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ABSTRACT 
 

Using causal diagrams and an axiomatization of causality, we examined the well-known claim that 
conditioning on confounders (“adjustment” for confounders) is sufficient to remove confounding 
bias. We show that this advice is poorly stated and is incomplete. To remove confounding bias, it is 
necessary to condition on three types of variables, none of which is a confounder. Conditioning on 
one of them, however, leads to an interesting form of colliding bias, which in turn, can be removed 
by conditioning on two other types of variables. 
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1. INTRODUCTION 
 

By definition, a confounder (C) is any shared 
cause of the exposure (E) and the disease (D), 

which affects the disease not only through its 
effect on the exposure [1]. In the presence of a 
confounder (Fig. 1), the marginal association 
between E and D does not arise from the causal 
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path ED alone, but also from the confounding 
path ECD – an open (associational) path 
between the exposure and the disease. 
 
It is widely believed that conditioning on C 
(“adjustment” for C) is sufficient to remove 
confounding bias due to C. We examined the 
validity of this claim under axioms of causality. 
 

2. RELEVANT AXIOMS 
 
Scientific inference, like any kind of inference, 
must rely on axioms – a set of primary premises 
that cannot be derived from other premises. 
Surprisingly, the voluminous literature in 
philosophy of science does not contain an 
elaborated axiomatization of causality, except for 
the well-known clash between determinism and 
indeterminism [2]. 
 

We previously proposed a set of axioms about 
indeterministic causation [3], four of which are 
relevant here: 
 

 All causation operates between time point 
variables: a variable at one time (e.g., A0) 
affects a variable at a later time (e.g., Y1). 

 If AY, then AiYj for any i and j where 
j>i 

 A direct effect exists only on the dt scale of 
time, where dt is an infinitesimal time 
interval (as in Newton’s calculus): 
A0Y0+dt; A0A0+dt. Informally: there is no 
“time travel” of an effect. 

 A variable at one time (e.g., A0) affects that 
variable at any future time (e.g., A1): 

A0 A0+dt…A1-dtA1 
 
Notice two important derivations: First, any arrow 
between two time point variables is just a 
convenient abbreviation for causal paths on the 
dt scale of time. Second, the effect of A on Y 

should be estimated for a specified time interval 
between the two variables.  
 

3. BLOCKING CONFOUNDING PATHS 
 
In light of the axioms, the causal structure in    
Fig. 1 is an oversimplification. There are no 
generic variables such as C, E, and D – only time 
point variables, each taking the value of some 
property at a distinct time. Given the causal 
ordering of C, E, and D (C is a cause of E; E is a 
cause of D), a sequential subscript may denote a 
time point for each variable: C0, E1, D2. Without 
losing generality, we assume throughout that the 
subscript “0” denotes a property at its inception. 

 
To estimate the effect E1D2 and remove 
confounding bias, we may block the path 
E1C0D2 by conditioning on C0 (Fig. 2).  

 
Conditioning, denoted by a box, dissociates a 
variable from all other variables, as denoted by 
crossing lines over surrounding arrows. After 
conditioning on C0, the (conditional) association 
between E1 and D2 does not include the 
unwanted contribution of the confounding path. 
 
C0, however, indicates the C-property at just one 
time point before E1. Between t=0 and t=1, there 
are an infinite number of interim Ct variables 
(0<t<1), as shown in Fig. 3. Two C-variables that 
are close to C0 and C1 are labeled, respectively, 
C0+Δt and C1-Δt. 

 
In accord with the axioms of causality, the set of 
interim Ct form a causal path between C0 and C1 
(C0C0+Δt…C1-ΔtC1), and each of these 
variables is also a cause of E1. Therefore, there 
is a continuum of Ct, each of which creates a 
unique confounding path: E1CtC1D2      
(Fig. 3). The so-called confounder C is actually a 
set of an infinite number of confounders. 

 

 
 

Fig. 1. A confounding path due to C 
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Fig. 2. Blocking the confounding path 
 

Fig. 4 shows what happens after conditioning on 
C0. One confounding path is indeed blocked, as 
we already saw in Fig. 2, but an infinite number 
of paths, E1CtC1D2, remain open. 

 
Fig. 4 leads to another conclusion: let Cj be a 
member of {Ct: 0<t<1}. Then, the shorter the time 
interval between Cj and C1, the smaller the set of 
confounding paths that remain open after 
conditioning on Cj. Therefore, if we have to 
choose between conditioning on Ci and Cj (i<j<1), 
it is better to condition on Cj (less bias will 
remain). 

 
Most important, however, is the following 
conclusion: 
 

Rather than conditioning on C0 or any other 
confounder, Cj (j<1), we should condition on C1 – 
the variable that coincides with the exposure 
variable E1 (Fig. 5). Since C1 is located on all 
preceding confounding paths, conditioning on 
this variable will block them all. But C1 is not a 
confounder! It is not a cause of E1. 
 

Conditioning on C1 will not suffice, however, if C0 

affects D2 not only through subsequent C-
variables, but also through other variables, such 
as V (Fig. 6). In that case, an infinite number of 
confounding paths, E1Ct1Vt2V1D2, where 
0<t1<t2<1, still remain open. To remove all 
confounding due to C-variables, we have to 
condition on V1 as well (Fig. 7). Notice that V1 is 
not a confounder, either. It is a cause of D2, but 
not a cause of E1. 

 

 
 

Fig. 3. An infinite number of confounding paths due to C-variables 
 

 
 

Fig. 4. Conditioning on C0 
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Fig. 5. Blocking the confounding paths by conditioning on C1 
 

 
 

Fig. 6. C affects D through some variable V 
 

 
 

Fig. 7. Blocking the confounding paths by conditioning on both C1 and V1 
 

4. CONFOUNDING BY PREVIOUS 
EXPOSURE VARIABLES 

 
Although not widely recognized, E-variables 
before E1 are confounders too. Unless the effect 
of E on D is precisely null, each of them is not 
only a cause of E1, but also a cause of D2 
through D1 (Fig. 8). Just like Ct and Vt, the Et 
variables collectively create an infinite number of 
confounding paths (E1EtD1D2), which 
make an unwanted contribution to the 
association between E1 and D2. 
 

How can we block these paths? 
 

Obviously, we cannot follow the method for C 
and V; we cannot condition on E1, the exposure 
variable itself. At most, we may condition on 
some prior E, say Ej (j<1). 
 

To minimize confounding bias, Ej should be as 
close as possible to E1: the shorter the interval   
[j, 1], the fewer the confounding paths that 
remain open and the smaller the residual bias. 
But as Ej approaches E1, it becomes similar to 
E1, so the variance of the conditional association 
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between E1 and D2 will gradually increase: We 
have to pay in increased variance for reduced 
bias – another example of the bias-variance 
tradeoff. And if prior, measured, E-variables 
happen to be identical to measured E1 as of 
some time point k, we cannot condition on any E-
variable in the interval [k,1]. 
 

Another solution, however, is available. Instead 
of conditioning on Ej, we may condition on D1 
(Fig. 9), an intermediary on all confounding paths 
due to previous E-variables. Again, the variable 
on which we condition to remove confounding 
bias is not a confounder. 
 

5. HOW TO CONDITION ON D1  
 
Conditioning on D1 is routinely performed in 
cohort studies, albeit for poorly stated reasons.  
Prevailing dogma calls for excluding prevalent 
disease (D1=”diseased”) by design or analysis 
and estimating the effect of baseline exposure on 
incident disease. 
 

Fig. 9 sheds new light on this practice. First, the 
diagram does not show any variable that is called 
incident disease – and rightly so. Neither incident 
disease status nor recurrent disease status are 
time point properties of any person; they are 
derived from the person’s disease status at 
different time points. Second, we do not estimate 

the exposure effect on incident (or recurrent) 
disease at t=2, but rather the exposure effect on 
D2. That effect is estimated by the association 
between E1 and D2 conditional on D1. It is not just 
a matter of wording, because derived variables, 
such as “incident disease status”, have neither 
causes nor effects [4]. They are mathematical 
entities, not natural properties of objects. 
 
When D is binary, the conditional association 
between E1 and D2 may take two forms: 
conditional on D1=”diseased” and conditional on 
D1=”disease-free”. If D1 is a significant modifier of 
the effect E1D2, two stratum-specific estimates 
should be reported. Otherwise, we may compute 
a weighted average of two estimates of the effect 
E1D2 (for example, by a “main effects” 
regression model). In either case, there is no 
reason to ignore the stratum D1=”diseased”, 
other than sparse, or poor quality, data. 
 

6. COLLIDING BIAS: THE CONSEQU-
ENCE OF CONDITIONING ON D1 

 
Unfortunately, conditioning on D1 does not settle 
the matter either [5]. Another kind of bias might 
be created: colliding bias [6]. The bias arises 
when two causes modify each other’s effect on 
some variable and we condition on that variable 
(a shared effect).  

 

 
 

Fig. 8. An infinite number of confounding paths due to previous E-variables 
 

 
 

Fig. 9. Blocking the confounding paths by conditioning on D1 
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In certain circumstances conditioning on a 
shared effect (a collider) will create, or alter, an 
association between its causes (colliding 
variables). 

 
Fig. 10 depicts the situation. Q is a cause of D, 
though not a confounder, and E and Q modify 
each other’s effects on D (denoted by a lower 
case letter above the modified arrow to indicate 
dependency on the modifier’s value). 

 
Following conditioning on D1, a new association 
is created between E and Q at each time point 
(denoted by a dash line). As a result, we observe 
an infinite number of open induced paths that 
contribute to the conditional association between 
E1 and D2 – for example, E1E0--Q0Q1D2. 

That unwanted contribution is called colliding 
bias. 
 

Fig. 11 shows the obvious solution. Conditioning 
on Q1 will block the induced paths and remove 
colliding bias. Again, the variable on which we 
condition is not a confounder. 
 

One last problem still remains: there may be 
open induced paths through intermediaries 
between Q and D, such as R (Fig. 12). We have 
to condition on intermediary variables between 
the modifier and the disease (Fig. 13), just as we 
had to condition on intermediary variables 
between the confounder and the disease (Fig. 7). 
Again, the variable on which we condition, R1, 
coincides with the exposure, E1, and is not a 
confounder (Fig. 13). 

 

 
 

Fig. 10. An infinite number of open induced paths following conditioning on D1 
 

 
 

Fig. 11. Blocking the induced paths by conditioning on Q1 
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Fig. 12. An infinite number of open induced paths due to R-variables 
 

 
 

Fig. 13. Blocking the induced paths by conditioning on R1 

 

7. SUMMARY 
 

Fig. 14 summarizes the five types of variables on 
which we should condition to remove 
confounding bias, and some consequential 
colliding bias. To remove confounding bias, we 
should condition on three types of variables: two 
kinds of intermediaries on causal paths from the 
confounder to D2 (C1, V1); and disease status 
(D1). Since conditioning on D1 may result in 
colliding bias, we should also condition on two 

kinds of intermediaries on causal paths from a 
modifier to D2 (Q1, R1). 

 
8. DISCUSSION 
 
Using a set of axioms of causality, we identified 
five types of variables on which we should 
condition to remove confounding bias. All 
variables coincide with the exposure. None is a 
confounder.
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Fig. 14. Five types of variables for conditioning 
 

An obvious counter-argument takes the following 
form: Even if the building blocks of causal reality 
are time point variables, many variables do not 
change over time. It makes no difference, for 
instance, whether we condition on C1 or on C0, or 
on any Ct. They are essentially the same 
variable. 
 
We offer the following answers: 
 

First, in contemporary practice, many 
variables are clearly time dependent: 
smoking, drinking, weight, drug use, mental 
states, and so on. In those cases, 
conditioning on a variable at one time point is 
not always equivalent to conditioning on a 
variable at a different time point.  
 
Second, in an indeterministic universe no 
variable is endowed with guaranteed stability 
over time. Those who think otherwise should 
recall our genes, time-stable variables a 
century ago, which turned into not-so-stable 
variables with contemporary gene therapy, 
and might become classic time-varying 
variables in another century. Sound 
methodology, on the other hand, provides for 
time-stable reasoning. 

 
Third, methodological arguments prescribe a 
logical course of action and should not be 
mixed with practical considerations. In 
practice, we never condition on the variables 
that are shown in Figs. 1-14. We always 

condition on an imputed version of the 
variable of interest (e.g., CIMPUTED) – the 
variable that exists in our computer when we 
run the analysis software [4]. That variable 
might differ from the variable of interest and 
from any variable along the measurement 
process.  

 
Furthermore, which variable is replaced by 
CIMPUTED is a matter of interpretation, because 
valid substitution requires only some form of 
association between the variable of interest and 
its substitute [4]. For instance, CIMPUTED may 
substitute for C0 when the latter was measured, 
because the two are associated through a causal 
path (C0CMEASUREDCIMPUTED). But it is equally 
valid to say that CIMPUTED substitutes for C1 – 
even if C0 was measured – because CIMPUTED 
and C1 are associated through an open path 
(C1C0CMEASUREDCIMPUTED). In both cases 
the imputed variable provides information on the 
values of a variable of interest. Information bias 
aside, it does not matter which causal structure 
accounts for the association between the 
variable of interest and its substitute. Moreover, if 
the effect of C0 on C1 is so strong that the two 
variables practically take the same value, then 
CIMPUTED would be a good imputation for C1 when 
C0 was measured. In this sense C is sometimes 
called a “time-stable” variable (even though its 
value is not inherently fixed over time). 
 
In summary, causal diagrams, along with axioms 
of causality, reveal the types of variables that 
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should be considered when removing 
confounding bias. The conclusion that was 
reached here stands in sharp contrast to what is 
widely assumed. Of course, a different 
conclusion may be reached on the basis of a 
different axiomatization of causality, provided 
that coherent axioms are explicitly stated. It is 
crucial, however, to keep in mind the sharp 
distinction between an axiom of causality [3] and 
a definition of causality [7]: the former makes a 
bold claim about the way causality works; the 
latter trivially replaces some long phrase with a 
short phrase [8]. Axioms are essential for logical 
inference; definitions are not.  
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