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Abstract 
 
In this paper, a Gauss-Newton-based Broyden’s class method for parameters of regression problems is pre-
sented. The global convergence of this given method will be established under suitable conditions. Numeri-
cal results show that the proposed method is interesting. 
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1. Introduction 
 
It is well known that the regression analysis often arises 
in economies, finance, trade, law, meteorology, medicine, 
biology, chemistry, engineering, physics, education, his-
tory, sociology, psychology, and so on (see [1-7]). The 
classical regression model is defined by 

 1 2, , , pY h X X X   , 

where Y  is the response variable, iX  is predictor va-
riable 1,2, , , 0i p p   is an integer constant, and   
is the error. The function  1 2, , , ph X X X  describe the 
relation between Y  and  1 2, , , pX X X X  . If h  is 
linear function, then we can get the following linear re-
gression model 

0 1 1 2 2 p pY X X X               (1.1) 

which is the most simple regression model, where  

0 1, , , p    are regression parameters. On the other 
hand, the regression model is called nonlinear regression. 
We all know that there are many nonlinear regression 
could be linearization [8-13].Then many authors are de-
voted to the linear model [14-19]. Now we will concen-
trate on the linear model to discuss the following prob-
lems. One of the most important work of the regress analy- 
sis is to estimate the parameters  0 1, , , p     . 
The least squares method is an important fitting method 
to determined the parameters  0 1, , , p     , which 
is defined by  

   
1

2

0 1 1 2 2
1

min ,
p

m

i i i p ip
i

S h X X X


    
 

        

(1.2) 

where ih  is the data valuation of the i  th response 
variable, 1 2, , ,i i ipX X X  are p  data valuation of the 
i  th predictor variable, and m  is the number of the 
data. If the dimension p  and the number m  is small, 
then we can obtain the parameters  0 1, , , p      
from extreme value of calculus. From the definition of 
(1.2), it is not difficult to see that this problem (1.2) is the 
same as the following unconstrained optimization prob-
lem 

 min
nx

f x


               (1.3) 

For regression problem (1.3), if the dimension n  is 
large and the function f  is complex, then it is difficult 
to solve this problem by the method of extreme value of 
calculus. In order to solve this problem, numerical me- 
thods are often used, such as steepest descent method, 
Newton method, and Guass-Newton method (see [5-7]  
et al.). Moreover many statical softwares are from this 
idea. Numerical method, i.e., the iterative method is to 
generates a sequence of points { }kx  which will termi-
nate or converge to a point x  in some sense. The line 
search method is one of the most effective numerical 
method, which is defined by 

1 , 0,1, 2, ,k k k kx x d k      

where k  that is determined by a line search is the step- 
length, and kd  which determines different line search 
methods [20-30] is a descent direction of f  at kx . We 
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give a line search method for regression problem and get 
good results (see [31] in detail).  

In order to solve the problem (1.3), one main goal is to 
find some point x  such that 

  0, ng x x               (1.4) 

where    g x f x   is the gradient of ( )f x  In this 
paper, we will concentrate on this equations problem (1.4) 
where 2: ng    is continuously differentiable (linear 
or nonlinear). Assume that the Jacobian  g x  of g  
is symmetric for all nx . Let   be the norm func- 

tion defined by     21

2
x g x  .Then the nonlinear  

equations problem (1.4) is equivalent to the following 
global optimization problem 

 min , nx x  .             (1.5) 

Similar to (1.3), the following iterative formula is of-
ten used to solve the problem (1.4) or (1.5)  

1 ,k k k kx x d                 (1.6) 

where kd  is a search direction, k  is a steplength 
along kd  and kx  is the k  th iterative point. For (1.4), 
Griewank [32] first established a global convergence 
theorem for quasi-Newton method with a suitable line 
search. One nonmonotone backtracking inexact quasi- 
Newton algorithm [33] and the trust region algorithms 
[34,35] were presented. A Gauss-Newton-based BFGS 
(Broyden, Fletcher, Goldfar, and Shanno, 1970) method 
is proposed by Li and Fukushima [36] for solving sym-
metric nonlinear equations. Inspired by their ideas, Wei 
[37] and Yuan [38,39] made a further study. Recently, 
Yuan and Lu [40-45] got some new methods for symme-
tric nonlinear equations. 

The authors [36] only discussed that the updated ma-
trices were generated by the BFGS formula. Whether the 
updated matrices could be produced by the more exten-
sive Broyden's class? This paper gives a positive answer, 
moreover, the presented method is used to regression 
analysis. The major contribution of this paper is an ex-
tension of the method in [36] to Broyden’s class, moreo-
ver, to solving the regression problems. Numerical re-
sults of practically statistical problems show that this 
given method is effective. Throughout this paper, these 
notations are used:   is the Euclidean norm,  kg x  
and  1kg x   are replaced by kg and 1kg  , respect- 
tively. 

In the next section, the method of Li and Fukushima 
[36] is stated. Our algorithm is proposed in Section 3. 
Under some reasonable conditions, the global conver-
gence of the given algorithm is established in Section 4. 
In the Section 5, numerical results are reported. In the 
last section, a conclusion is stated.  

2. A Gauss-Newton-Based BFGS Method  
[36] 

 
Li and Fukushima [36] proposed a new BFGS update 
formula defined by: 

/ /
/ /

1 /
,

T T
k k k k k k

k k T T
k k k k

B s s B
B B

s B s s

 
           (2.1) 

Where 1 1,k k k k k ks x x y g g     ,  
  1,k k k k kg x y g x     is the next iteration,  
 k kg g x ,  1 1k kg g x  , and /

0B  is an initial 
symmetric positive definite matrix. By the secant equa-
tion /

1K k kB s    and kg  is symmetric, they had ap-
proximately 

/
1 1 1 1

T
k k k k k k kB s g y g g s        , 

which implies that /
1kB   approximates 1 1

T
k kg g    

along direction ks  By solving the following linear equ-
ation to get the search direction kd .  

 1

1

0.k k k k
k k

k

g x g g
B d








 
          (2.2) 

If 1k kg   is sufficiently small and kB  is positive 
definite, then they have the following approximate rela-
tion 

 1

1

.k k k k
k k k k

k

g x g g
B d g g








 
     

Therefore, 

  11 T
k k k k k k k kd B g g g g g g

        . 

So, the solution of (2.2) is an approximate Gauss- 
Newton direction. Then the methods (2.1) and (2.2) are 
called Gauss-Newton-based BFGS method. In order to 
get the steplength k   by means of a backtracking 
process, a new line search technique is defined by  

  2 2

2 2 2

1 2 ,

k k k

k k k k

g x d g

g d g



    

 

   
    (2.3) 

where 1 2, 0    are constants, and the positive se-
quence { }k  such that 

0
k

k






  .             (2.4) 

Li and Fukushima [36] only discussed that the updated 
matrices were generated by the BFGS formula. In this 
paper, we will prove that the updated matrices could be 
produced by the more extensive Broyden's class. More-
over, the presented method is used to regression analysis 
(1.3) Numerical results show that the given method is 
promising. 
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3. Algorithm 
 
Now we give our algorithm as follows. 

Algorithm 1 (Gauss-Newton-based Broyden’s Class 
Algorithm) 

Step 0: Choose an initial point 0
nx R ,an initial 

symmetric positive definite matrix 0
n nB R  , a positive 

sequence { }k  satisfying (2.4), and constants  
  1 2 10,1 , , 0, 0r      , let: 0k  . 

Step 1: Stop if 0kg  . Otherwise solve the linear 
(2.2) to get the search direction kd . 

Step 2: Let ki be the smallest nonnegative integer i  
such that Equation (2.3) holds for ir  . Let i

k r  . 
Step 3: Let the next iterative be 1k k k kx x d   . 
Step 4: Put 1 1,k k k k k k k ks x x d g g       and 

   k k k ky g x g x   . If 0T
k ks y   and 

  
 

1
2

1
, , ,

1

T T
k k k k k kc

k k k k k
T

k k k

s B s y H y
u H B

u s y
     


  

(3.1) 
then update kB  by the Broyden’s class formula 

1 ,

0,1, 2, ,

T T
T Tk k k k k k

k k k k k k k kT T
k k k k k

B s s B y y
B B s B s v v

s B s s y

k

    

 
   (3.2) 

Where k k k
k T T

k k k k k

y B s
v

s y s B s
   Otherwise let 1k kB B  . 

Step 5: Let : 1k k   Go to step 1.  
 
4. Global Convergence 
 
In this paper, we will establish the global convergence of 
Algorithm 1 under the condition about k  such that 

   1 ,1 , , 0,1c
k kv v               (4.1) 

Let   be the level set defined by  

   2
0|x g x e g x

     
  

, where   is a positive con- 

stant such that 
0 kk
 


 . 

Similar to [33,36-39], the following Assumptions are 
needed. 

Assumption A 1) g  is continuously differentiable 
on an open convex set 1  containing  . 

2) The Jaconbian of g  is symmetric, bounded, and 
uniformly nonsingular on 1 , i.e., there exist positive 
constants 0M m   such that 

  1  g x M x               (4.2) 

and 

  1,  , .nm d g x d x d R           (4.3) 

Assumption A 2) implies that 

  1, , ,nm d g x d M d x d R        (4.4) 

    1, , .m x y g x g y M x y x y        (4.5) 

By Assumption A, similar to Lemma 2.2 in [36], it is 
not difficult to get the following lemma. So we only state 
it as follows but omit the proof. 

Lemma 4.2 Let Assumption A  be satisfied. Consid-
er Equation (2.3), if 0ks  , then there is a constant 

1 0m   such that for all k  sufficiently large 
2

1 .T
k k ky s m s                 (4.6) 

Denote 

 

 

1

1

1

10
,

k k k k
k

k

k k k k k k

g x g g
q

g x g d g T g




 







 


   
     (4.7) 

where  1

10k k k kT g x g d    . Consider Equation 

(2.2), then we have 

0k k k k k k kB d q B d T g    .      (4.8) 

Lemma 4.3 Let Assumption A  be satisfied. Then we 
have 

 2

lim 0.
T
k k k

Tk
k k

s q

s y




            (4.9) 

Proof. Consider the line search (2.3), by Lemma 4.1 
and Equation (2.4), we can get the following inequalities 
immediately 

2 2

0 0

,k k k k
k k

g d 
 

 

     .     (4.10) 

By Equations (4.5)-(4.7), we have 

 2
2

2 22

1 1

1
0 ,

T
k k k

k k k kT
k k

s q M
q g

m ms y


     

By Equation (4.10), we obtain Equation (4.9). The 
proof is complete.□ 

Lemma 4.4  

       1det det 1 1T T
K k k k k k k k kB B y s s B s u     

where  det kB  denotes the determinant of kB . 

Proof. Omitted. For the proof can be seen from [21].□ 
Let us denote  

cos
.

T
k k k

k
k k k

s B s

B s s
  .           (4.11) 
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The proof of the following lemma is motivated by the 
methods in [46,47]. 

Lemma 4.5 Let Assumption A  hold and  
 , , ,k k k kd x g  be generated by Algorithm 1. Then 
there exist a positive integer /k  and positive constants 

1 2 3, , 0     such that, for any  0 0,1t   and /k k  
the relations 

3
1 2 3 2

1

cos , ,T
i i i i i i is B s s B s


    


      (4.12) 

hold for at least 0t k    values of  0,i k . 
Proof. By Equation (4.5), we get  

2
k k ky M M s  . 

Using this and Equation (4.6), we obtain 
2 24 4 4

1 12
1 11

, .k k

T
k k k

y M s M M
M M

m ms y m s
      (4.13) 

From Equation (3.2), we have 

     
2

1

2

1

1 2 ,

k k
k k k T

k k k

T T
kk k k k k k

k kT T T
k k k k k k

B s
Tr B Tr B

s B s

ys B s s B y

s y s y s y



 

   

 
   
 

     (4.14) 

where  kTr B  denote the trace of kB  By Lemma 4.2, 
we know there exists a positive integer /k , when 

/k k , Equation (4.6) holds. Let us now define kN  by 

 /|kN k k k holds   

Denote 

 1 | 0 1 , ,k kI k k N    

  2 1 | 1 0, .c
k k k kI N I k v k N         

Consider the following two cases. 
1) 1k I . Equation (4.13) indicates that 

 22 2

1 2

TT
k k kk k kk k k

T T T T
k k k k k k k k k k k

s B sy B ss B s
M

s y s y s B s s y B s
    (4.15) 

and 
2

1

T T T
k k k k k k k k k k k k

T T T T
k k k k k k k k k k k k k

s B y B s y s B s s B s
M

s y s B s s y B s s y B s
   

(4.16) 

Using kB is positive definite, Equations (4.1), (4.14)- 
(4.16), we have 

   
2

1 12
k k

k k T
k k k

B s
Tr B Tr B M

s B s   


     (4.17) 

holds for all 1k I . 

2) 2k I . According to Equations (4.1), (4.13), and 
(4.14), it is easy to get 

   
2

1 1
k k

k k T
k k k

B s
Tr B Tr B M

s B s    , 

this means that Equation (4.17) also holds in this case. 
So the relation Equation (4.17) holds for these two cases. 
Define the Rayleigh quotient 

,
T
k k k

T
k k

s B s
p

s s
               (4.18) 

and the function 

      ln detB Tr B B   ,      (4.19) 

Where ln  denotes the logarithm, and B  is any pos-
itive definite matrix. 

By Equations (3.1), (4.1) and Lemma 4.4, we can de-
duce that 

      

 

1det det 1 1

det .

T
k k

k k k kT
k k k

T
k k

k T
k k k

y s
B B u

s B s

y s
B v

s B s

   



  (4.20) 

From Equations (4.17), (4.19), (4.20), the definitions 
(4.11) and (4.18), we have 

   

 

 

 

2

1 1

2

1

1 2

1

ln
2

2

  ln

ln ln
2 cos

2
ln 1 ln

  ln co

T
k k k k

k k T T
k k k k k k

T
k k k k k k

k T T
k k k k k

T T
k k k k
T T
k k k k k

T
k k k

k kT
k k k

T
k k

k T
k k

B s s y
B B M v

s B s s B s

B s s s B s
B

s B s s s

s y s s
M v

s s s B s

s y p
B M v p

s s

s y
B M v

s s

 










 
     

 

 
   

 
 

   
 

     

    











2
2 2

s 1 ln .
2 2cos cos

k k
k

k k

p p


 
 

   
 

 

(4.21) 

Combining this and Equation (4.6), we get  

     

'

'
1 1 1

2
2 2

2
ln 1 ln 1

ln cos 1 ln
2 2cos cos

k k

k
i i

i
i k i i

B B M vm k k

p p

 


 





        
 

 
      

 




 
 

Define 0i   , by 
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2
2 2

ln cos 1 ln .
2 2cos cos

i i
i i

i i

p p
 

 
 

     
 

 
 (4.22) 

Since  1 0kB    [or see [46]] we have 

 
'

1 1' '

1 2
ln 1 ln .

1 1

k
k

i
j k

B
M vm

k k k k






           
 

   

(4.23) 

Let us define i  to be a set consisting of 
 '0t k k    indices corresponding to the  '0t k k    

smallest values of i  for 'k i k  , and let max  de-
note the largest of the i  for ki J  Then we get 

 
' '

max' '
,

max 0

1 1
.

1 1

1 .

k

k k

i i
j k i k i Jk k k k

t

  


  

 
        

 

 
 

Therefore, by Equation (4.23), we have, for all ki J  

  1 1 0
0

1 2
ln 1 ln

1i kB M vm
t

           
 (4.24) 

Since the term inside the brackets in Equation (4.22) is 
less than or equal to zero, we conclude from Equations 
(4.22) and (4.24) that for all ki J  

2
0ln cos i    

Thus, we get  

0 2
1cos t

i e               (4.25) 

According to Equations (4.22) and (4.24), for all 

kJi  we have, 

02 2
1 ln .

2 2cos cos
i i

i i

p p


 
     
 

 

Note the function 

  1 lnw t t t   ,            (4.26) 

is nonpositive for all 0t  , achiexes its maximum value 
at 0t  , and satisfies  w t    both as t   
and 0t  . Then it follows that for all ki J  

'
3 22

0
cos

i

i

p
 


   , 

For some constants '
2  and 3 . By Equation (4.25), 

we get  
2 '

2 1 2 3ip       

Using 
cos

i i i

i i

B s p

s 
 , we obtain for all ki J , 

3
2

1

i i

i

B s

s





  . 

Since 'k  is a fixed integer and iB  are positive defi-
nite, we can take smaller 1 2,   and larger 3  if nece- 
ssary so that this lemma holds for all 'i k  Therefore 
Equation (4.12) holds for at least 0t k    indices 

 0,i k . The proof is complete.□ 

Let            | 4.12N i holds . 

Similar to [36], it is not difficult to get the global con-
vergence theorem of Algorithm 1. So we only state as 
follows but omit the proof. 

Theorem 4.1 Let Assumption A  and Equation (4.1) 
hold. Then the sequence  kx  generated by the 
Gauss-Newton- based Broyden’s class Algorithm. Then 

lim inf 0k
k

g


 .          (4.27) 

 
5. Numerical Results 
 
In this section, we report results of some numerical ex-
periments with the proposed method. We will test two 
practically statistical problems to show the efficiency of 
Algorithm 1. 

Problem 1. In Table 1, there is data of the age x  
and the average height H  of a pine tree: 

Our objective is to find out the approximate function 
between the demand and the price, namely, we need to 
find the regression equation of x  to the h .It is easy to 
see that the age x  and the average height H  are pa-
rabola relations. Denote the regression function by 

2
0 1 2h x x     where 0 , 1 , and 2  are the re- 

gression parameters. Using least squares method, we 
need to solve the following problem 

 
2

2

0 1 2
0

min
n

i i i
i

Q h x x  


       

and obtain 0 , 1 , and 2 , where 10n  . Then the 
corresponding unconstrained optimization problem is 
defined by 

   
3

2

2

1

min 1, , .
n T

i i i
i

f h x x


 
 

  
        (5.1) 

where Y  is overall appraisal to supervisor, 1X  de-
notes to processes employee's complaining, 2X  refer to 
do not permit the privilege, 3X  is the opportunity about 
study, 4X  is promoted based on the work achievement, 

5X  refer to too nitpick to the bad performance, and 6X  
is the speed of promoting to the better work.  

In the experiment, all codes were written in MATLAB 
7.5 and run on PC with 2.60 GHz CPU processor and 
480 MB memory and Windows XP operation system. In 
the experiments, the parameters in Algorithm 1 were 
chosen as 0.1r  , 0.85  , 4

1 2 10    , 1  = 
0.0001 and 2

k k  , where k  is the number of ite- 
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ration. The initial matrix 0B  was always set to be the 
unit matrix. We will stop the program if the condition 

  5g le    is satisfied. 
In order to show the efficiency of these algorithms, the 

residuals of sum of squares is defined by 
2

1

,
n

p i i
i

SSE y y
 



       
   

  

Where 0 1 1 , 1, 2, , ,i i n iny X X i n  
   
      and

0 1, ,i ny   
   
  are the parameters when the program is  

stopped or the solution is obtained from one way. Let 

p

p

SSE
RMS

n p








 
       

, 

where n  is the number of terms in problems, and p  is 

the number of parameters, if pRMS  is smaller, then the 

corresponding method is better [48]. In Table 2, DFP  
stands for the Formula (3.2) in Algorithm 1 where 

1k  , and BFGS  stands for the Formula (3.2) in Al-

gorithm 1 where 0k  . 

The columns of the Table 2 have the following mean-
ing: 

  : the approximate solution from the method of ex-
treme value of calculus or some software. 

\

 : the solution as the program is terminated. 


: the  
initial point. NI: the total number of iterations.  : the 

relative error between  pRMS    and  \
pRMS   

defined by   

Table 1. The data of pine tree. 

ix  2 3 4 5 6 7 8 9 10 11 

ih  5.6 8 10.4 12.8 15.3 17.8 19.9 21.4 22.4 23.2 

 
Table 2. Test result for problem 1. 

   


 
\

   \

pRMS    pRMS      NI 

DFP 

(-1,30,-5) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 11 

(1000,1000,1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 6 

(0,0,0) (-1.331363,3.461743,-0.108712) 0.171712 0.183900 6.627449% 10 

(-10,100,-1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 11 

(-10,-100,-1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 9 

(10,-100,1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 12 

(500,-600,700) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 6 

(1,2,3) (-1.331363,3.461743,-0.108712) 0.171712 0.183900 6.627449% 11 

(-1,-2,-3) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 6 

(3,2,1) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 10 

BFGS 

(-1,30,-5) (-1.331363,3.461739,-0.108712) 0.171712 0.183900 6.627449% 10 

(1000,1000,1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 8 

(0,0,0) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 10 

(-10,100,-1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 8 

(-10,-100,-1000) (-1.331363,3.461747,-0.108712) 0.171712 0.183900 6.627449% 9 

(10,-100,1000) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 8 

(500,-600,700) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 9 

(1,2,3) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 10 

(-1,-2,-3) (-1.331363,3.461742,-0.108712) 0.171712 0.183900 6.627449% 9 

(3,2,1) (-1.331363,3.461743,-0.108712) 0.171712 0.183900 6.627449% 10 
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 
 

\

p P

p

RMS RMS

RMS

 






 

   
  . 

For Problem 1, the above problems (5.2) can be solved 
by extreme value of calculus. Then we get  

 1.33,3.46, 0.11      in Table 2. Here we also solve 
these two problems by Algorithm 1. These numerical 
results of Table 2 indicate that Algorithm 1 is better than 
those of these methods from extreme value of calculus or 
some software. Then we can conclude that the numerical 
method will outperform the method of extreme value of 
calculus in some sense, and some software for regression 
analysis could be further improved in the future. Moreo-
ver, the initial points don not influence that the sequence 
 kx  converges to one solution x  our proposed me-
thod. 
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