.2. Assume that the following assertions holds:
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(f3) f : Ω× R→ R is a Carathéodory function, and assume that there exist c1, c2 > 0 such that

|f(x, t)| ≤ c1 + c2 |t|q−1 ,

for all x ∈ Ω and all t ∈ R, where 1 < q < p∗, with p > q;

(f4) f(x, 0) = 0 and (f(x, t)− f(x, s))(t− s) ≤ 0 for all s, t ∈ R and a.e. x ∈ Ω.

Then problem (1.1)-(1.2) has an unique solution.

Proof. It is obvious from (f3) that T is well defined, bounded and continuous (and hence demicontinuous).
From (f4), for sufficiently large ‖u‖, we have

〈T (u) , u〉 =

∫
Ω

(|∇u|p + |u|p) dx−
∫

Ω

f(x, u)udx ≥ ‖u‖p .

This shows that T is coercive. Let us show the monotonicity of T . If u = v, the assertion of theorem
is obvious. For the case u 6= v, from (f4), it reads

〈T (u)− T (v) , u− v〉 ≥
∫

Ω

(
|∇u|p−2 (∇u,∇u−∇v) + |u|p−2 u (u− v)

)
dx

−
∫

Ω

(
|∇v|p−2 (∇v,∇u−∇v) + |v|p−2 v (u− v)

)
dx

=

∫
Ω

(
|∇u|p−2∇u− |∇v|p−2∇v,∇u−∇v

)
dx

+

∫
Ω

(
|u|p−2 u− |v|p−2 v

)
(u− v) dx.

Now, we apply the following well-known vectorial inequality: For all ξ, η ∈ RN , it holds [10],(
|ξ|r−2 ξ − |η|r−2 η, ξ − η

)
≥ 21−r |ξ − η|r , r ≥ 2,(

|ξ|r−2 ξ − |η|r−2 η, ξ − η
)
≥ (r − 1)

|ξ − η|2

(|ξ|+ |η|)2−r , 1 < r < 2,

Then, we get

〈T (u)− T (v) , u− v〉 ≥ 21−p

∫
Ω

(|∇u−∇v|p + |u− v|p) dx > 0, p ≥ 2, (3.5)

〈T (u)− T (v) , u− v〉 ≥ (p−1)

∫
Ω

(
|∇u−∇v|2

(|∇u|+ |∇v|)2−p +
|u− v|2

(|u|+ |v|)2−p

)
dx > 0, 1 < p < 2, (3.6)

This implies the monotonicity of T . As a consequence of Proposition 3.1, the equation

T (u) = J (u)− F (u) = h∗

has at least one solution u ∈ W 1,p
0 (Ω) for every h∗ ∈ (W 1,p

0 (Ω))∗. Moreover , since inequalities
(3.5) , (3.6) are strict, it follows then from Proposition 3.1 that there is a unique solution of (3.3), which
in turn is a unique weak solution of (1.1)-(1.2).

4 Conclusion
In the present paper, the existence results of a quasilinear elliptic equation is investigated. For this,
the problem is settled in two different manner: variational approach and monotone operator method.
The problem is studied in classical Sobolev space. If the results could be extended to the variable
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exponent Sobolev spaces, it would be more interesting. But when one intends to do so, the main
difficulty would be the characterization of the first eigenvalue.
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