
*Corresponding author: Email: eghbal_math@yahoo.com;

Journal of Scientific Research & Reports
6(7): 549-559, 2015; Article no.JSRR.2015.180

ISSN: 2320-0227

SCIENCEDOMAIN international
 www.sciencedomain.org

Combining a Continuous Search Algorithm with a
Discrete Search Algorithm for Solving Non-linear

Bi-level Programming Problem

Eghbal Hosseini1* and Isa Nakhai Kamalabadi2

1
Department of Mathematics, Payame Noor University of Tehran, Tehran, Iran.

2Department of Industry, University of Kurdistan, Sanandaj, Iran.

Authors’ contributions

 This work was carried out in collaboration between both authors. Author EH designed the study,
wrote the protocol, and wrote the first draft of the manuscript. Author INK managed the literature

searches, analyses of the study performed the spectroscopy analysis and author EH managed the
experimental process and identified the species of plant. Both authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/JSRR/2015/15831
Editor(s):

(1) Ming-Jyh Chern, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan.
(2) Pak Kin Wong, Department of Electromechanical Engineering, University of Macau, Macao.

Reviewers:
(1) Anonymous, Brazil.
(2) Anonymous, China.

(3) Rajesh Chandrakant Sanghvi, Mathematics Department, G H Patel College of Engg. and Tech., V V Nagar,
Gujarat Technological University, Gujarat, India.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=968&id=22&aid=8756

Received 20th December 2014
Accepted 17

th
 March 2015

Published 10th April 2015

ABSTRACT

The multi-level programming problems, have received much interest from researchers because of
their application in several areas such as economic, traffic, finance, management, transportation
and so on. Among these, the bi-level programming problem (BLPP) is an appropriate tool to model
these real problems. It has been proven that the general BLPP is an NP-hard problem, so it is a
practical and complicated problem therefore solving this problem would be significant. However the
literature shows several algorithms to solve different forms of the bi-level programming problems
(BLPP), but there is no any hybrid approach of combining of two meta-heuristic algorithms. In this
paper, the authors combine particle swarm optimization (PSO), which is a continuous approach,
with a proposed modified genetic algorithm (MGA), which is a discrete algorithm, using a heuristic
function and constructing an effective hybrid approaches (PSOMGA). Using the Karush-Kuhn-

Original Research Article

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

550

Tucker conditions the BLPP is converted to a non-smooth single level problem, and then it is
smoothed by a new heuristic method for using PSOMGA. The smoothed problem is solved using
PSOMGA which is a fast approximate method for solving the non-linear BLPP. The presented
approach achieves an efficient and feasible solution in an appropriate time, as justified by
comparison with test problems.

Keywords: Particle swarm optimization; genetic algorithm; non-linear bi-level programming problem;

karush-kuhn-tucker conditions.

NOMENCLATURE

��(�,�,�) Objective function of the first level in the TLPP
��(�,�,�) Objective function of the second level in the TLPP
��(�,�,�) Objective function of the third level in the TLPP
�(�,�,�) Constraints in the TLPP

� Slack variable
� Slack variable
�(�,�) Objective function of the first level in the BLPP
�(�,�) Objective function of the first level in the BLPP
�(�,�) Constraints in the BLPP
� A nonempty convex set
� Lagrange function
� Lagrange Coefficient
� Lagrange Coefficient
� Lagrange Coefficient
� Initial population
�′ Crossover population

�′′ Mutation population

� Set of chromosomes in the current generation
(�∗,�∗,�∗) Optimal solution for the TLPP
(�∗,�∗) Optimal solution for the BLPP

1. INTRODUCTION

It has been proven that the bi-level programming
problem (BLPP) is an NP-Hard problem [1,2].
Several algorithms have been proposed to solve
BLPP [3,4,5,6,7,8,9,10,11,12]. These algorithms
are divided into the following classes: global
techniques [13,14,15,16], enumeration methods
[17], transformation methods [18,19,20,21], meta
heuristic approaches [22,23,24,25,26,27,28],
fuzzy methods [29,30,31], primal-dual interior
methods [5]. In the following, these techniques
are shortly introduced.

In general, BLPP is a non-convex optimization
problem; therefore, there is no general algorithm
to solve it. This problem can be non-convex even
when all functions and constraints are bounded
and continuous. A summary of important
properties for convex problem are as follows,
which �: �

.
→ �� and � is a nonempty convex set

in��:

(1) The convex function f is continuous on the
interior of�.

(2) Every local optimal solution of � over a
convex set � ⊆ � is the unique global
optimal solution.

(3) If ��(�̅)= 0, then �̅ is the unique global
optimal solution of �over�.

The BLPP is used frequently by problems with
decentralized planning structure. It is defined as
[32]:

min
�

�(�,�)

�. � min
�

�(�,�)

�. ��(�,�) ≤ 0,
�,� ≥ 0.

Where

(1)

 �: ��×�
.

→ ��,�: ��×�
.

→ ��,
�: ��×�

.
→ ��,� ∈ ��,� ∈ ��.

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

551

Also F and f are objective functions of the leader
and follower respectively.

However, there are meta– heuristic approaches
and their combinations to solve optimization
problems [25], but there is no any approach
which combines a continuous algorithm and a
discrete one in these approaches. In this paper,
the authors have tried to combine particle swarm
optimization, a continuous approach, and
proposed modified genetic algorithm, a discrete
algorithm, to solve non-linear BLPP.

The remainder of the paper is structured as
follows: problem formulation and smoothing
method to the BLPP are introduced in Section 2.
The algorithm based on combining modified
genetic algorithm and particle swarm
optimization is proposed in Section 3.
Computational results are presented for our
approaches in Section 4. As result, the paper is
finished in Section 5 by presenting the
concluding remarks.

2. PROBLEM FORMULATION AND

SMOOTHING METHOD

The feasible region of the non-linear BLPP is

� = {(�,�)|�(�,�) ≤ 0,�,� ≥ 0}

(2)

Using KKT conditions Equation (1) can be
converted into the following problem:

min
�,��

�(�,�,�)

�. �∇��(�,�,�) = 0,

��(�,�)= 0,
�(�,�)≤ 0,
�,�,� ≥ 0.

 (3)

Where L is the Lagrange function and
�(�,�,�) = �(�,�)+ ��(�,�).

To convert the inequality constraint to an equality
constraint, the positive slack variable � is added:

min
�,��

�(�,�,�)

�. �∇��(�,�,�)= 0,

��(�,�)= 0,
�(�,�)+ � = 0,
�,�,�,� ≥ 0.

 (4)

Let � = �(�,�) then the problem can be written
as follows:

min
�,��

�(�,�,�)

�. �∇��(�,�,�) = 0,

�� = 0,
� + � = 0,
�,�,�,� ≥ 0.

 (5)

2.1 Modified Genetic Algorithm (MGA)

In this section, a modified genetic algorithm is
proposed then basic and general concepts
related to particle swarm optimization algorithms
are discussed. Finally, the hybrid method of both
algorithms is proposed.

Genetic algorithms are global methods which are
used for global searches. As the previous
researchers indicate [11,15,16] the basic
characteristics of these algorithms consist of:

1. Initial population of solution is produced
randomly. Some of the genetic algorithms
use other Meta heuristic method to
produce the initial population.

2. Genetic algorithms use a lot of feasible
solutions. Therefore they usually avoid
local optimal solutions.

3. Genetic algorithms used to solve very
large problems with many variables.

4. These algorithms are simple and do not
need extra conditions such as continuity
and differentiability of objective functions.

5. Genetic algorithms usually gain several
optimal solutions instead unique optimal
solution. This property is useful for multi
objective function and multi- level
programming.

6. These algorithms are inherently discrete.

In the proposed genetic algorithm, each feasible
solution of BLPP usually is transformed by string
of characters from the binary alphabet that is
called chromosome. The genetic algorithm works
as follows:

Initial generation, that is generated randomly, is
divided in overall the feasible space similarly.
Then chromosomes are composed together to
construct new generation. This process
continues till to get appropriate optimal solution.

In the suggested method, every chromosome is
demonstrated by a string. This string consists
ofk + l + 2pcorresponding variables �,�,�,�, also
these chromosomes are applied in Equation (5)
that it is created by using Karush -Kuhn –Tucker
(KKT) conditions and proposed smoothed

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

552

method for TLPP. Using slack variables, such as
w, v, u, Equation (5) is prepared for using genetic
algorithm:

Now the chromosomes are applied according the
following rules [15]:

If the i-th component of the chromosome is equal
to zero, then �� = 0,�� ≥ 0 Else �� ≥ 0,�� = 0.
If the j-th component of the chromosome is equal
to zero, then �� = 0,�� ≥ 0 Else �� ≥ 0,�� = 0.

Theorem 3.1:

(�∗,�∗) is the optimal solution to the Equation (1)
if and only if there exists such that
(�∗,�∗,�∗,�∗,�∗) is the solution of the Equation
(5).

Proof :

The proof of this theorem was given by [17].

The MGA steps are proposed as follows:

Step 1: Generating the initial population

The initial population includes solutions in the
feasible region that are called achievable
chromosomes. These chromosomes are
generated by solving the following problem:

min
�

�(�,�)

�. ��(�,�)≤ 0, (6)
�,� ≥ 0.

Step 2: Keeping the present best chromosome in
an array

The best chromosome is kept in the array at the
each iteration. This process continues till the
algorithm is finished, then the best chromosome
is found in the array as the optimal solution.

Step 3: Crossover operation

Crossover is a major operation to compose a
new generation. In this stage two chromosomes
are selected randomly and they are combined to
generate a new chromosome. In the new
generation components are created by the
following rules:

1. The i-th component of the first child is
replaced by the sum of the i-th
components of parents (i=1,2,…,k+l). The
operation sum is defined as follows:

�� + �� = �
�� + ��

2
�

That ��,�� is i-th component of chromosomes�,�.
The other components are remained the same
as the first parent.

2. The (k+l+i)-th component of the second
child is replaced by the sum of the (k+l+i)-
th components of parents i=1,2,…,2p. The
operation sum is defined as above. The
other components are remained the same
as the second parent.

For example, by applying the present method to
the following parents, and k= 5, l=4, p=3we
generate the following children:

Parents Children
92745 1036 786 123 54565 0057 786 123
27386 0178 193 321 27386 0178 484 222

Step 4: Mutation

The main goal of mutation in GA is to avoid
trapping in local optimal solutions. In this
algorithm each chosen gene of every
chromosome, mutates according following
function:

�(�)= �
� + 1 ��� ≠ 9

0 ��� = 9
� (7)

In fact if the value of the chosen gene be i, it will
be changed to i+1 which � ≠ 9 and if the value of
the chosen gene be 9, it will be changed to 0.

For example, by applying the present mutation
operation to the following chromosome, and
k= 5, l=4, p=3, we have:

Before mutation After mutation
17834 9267 193 052 28945 0378 204 163

Step 5: Selection

The chromosomes of the current population are
arranged in descending order of fitness values.
Then we select a new population similar to the
size of the first generation. If the number of the
generations is sufficient we go to the next step,
otherwise the algorithm is continued by the
step3.

Step 6: Termination

The algorithm is terminated after a maximum
generation number. The best produced solution

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

553

that has been recorded in the algorithm is
reported as the best solution to TLPP by
proposed GA algorithm.

2.2 Particle Swarm Optimization (PSO)

Swarm intelligence system is an artificial
intelligence technique which is usually made up
of a population of simple particles cooperation
locally with one another and with their
environment.

Because PSO simply solves discontinuous and
non-convex problems, therefore it is suitable tool
for solving BLPP. It is a method based on
population search. In each iteration, PSO moves
from a set of particle positions to the better one
set with improvement optimal solution. It is
inherently continuous. PSO has the following
steps:

1. The initial population of particles and their
velocity are produced randomly in the
following feasible region.

2. The best objective function for each
particle in each iteration is kept. Also the
global best objective function is defined.

3. The global best and the best objective
function for each particle are updated as
follows:

��[� + 1] = ���[�] + ����(������[�] − ��[�])+
����(������[�] −
��[�]) (8)
��[� + 1] = ��[�] + ��[� + 1]

4. If termination conditions are not satisfied,

the above steps will be continued from
step two. Otherwise the algorithm
will be finished.

2.3 Hybrid Algorithm by Combining PSO
and MGA (PSOMGA)

As mention previously, the genetic algorithm
searches in the discrete space but the particle
swarm optimization searches in the continuous
one. Therefore to hybrid these two approaches it
is necessary that we round the positions of
particles, which are continuous, to use genetic
algorithm.

In this method initial population is produced using
PSO algorithm. Then position and their velocity
are updated by the step 3 in PSO and the new
population with better objective functions will be

made. After that, the position of particles will be
rounded then MGA is applied to the new
population by these steps: crossover operation,
mutation and selection. In the next iteration PSO
algorithm is applied to the obtained population by
MGA. The algorithm is continued while
termination condition is satisfied. In fact in this
proposed hybrid method by combining PSO and
MGA the genetic algorithm is used after the
particle swarm optimization algorithm. Therefore
the convertor function should be defined to
convert particles to the acceptable points for
MGA (chromosome).

2.3.1 Definition 3.1

We define the convertor function to round an
arbitrary number x as follows:

���∗(�)= �
���� < � +

�

�

� + 1 ��� ≥ � +
�

�

�, (9)

For � ∈ �. Also we define for � ∈ �� ,���∗(�)=
����∗(��),���∗(��),… ,���∗(��)�.

Example 1:

To more illustrate the proposed function that
converts the particles to the point using GA,
consider �� = (0.4,0.44),�� = (0.7,0.5),�� =
(0.3,0.6),�� = (0.9,0.2),�� = (1.6,1.3).

���∗(��) = (0,0)
���∗(��) = (1,1)
���∗(��) = (0,1)
���∗(��) = (1,0)
���∗(��) = (2,1)

These points have been shown in Fig. 1. The
green points are the produced particles by PSO
and the red points are the acceptable point for
GA (chromosome). It is easy to see that, each
green point is attracted to the nearest red point
by the proposed convertor function.

Now everything is prepared to propose the new
hybrid approach. The algorithm steps as follows:

Step 1: initialization

The initial population of particles and their
velocity are produced randomly in the Equation
(8).

Step 2: Keeping the present best particles in an
array

The best objective function for each particle is

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

554

kept in the array at the each iteration. Also the
global best objective function is saved. This
process continues till the algorithm is finished.

Step 3: Updating

The global best and the best position for each
particle are updated according to (8).

Step 4: Checking the optimal solution

If d(F(������[� + 1]),F(������[�]))< ℇ� then go
to step 8. Otherwise go to the next step.

Step 5: Converting particles to chromosome

In this step all particles convert to chromosome
using proposed convertor function.

Step 6: Crossover operation

In this step each particle is correspond with a
chromosome. The chromosomes of the current
population are arranged in descending order of
objective function values. Then numbers of the
best chromosomes are selected to use crossover
operation for positions by the proposed rules in
step 3 of section 3.1. The velocities are changed
too as follows:

����� = ������
� [� + 1] − ������

� [� + 1]

��� = ������
� [� + 1] + ������

� [� + 1]
��

� [� + 1] = �����
��

� [� + 1] = ���

Which��

� ,��
� are respectively the velocities of first

and second particles in the i-thiteration.

Step 7: Mutation

In this step each chosen gene of every
chromosome, mutates like step 4 of section 3.1
as follows:

If the value of the chosen gene be 0, it will be
changed to 1 and if the value of the chosen gene
be 1, it will be changed to 0.

Also the velocities are changed according to the
following rule:

��[� + 1] = ��[� + 1] +
�

2

Step 8: Selection

We select a new population similar to the size of
the first generation by combing the obtained
particles in two above steps and number of the
particles in current population before applying
MGA.

Fig. 1. Converting particles to chromosomes for example1

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

555

Step 9: Termination

If d(F(������[� + 1]),F(������[�])) < ℇ� then the
algorithm is finished and������[� + 1] is the best
solution by the proposed algorithm. Otherwise,
let k=k+1 and go to the step 2. That d is the
following metric:

d�F(������[� + 1]),F(������[�])� =

(∑ (F(��
�����[� + 1]),F(��

�����[�]))�������
���)

�

�.

Because the authors going to gain the best
optimal solution, the Termination
condition, d(F(������[� + 1]),F(������[�]))< ℇ� ,
will be checked in bothsteps 4 and 9. In fact this
condition will be checked before and after MGA
which rounds the solutions. Also both of steps
crossover and mutation in the MGA are applied
to the velocities of particles. To illustrate these
two operations following example is proposed.

Example 2:

Consider following particles and their velocities
that are the parents in MGA:

Using step 6 in the proposed hybrid algorithm
after mutates the velocities are changed as
follows:

Also after using step 5 velocities of children are
changed that the red direction is resultant of two
directions of parents and the blue one is
difference of them.

Theorem 3.1 Sequence{��} which was proposed
in above algorithm is convergent to the optimal
solution, so that the algorithm is convergent.

Proof:

Let (��)= (�(��)) =

(�(��
�),�(��

�),… ,�(�����
�))= (��

(�)
,��

(�)
,… ,�����

(�)
).

According to step 4

�(����,��)= d �F�t����,F�t���

= (� (����
���� − �(��

�))�

����

���

)
�

�

< ��

Therefore (∑ �����
���� − ����

���
�

����
���) < ��

�

There is large number such as N which k+1>k>N
and j=1,2,…,2m+n we have:

(��
(���)

− ��
(�)

)� < ��
� , therefore ���

(���)
−

��
(�)

� < �� (10)

������� = � + 1,� = ��ℎ����ℎ���

∀��������
(�)

− ��
(�)

� < ��.

This shows that for each fixed j,(1 ≤ j ≤ 2m + n),

the sequence (F�
(�)

,F�
(�)

,…) is Cauchy of real

numbers, then it converges by theorem 3.2.

Say, ��
(�)

→ �� as � → ∞ . Using these 2m+n

limits, we define � = (��,��,… ,�����). From (10)
and m=k+1, r=k,

�(��,��) < ��

Now if r → ∞, by�� → F we have �(��,�) ≤ ��.

This shows that F is the limit of (��) and the
sequence is convergent therefore proof of
theorem is finished.

3. COMPUTATIONAL RESULTS

To illustrate the algorithm, we first propose the
practical following examples and then model
them. Finally the proposed examples will be
solved using our algorithm.

Example 3 [11] Consider the following linear
BLPP where � ∈ ��,� ∈ ��.

Consider the following linear bi-level
programming problem:

min
�

�� + (y − 10)�

 s. t
min

�
(� + 2� − 30)�

 s. t
 x − �� ≥ 0,
 20 − x − �� ≥ 0,
 0 ≤ x ≤ 15,
� ≥ 0.

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

556

Using KKT conditions the following problem is
obtained:

min
�

�� + (y − 10)�

 s. t
4(� + 2� − 30) = 0,

2y�µ
�

+ µ
�

� = 0,

µ
�

(�� − �) = 0,

µ
�

(x + �� − 20) = 0,

µ
�

(x − 15)= 0,

�� − � ≤ 0,
 x + �� − 20 ≤ 0,
�,µ

�
,µ

�
,µ

�
≥ 0.

We solve this problem using the PSOMGA
algorithm and we present the optimal solution in
the Table 1. Behavior of variables is shown in
Fig. 2.We have present behavior of the x and
optimal solution (OS) with different value of
�,�,� in Fig. 3.

Example 4 [11] Consider the following linear
BLPP where � ∈ ��,� ∈ ��.

Consider the following linear bi-level
programming problem.

min
�

x�
� − 2�� + ��

� − 2�� + ��
� + ��

�

 s. t
min

�
��

� − 2���� + ��
� − 2����

 s. t
 0.25 − (�� − 1)� ≥ 0,
 0.25 − (�� − 1)� ≥ 0,
��,��,��,�� ≥ 0.

After applying KKT conditions and smoothing
method, and then proposed PSOMGA algorithm
above problem will be solved. The optimal
solution is obtained using our method according
to the Table 1.Behavior of variables is shown in
Fig. 4. The behavior of the x and optimal solution
(OS) with different value of �,�,� in Fig. 5 have
been shown.

More problems with different sizes have been
solved by our approach and computation results
have been proposed in Table 2. References of
the examples in Table 1 are as follows:

Example 5 [3], Example 6 [7], Example 7 [26],
Example 8 [27] which both of them are problems.

Fig. 2. Behavior of the variables in example 3 Fig. 3. Behavior of the variables in example 4

Fig. 4. Behavior of the � and optimal
solution (OS) with different value of

�,�,�in example 3

Fig. 5. Behavior of the � and optimal
solution (OS) with different value of

�,�,� in example 4

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

557

Table 1. Comparison optimal solutions with deferent examples 5-8by PSOMGA

Example Best solution by
PSOMGA

Best solution reported in
references

Optimal solution

3 (2.600,1.612) (2.600,1.613) [30] (2.600,1.612)
4 (0.51,0.51,0.51,0.51) (0.5,0.5,0.5,0.5) [4] (0.51,0.51,0.51,0.51)
5 (1.888,0.888,0.000) (1.883,0.891,0.003) [3,7,26,27]
6 (0,0) (0,0) [3,7,26,27] (0,0)
7 (1,0) (1,0) [3,7,26,27] (1,0)
8 (0,0.75,0,0.5,0) (0,0.75,0,0.5,0) [3,7,26,27] (0,0.75,0,0.5,0)

Table 2. Comparison optimal solutions improvement by PSOMGA

 PSOMGA algorithm

Gap of optimal
solution

Improvement
rathar than
[22,23,8,9,30]

Improvement
rathar than [24]

Iterations Time

Example 3 0 0.0001% 0.0003% 2000 0.47 s
Example 4 0 0.06% 0.005% 1500 0.56 s
Example 5 0 0.007% 0.001% 5300 2.42 s
Example 6 0 0 % 0% 2200 1.25 s
Example 7 0 0% 0% 3800 2.13 s
Example 8 0 0% 0.004% 5000 3.07 s

4. CONCLUSION AND FUTURE WORK

The main difficulty of the multi-level programming
problem is that after using the KKT conditions the
non-linear constraints are appeared. In this paper
was attempted to remove these constraints by
the proposed theorem, slack variables and
proposed PSOMGA algorithm. As mentioned
previously the authors have been combined two
continuous and discrete effective approaches to
the non-linear BLPP which this form of combining
has not been studied by any researchers.
According to the Tables the proposed method
presents optimal solution in appropriate time and
iterations. In the future works, the following
should be researched:

(1) Examples in the larger sizes can be
supplied to illustrate the efficiency of the
proposed algorithm.

(2) Showing the efficiency of the proposed
algorithm for solving other kinds of BLPP
such as quadratic.

(3) Solving other kinds of multi-level
programming problem such as tri-level
programming problem.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Bard JF. Some properties of the bi-level

linear programming. Journal of
Optimization Theory and Applications.
1991;68 :371–378.

2. Vicente L, Savard G, Judice J. Descent
approaches for quadratic bi-level
programming. Journal of Optimization
Theory and Applications. 1994;81:379–
399.

3. Mathieu R, Pittard L, Anandalingam G.
Genetic algorithm based approach to bi-
level Linear Programming. Operations
Research. 1994;28:1–21.

4. Wang G, Jiang B, Zhu K. Global
convergent algorithm for the bi-level linear
fractional-linear programming based on
modified convex simplex method. Journal
of Systems Engineering and Electronics.
2010;239–243.

5. Wend WT, Wen UP. A primal-dual interior
point algorithm for solving bi-level
programming problems, Asia-Pacific J. of
Operational Research. 2000;17.

6. Yan J, XuyongL, Chongchao H, Xianing
W, Application of particle swarm
optimization based onCHKS smoothing
function for solving nonlinear bi-level
programming problem. Applied
Mathematics and Computation.
2013;219:4332–4339.

)0,
9
8,

9
17(

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

558

7. Xu P, Wang L. An exact algorithm for the
bilevel mixed integer linear programming
problem under three simplifying
assumptions. Computers & Operations
Research. 2014;41:309-318.

8. Wan Z, Mao L, Wang G. Estimation of
distribution algorithm for a class of
nonlinear bilevel programming problems.
Information Sciences. 2014;256:184-196.

9. Zheng Y, Liu J, Wan Z. Interactive fuzzy
decision making method for solving bi-level
programming problem. Applied
Mathematical Modelling. 2014;38(13):
3136-3141.

10. Zhang, G, Lu J, Montero J, Zeng Y, Model.
solution concept, and Kth-best algorithm
for linear tri-level. Programming
Information Sciences. 2010;180:481–492.

11. Jiang Y, Li X, Huang C, Wu X. An
augmented Lagrangian multiplier method
based on a CHKS smoothing function for
solving nonlinear bi-level programming
problems. Knowledge-Based Systems.
2014;55:9-14.

12. He X, Li C, Huang T, Li C. Neural network
for solving convex quadratic bilevel
programming problems, Neural Networks.
2014;51:17-25.

13. Nocedal J, Wright SJ. Numerical
optimization, Springer-Verlag, New York;
2005.

14. AL Khayyal A. Minimizing a Quasi-concave
function over a convex set: A case
solvable by lagrangian duality,
proceedings, I.E.E.E. International
Conference on Systems, Man, and
Cybemeties, Tucson AZ. 1985;661-663.

15. Thoai NV, Yamamoto Y, Yoshise A. Global
optimization method for solving
mathematical programs with linear
complementary constraints, Institute of
Policy and Planning Sciences, University
of Tsukuba, Japan. 2002;978.

16. Hejazi SR, Memariani A, Jahanshahloo G.
Linear bi-level programming solution by
genetic algorithm, Computers &
Operations Research. 2002;29:1913–
1925.

17. Lv. Yibing Hu. Tiesong, Wang. Guangmin,
A penalty function method Based on
Kuhn–Tuckercondition for solving linear
bilevel programming. Applied
Mathematics and Computation.
2007;188:808–813.

18. Allende GB, Still G. Solving bi-level
programs with the KKT-approach. Springer
and Mathematical Programming Society.
2012;1 31:37– 48.

19. Hosseini EE Nakhai I Kamalabadi. Line
search and genetic approaches for solving
linear tri-level programming problem.
International Journal of Management,
Accounting and Economics. 2014;1:4.

20. Hosseini E, Nakhai Kamalabadi I. Taylor
approach for solving Non-linear Bi-level
programming problem ACSIJ Advances in
Computer Science: An International.
2014;3(5):11.

21. Arora SR, Gupta R, Interactive fuzzy goal
programming approach for bi-level
programming problem. European Journal
of Operational Research. 2007;176:1151–
1166.

22. Wang GZ, Wan X, Lv. Wang Y Genetic
algorithm based on simplex method for
solving Linear-quadratic bi-level
programming problem. Computers and
Mathematics with Applications. 2008;56:
2550–2555.

23. Hu TX, Guo X. Fu Y Lv. A neural network
approach for solving linear bi-level
programming problem. Knowledge-Based
Systems. 2010;23:239–242.

24. Baran Pal B, Chakraborti D, Biswas P. A
Genetic Algorithm Approach to Fuzzy
Quadratic Bi-level Programming. Second
International Conference on Computing,
Communication and Networking
Technologies; 2010.

25. Wan ZG, Wang B Sun. A hybrid intelligent
algorithm by combining particle Swarm
optimization with chaos searching
technique for solving nonlinear bi-level
programming Problems. Swarm and
Evolutionary Computation; 2012.

26. Hosseini E, I.Nakhai Kamalabadi, A
Genetic Approach for Solving Bi-Level
Programming Problems, Advanced
Modeling and Optimization. 2013;15.

27. Hosseini E, Nakhai Kamalabadi I. Solving
linear bi-level programming problem using
two new approaches based on line search.
International Journal of Management
sciences and Education. 2014;2(6):243-
252.

28. Sakava M, Nishizaki I, Uemura Y.
Interactive fuzzy programming for
multilevel linear programming problem.

Hosseini and Kamalabadi; JSRR, 6(7): 549-559, 2015; Article no.JSRR.2015.180

559

Computers & Mathematics with
Applications. 1997;36 71-86.

29. Sinha S. Fuzzy programming approach to
multi-level programming problems. Fuzzy
Sets and Systems. 2003;136:189-202.

30. Pramanik S, Ro TK, Fuzzy goal
programming approach to multilevel
programming problems. European Journal
of Operational Research. 2009;194:368–
376.

31. Hosseini EE, Nakhai Kamalabadi I. Two
approaches for solving Non-linear Bi-level
programming problem. Advances in
Research. 2015;4:3. ISSN: 2348-0394.

32. Bard JF. Practical bi-level optimization:
Algorithms and applications, Kluwer
Academic Publishers, Dordrecht; 1998.

© 2015 Hosseini and Kamalabadi; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=968&id=22&aid=8756

