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ABSTRACT 
 

The multi-level programming problems, have received much interest from researchers because of 
their application in several areas such as economic, traffic, finance, management, transportation 
and so on. Among these, the bi-level programming problem (BLPP) is an appropriate tool to model 
these real problems. It has been proven that the general BLPP is an NP-hard problem, so it is a 
practical and complicated problem therefore solving this problem would be significant. However the 
literature shows several algorithms to solve different forms of the bi-level programming problems 
(BLPP), but there is no any hybrid approach of combining of two meta-heuristic algorithms. In this 
paper, the authors combine particle swarm optimization (PSO), which is a continuous approach, 
with a proposed modified genetic algorithm (MGA), which is a discrete algorithm, using a heuristic 
function and constructing an effective hybrid approaches (PSOMGA). Using the Karush-Kuhn-
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Tucker conditions the BLPP is converted to a non-smooth single level problem, and then it is 
smoothed by a new heuristic method for using PSOMGA. The smoothed problem is solved using 
PSOMGA which is a fast approximate method for solving the non-linear BLPP. The presented 
approach achieves an efficient and feasible solution in an appropriate time, as justified by 
comparison with test problems. 
 

 
Keywords: Particle swarm optimization; genetic algorithm; non-linear bi-level programming problem; 

karush-kuhn-tucker conditions. 
 

NOMENCLATURE 
 
��(�,�,�) Objective function of the first level in the TLPP 
��(�,�,�) Objective function of the second level in the TLPP 
��(�,�,�) Objective function of the third level in the TLPP 
�(�,�,�) Constraints in the TLPP 

� Slack variable 
� Slack variable 
�(�,�) Objective function of the first level in the BLPP 
�(�,�) Objective function of the first level in the BLPP 
�(�,�) Constraints in the BLPP 
� A nonempty convex set  
� Lagrange function 
� Lagrange Coefficient 
� Lagrange Coefficient 
� Lagrange Coefficient 
� Initial population 
�′ Crossover population 

�′′ Mutation population  

� Set of chromosomes in the current generation 
(�∗,�∗,�∗) Optimal solution for the TLPP  
(�∗,�∗) Optimal solution for the BLPP 
 
1. INTRODUCTION 
 
It has been proven that the bi-level programming 
problem (BLPP) is an NP-Hard problem [1,2]. 
Several algorithms have been proposed to solve 
BLPP [3,4,5,6,7,8,9,10,11,12]. These algorithms 
are divided into the following classes: global 
techniques [13,14,15,16], enumeration methods 
[17], transformation methods [18,19,20,21], meta 
heuristic approaches [22,23,24,25,26,27,28], 
fuzzy methods [29,30,31], primal-dual interior 
methods [5]. In the following, these techniques 
are shortly introduced. 
 
In general, BLPP is a non-convex optimization 
problem; therefore, there is no general algorithm 
to solve it. This problem can be non-convex even 
when all functions and constraints are bounded 
and continuous. A summary of important 
properties for convex problem are as follows, 
which �: �

.
→ �� and � is a nonempty convex set 

in��:    
     

(1) The convex function f is continuous on the 
interior of�. 

(2) Every local optimal solution of �  over a 
convex set � ⊆ �   is the unique global 
optimal solution. 

(3) If ��(�̅)= 0, then �̅   is the unique global 
optimal solution of �over�.  

 
The BLPP is used frequently by problems with 
decentralized planning structure. It is defined as 
[32]:  
 

min
�

�(�,�) 

�. � min
�

�(�,�) 

�. ��(�,�) ≤ 0, 
�,� ≥ 0.  
 
Where  
 

(1) 

 �: ��×�
.

→ ��,�: ��×�
.

→ ��, 
�: ��×�

.
→ ��,� ∈ ��,� ∈ ��. 
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Also F and f are objective functions of the leader 
and follower respectively. 
 
However, there are meta– heuristic approaches 
and their combinations to solve optimization 
problems [25], but there is no any approach 
which combines a continuous algorithm and a 
discrete one in these approaches. In this paper, 
the authors have tried to combine particle swarm 
optimization, a continuous approach, and 
proposed modified genetic algorithm, a discrete 
algorithm, to solve non-linear BLPP. 
 
The remainder of the paper is structured as 
follows: problem formulation and smoothing 
method to the BLPP are introduced in Section 2. 
The algorithm based on combining modified 
genetic algorithm and particle swarm 
optimization is proposed in Section 3. 
Computational results are presented for our 
approaches in Section 4. As result, the paper is 
finished in Section 5 by presenting the 
concluding remarks. 
 
2. PROBLEM FORMULATION AND 

SMOOTHING METHOD 
 
The feasible region of the non-linear BLPP is 

 
� = {(�,�)|�(�,�) ≤ 0,�,� ≥ 0} 

   
(2)  

 
Using KKT conditions Equation (1) can be 
converted into the following problem:  
 

min
�,��

�(�,�,�) 

�. �∇��(�,�,�) = 0, 

��(�,�)= 0,  
�(�,�)≤ 0, 
�,�,� ≥ 0. 

 (3) 

 
Where L is the Lagrange function and  
�(�,�,�) = �(�,�)+ ��(�,�). 
 
To convert the inequality constraint to an equality 
constraint, the positive slack variable � is added: 
 

min
�,��

�(�,�,�) 

�. �∇��(�,�,�)= 0, 

��(�,�)= 0,  
�(�,�)+ � = 0, 
�,�,�,� ≥ 0. 

 (4) 

 
Let � = �(�,�) then the problem can be written 
as follows: 
 

min
�,��

�(�,�,�) 

�. �∇��(�,�,�) = 0, 

�� = 0,  
� + � = 0, 
�,�,�,� ≥ 0. 

   (5) 

 

2.1 Modified Genetic Algorithm (MGA) 
 
In this section, a modified genetic algorithm is 
proposed then basic and general concepts 
related to particle swarm optimization algorithms 
are discussed. Finally, the hybrid method of both 
algorithms is proposed. 
 
Genetic algorithms are global methods which are 
used for global searches. As the previous 
researchers indicate [11,15,16] the basic 
characteristics of these algorithms consist of:  
 

1. Initial population of solution is produced 
randomly. Some of the genetic algorithms 
use other Meta heuristic method to 
produce the initial population. 

2. Genetic algorithms use a lot of feasible 
solutions. Therefore they usually avoid 
local optimal solutions.  

3. Genetic algorithms used to solve very 
large problems with many variables.  

4. These algorithms are simple and do not 
need extra conditions such as continuity 
and differentiability of objective functions.   

5. Genetic algorithms usually gain several 
optimal solutions instead unique optimal 
solution. This property is useful for multi 
objective function and multi- level 
programming. 

6. These algorithms are inherently discrete.  
 
In the proposed genetic algorithm, each feasible 
solution of BLPP usually is transformed by string 
of characters from the binary alphabet that is 
called chromosome. The genetic algorithm works 
as follows: 
 
Initial generation, that is generated randomly, is 
divided in overall the feasible space similarly. 
Then chromosomes are composed together to 
construct new generation. This process 
continues till to get appropriate optimal solution. 

 

 
In the suggested method, every chromosome is 
demonstrated by a string. This string consists 
ofk + l + 2pcorresponding variables �,�,�,�, also 
these chromosomes are applied in Equation (5) 
that it is created by using Karush -Kuhn –Tucker 
(KKT) conditions and proposed smoothed 
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method for TLPP. Using slack variables, such as 
w, v, u, Equation (5) is prepared for using genetic 
algorithm:  
 
Now the chromosomes are applied according the 
following rules [15]: 
 
If the i-th component of the chromosome is equal 
to zero, then �� = 0,�� ≥ 0  Else   �� ≥ 0,�� = 0. 
If the j-th component of the chromosome is equal 
to zero, then  �� = 0,�� ≥ 0 Else  �� ≥ 0,�� = 0. 

Theorem 3.1: 
 
(�∗,�∗) is the optimal solution to the Equation (1) 
if and only if there exists such that  
(�∗,�∗,�∗,�∗,�∗ ) is the solution of the Equation 
(5). 
 
Proof : 
 
The proof of this theorem was given by [17].  
 
The MGA steps are proposed as follows: 
 
Step 1: Generating the initial population 
 
The initial population includes solutions in the 
feasible region that are called achievable 
chromosomes. These chromosomes are 
generated by solving the following problem: 
 

min
�

�(�,�) 

�. ��(�,�)≤ 0,                                                (6) 
�,� ≥ 0. 

 
Step 2: Keeping the present best chromosome in 
an array 
 
The best chromosome is kept in the array at the 
each iteration. This process continues till the 
algorithm is finished, then the best chromosome 
is found in the array as the optimal solution. 
 
Step 3: Crossover operation 
 
Crossover is a major operation to compose a 
new generation. In this stage two chromosomes 
are selected randomly and they are combined to 
generate a new chromosome. In the new 
generation components are created by the 
following rules: 
 

1.  The i-th component of the first child is 
replaced by the sum of the i-th 
components of parents (i=1,2,…,k+l). The 
operation sum is defined as follows: 

�� + �� = �
�� + ��

2
� 

 
That ��,�� is i-th component of chromosomes�,�. 
The other components are remained the same 
as the first parent.  
 

2.  The (k+l+i)-th component of the second 
child is replaced by the sum of the (k+l+i)-
th components of parents i=1,2,…,2p. The 
operation sum is defined as above.  The 
other components are remained the same 
as the second parent.  

 
For example, by applying the present method to 
the following parents, and k= 5, l=4, p=3we 
generate the following children: 
 

Parents Children 
92745 1036 786 123 54565 0057 786 123 
27386 0178 193 321 27386 0178 484 222 

 
Step 4: Mutation 
 
The main goal of mutation in GA is to avoid 
trapping in local optimal solutions. In this 
algorithm each chosen gene of every 
chromosome, mutates according following 
function: 
 

�(�)= �
� + 1    ��� ≠ 9

0            ��� = 9  
�                              (7) 

 
In fact if the value of the chosen gene be i, it will 
be changed to i+1 which � ≠ 9 and if the value of 
the chosen gene be 9, it will be changed to 0. 
 
For example, by applying the present mutation 
operation to the following chromosome, and      
k= 5, l=4, p=3, we have: 
 
Before mutation After mutation 
17834 9267 193 052 28945 0378 204 163 

 

Step 5: Selection 
 

The chromosomes of the current population are 
arranged in descending order of fitness values. 
Then we select a new population similar to the 
size of the first generation. If the number of   the 
generations is sufficient we go to the next step, 
otherwise the algorithm is continued by the 
step3.  
 

Step 6: Termination 
 

The algorithm is terminated after a maximum 
generation number. The best produced solution 
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that has been recorded in the algorithm is 
reported as the best solution to TLPP by 
proposed GA algorithm. 
 

2.2 Particle Swarm Optimization (PSO) 
 
Swarm intelligence system is an artificial 
intelligence technique which is usually made up 
of a population of simple particles cooperation 
locally with one another and with their 
environment. 
 
Because PSO simply solves discontinuous and 
non-convex problems, therefore it is suitable tool 
for solving BLPP. It is a method based on 
population search. In each iteration, PSO moves 
from a set of particle positions to the better one 
set with improvement optimal solution. It is 
inherently continuous. PSO has the following 
steps: 
 

1.  The initial population of particles and their 
velocity are produced randomly in the 
following feasible region.   

2. The best objective function for each 
particle in each iteration is kept. Also the 
global best objective function is defined. 

3. The global best and the best objective 
function for each particle are updated as 
follows:   

 
��[� + 1] = ���[�] + ����(������[�] − ��[�])+
����(������[�] −
��[�])                                                                              (8) 
��[� + 1] = ��[�] + ��[� + 1] 
 
4.  If termination conditions are not satisfied, 

the above steps will be continued from 
step two. Otherwise the algorithm 
will be finished. 

 

2.3 Hybrid Algorithm by Combining PSO 
and MGA (PSOMGA) 

 
As mention previously, the genetic algorithm 
searches in the discrete space but the particle 
swarm optimization searches in the continuous 
one. Therefore to hybrid these two approaches it 
is necessary that we round the positions of 
particles, which are continuous, to use genetic 
algorithm.  
 

In this method initial population is produced using 
PSO algorithm. Then position and their velocity 
are updated by the step 3 in PSO and the new 
population with better objective functions will be 

made. After that, the position of particles will be 
rounded then MGA is applied to the new 
population by these steps: crossover operation, 
mutation and selection. In the next iteration PSO 
algorithm is applied to the obtained population by 
MGA. The algorithm is continued while 
termination condition is satisfied. In fact in this 
proposed hybrid method by combining PSO and 
MGA the genetic algorithm is used after the 
particle swarm optimization algorithm. Therefore 
the convertor function should be defined to 
convert particles to the acceptable points for 
MGA (chromosome). 
 

2.3.1 Definition 3.1 
 

We define the convertor function to round an 
arbitrary number x as follows: 
 

���∗(�)= �
���� < � +

�

�

� + 1    ��� ≥ � +
�

�

�,                           (9) 

  
For � ∈ �. Also we define for  � ∈ �� ,���∗(�)=
����∗(��),���∗(��),… ,���∗(��)�. 
 

Example 1: 
 

To more illustrate the proposed function that 
converts the particles to the point using GA, 
consider �� = (0.4,0.44),�� = (0.7,0.5),�� =
(0.3,0.6),�� = (0.9,0.2),�� = (1.6,1.3). 
 

���∗(��) = (0,0) 
���∗(��) = (1,1) 
���∗(��) = (0,1) 
���∗(��) = (1,0) 
���∗(��) = (2,1) 

 

These points have been shown in Fig. 1. The 
green points are the produced particles by PSO 
and the red points are the acceptable point for 
GA (chromosome). It is easy to see that, each 
green point is attracted to the nearest red point 
by the proposed convertor function.  
 

Now everything is prepared to propose the new 
hybrid approach. The algorithm steps as follows:   
 

Step 1: initialization 
 

The initial population of particles and their 
velocity are produced randomly in the Equation 
(8). 
 

Step 2: Keeping the present best particles in an 
array 
 

The best objective function for each particle is 
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kept in the array at the each iteration. Also the 
global best objective function is saved. This 
process continues till the algorithm is finished.  
 

Step 3: Updating 
 

The global best and the best position for each 
particle are updated according to (8). 
 
Step 4: Checking the optimal solution 
 

If  d(F(������[� + 1]),F(������[�]))< ℇ�   then go 
to step 8. Otherwise go to the next step. 
 

Step 5: Converting particles to chromosome 
 

In this step all particles convert to chromosome 
using proposed convertor function. 
 

Step 6: Crossover operation 
 

In this step each particle is correspond with a 
chromosome. The chromosomes of the current 
population are arranged in descending order of 
objective function values. Then numbers of the 
best chromosomes are selected to use crossover 
operation for positions by the proposed rules in 
step 3 of section 3.1. The velocities are changed 
too as follows: 
 

����� = ������
� [� + 1] − ������

� [� + 1] 

��� = ������
� [� + 1] + ������

� [� + 1] 
��

� [� + 1] = ����� 
��

� [� + 1] = ��� 
 
Which��

� ,��
�  are respectively the velocities of first 

and second particles in the i-thiteration. 
 
Step 7: Mutation 
 
In this step each chosen gene of every 
chromosome, mutates like step 4 of section 3.1 
as follows: 
 
If the value of the chosen gene be 0, it will be 
changed to 1 and if the value of the chosen gene 
be 1, it will be changed to 0. 
 

Also the velocities are changed according to the 
following rule: 
 

��[� + 1] = ��[� + 1] +
�

2
 

 

Step 8: Selection 
 

We select a new population similar to the size of 
the first generation by combing the obtained 
particles in two above steps and number of the 
particles in current population before applying 
MGA. 

 

 
 

Fig. 1. Converting particles to chromosomes for example1 
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Step 9: Termination 
 

If  d(F(������[� + 1]),F(������[�])) < ℇ�  then the 
algorithm is finished and������[� + 1]  is the best 
solution by the proposed algorithm. Otherwise, 
let k=k+1 and go to the step 2. That d is the 
following metric: 
 

d�F(������[� + 1]),F(������[�])� =

(∑ (F(��
�����[� + 1]),F(��

�����[�]))�������
��� )

�

�. 
 

Because the authors going to gain the best 
optimal solution, the Termination 
condition, d(F(������[� + 1]),F(������[�]))< ℇ� , 
will be checked in bothsteps 4 and 9. In fact this 
condition will be checked before and after MGA 
which rounds the solutions. Also both of steps 
crossover and mutation in the MGA are applied 
to the velocities of particles. To illustrate these 
two operations following example is proposed. 
 

Example 2: 
 

Consider following particles and their velocities 
that are the parents in MGA: 
 

 
 

Using step 6 in the proposed hybrid algorithm 
after mutates the velocities are changed as 
follows: 
 

 
 
Also after using step 5 velocities of children are 
changed that the red direction is resultant of two 
directions of parents and the blue one is 
difference of them.  
  

 
 
Theorem 3.1 Sequence{��} which was proposed 
in above algorithm is convergent to the optimal 
solution, so that the algorithm is convergent.  
 

Proof: 
 

Let (��)= (�(��)) =

(�(��
� ),�(��

� ),… ,�(�����
� ))= (��

(�)
,��

(�)
,… ,�����

(�)
). 

 
According to step 4 

�(����,��)= d �F�t����,F�t���

= ( � (����
���� − �(��

�))�

����

���

)
�

�

< �� 
 

Therefore (∑ �����
���� − ����

���
�

����
��� ) < ��

� 

 

There is large number such as N which k+1>k>N 
and j=1,2,…,2m+n we have:   
 

(��
(���)

− ��
(�)

)� < ��
� , therefore  ���

(���)
−

��
(�)

� < ��                                                     (10) 

 
������� = � + 1,� = ��ℎ����ℎ��� 

 

∀��������
(�)

− ��
(�)

� < ��. 

 

This shows that for each fixed j,(1 ≤ j ≤ 2m + n), 

the sequence  (F�
(�)

,F�
(�)

,… ) is Cauchy of real 

numbers, then it converges by theorem 3.2. 
 

Say,  ��
(�)

→ ��  as � → ∞ . Using these 2m+n 

limits, we define � = (��,��,… ,�����). From (10) 
and m=k+1, r=k,  
 

�(��,��) < �� 
 

Now if  r → ∞, by�� → F we have �(��,�) ≤ ��. 
 

This shows that F is the limit of (��) and the 
sequence is convergent therefore proof of 
theorem is finished. 
 

3. COMPUTATIONAL RESULTS  
 

To illustrate the algorithm, we first propose the 
practical following examples and then model 
them. Finally the proposed examples will be 
solved using our algorithm. 
 

Example 3 [11] Consider the following linear 
BLPP where � ∈ ��,� ∈ ��. 
 

Consider the following linear bi-level 
programming problem:  
 

min
�

�� + (y − 10)� 

 s. t 
min

�
(� + 2� − 30)� 

        s. t 
 x − �� ≥ 0, 
           20 − x − �� ≥ 0, 
 0 ≤ x ≤ 15, 
� ≥ 0. 
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Using KKT conditions the following problem is 
obtained: 
 

min
�

�� + (y − 10)� 

 s. t 
4(� + 2� − 30) = 0, 

2y�µ
�

+ µ
�

� = 0, 

µ
�

(�� − �) = 0, 

µ
�

(x + �� − 20) = 0, 

µ
�

(x − 15)= 0, 

�� − � ≤ 0, 
         x + �� − 20 ≤ 0, 
�,µ

�
,µ

�
,µ

�
≥ 0. 

 
We solve this problem using the PSOMGA 
algorithm and we present the optimal solution in 
the Table 1. Behavior of variables is shown in 
Fig. 2.We have present behavior of the x and 
optimal solution (OS) with different value of 
�,�,� in Fig. 3. 
 
Example 4 [11] Consider the following linear 
BLPP where � ∈ ��,� ∈ ��. 
 
Consider the following linear bi-level 
programming problem.  
 

min
�

x�
� − 2�� + ��

� − 2�� + ��
� + ��

� 

 s. t 
min

�
��

� − 2���� + ��
� − 2���� 

        s. t 
 0.25 − (�� − 1)� ≥ 0, 
 0.25 − (�� − 1)� ≥ 0, 
��,��,��,�� ≥ 0. 

 
After applying KKT conditions and smoothing 
method, and then proposed PSOMGA algorithm 
above problem will be solved. The optimal 
solution is obtained using our method according 
to the Table 1.Behavior of variables is shown in 
Fig. 4. The behavior of the x and optimal solution 
(OS) with different value of �,�,� in Fig. 5 have 
been shown. 
 
More problems with different sizes have been 
solved by our approach and computation results 
have been proposed in Table 2.  References of 
the examples in Table 1 are as follows: 
 
Example 5 [3], Example 6 [7], Example 7 [26], 
Example 8 [27] which both of them are problems. 
 

 
 

Fig. 2. Behavior of the variables in example 3 Fig. 3. Behavior of the variables in example 4 

 

  
Fig. 4. Behavior of the � and optimal 
solution (OS) with different value of  

�,�,�in example 3 

Fig. 5. Behavior of the � and optimal 
solution (OS) with different value of  

�,�,� in example 4 
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Table 1. Comparison optimal solutions with deferent examples 5-8by PSOMGA 
 

Example Best solution by 
PSOMGA 

Best solution reported in 
references 

Optimal solution 

3 (2.600,1.612) (2.600,1.613) [30] (2.600,1.612) 
4 (0.51,0.51,0.51,0.51) (0.5,0.5,0.5,0.5) [4] (0.51,0.51,0.51,0.51) 
5 (1.888,0.888,0.000) (1.883,0.891,0.003) [3,7,26,27]  
6 (0,0) (0,0) [3,7,26,27] (0,0) 
7 (1,0) (1,0) [3,7,26,27] (1,0) 
8 (0,0.75,0,0.5,0) (0,0.75,0,0.5,0) [3,7,26,27] (0,0.75,0,0.5,0) 

 
Table 2. Comparison optimal solutions improvement by PSOMGA 

 
 PSOMGA algorithm 

Gap of optimal 
solution 

Improvement 
rathar than 
[22,23,8,9,30] 

Improvement 
rathar than [24] 

Iterations Time 

Example 3 0 0.0001% 0.0003% 2000 0.47 s 
Example 4 0 0.06% 0.005% 1500 0.56 s 
Example 5 0 0.007% 0.001% 5300 2.42 s 
Example 6 0 0 % 0% 2200 1.25 s 
Example 7 0 0% 0% 3800 2.13 s 
Example 8 0 0% 0.004% 5000 3.07 s 

 

4. CONCLUSION AND FUTURE WORK 
 
The main difficulty of the multi-level programming 
problem is that after using the KKT conditions the 
non-linear constraints are appeared. In this paper 
was attempted to remove these constraints by 
the proposed theorem, slack variables and 
proposed PSOMGA algorithm. As mentioned 
previously the authors have been combined two 
continuous and discrete effective approaches to 
the non-linear BLPP which this form of combining 
has not been studied by any researchers. 
According to the Tables the proposed method 
presents optimal solution in appropriate time and 
iterations. In the future works, the following 
should be researched: 
 

(1) Examples in the larger sizes can be 
supplied to illustrate the efficiency of the 
proposed algorithm. 

(2) Showing the efficiency of the proposed 
algorithm for solving other kinds of BLPP 
such as quadratic. 

(3) Solving other kinds of multi-level 
programming problem such as tri-level 
programming problem. 
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