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Abstract

In this Letter we apply a methodology, recently proposed by Bourouaine & Perez (BP19), to interpret solar wind
turbulent power spectra beyond the Taylor approximation (TA). The turbulent power spectra were measured using
Helios spacecraft data near 0.6 au. We use the model proposed in BP19 to reproduce the field-perpendicular power
spectrum E(k⊥) of antisunward Alfvénic fluctuations in the plasma frame (where k⊥ is the field-perpendicular
wavenumber) from the corresponding measured frequency power spectrum ( )w qP , bsc along the sampling angle θb,
which is the angle between the local magnetic field and the sampling direction. Here ω=2πf and f is the frequency
of the time signal. Interestingly enough, we found that for all corresponding measured frequency power spectrum

( )w qP , bsc the reproduced field-perpendicular power spectrum E(k⊥) is the same and independent of the considered
sampling angle θb. This finding is consistent with the fact that the analyzed turbulence is strong and highly
anisotropic with  ^k k (where k is the field-parallel wavenumber). Furthermore, for this specific time signal we
found that the commonly used TA is still approximately valid with the important difference that a broadening in k⊥
for each angular frequency ω is present. This broadening can be described in the context of the methodology
proposed in BP19.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Fast solar wind (1872); Interplanetary
turbulence (830); Alfven waves (23); Space plasmas (1544)

1. Introduction

Most analyses of solar wind observations normally adopt the
Taylor approximation (TA), often called Taylor’s hypothesis
(TH;Taylor 1938), to investigate turbulent time signals from
in situ spacecraft measurements, and thus study the funda-
mental physics of solar wind turbulence. TH assumes that when
the turbulent fluctuations are advected with a speed U that is
much higher than the typical fluctuation speed v ( U v), the
time (τ) and the spatial (r) lags of the measured structures are
connected as t=r U . However, this frozen-in-flow approx-
imation may not be applicable in all solar wind conditions,
most importantly at heliocentric distances where the recently
launched Parker Solar Probe (PSP;Fox et al. 2016) mission is
expected to explore (see, for instance, Bourouaine & Perez
2018, hereafter BP18).

Recently, with the new PSP mission there has been an
increased and renewed interest in investigating the applicability
of the TH in the solar wind(Klein et al. 2014, 2015;
Narita 2017; Bourouaine & Perez 2018, 2019; Chhiber et al.
2019; Huang & Sahraoui 2019). More recently, Bourouaine &
Perez (2019, hereafter BP19) proposed a phenomenological
model to explain the time decorrelation of the turbulent
structures by extending Kraichnan’s hydrodynamic sweeping
model to MHD turbulence. The form of the temporal part of the
two-point two-time correlation function in the BP19 model
allows for the interpretation of the turbulent time signal even
when v∼U and TH is not valid.

The fundamental physics of the time decorrelation of MHD
turbulent structures has been investigated in a number of
previous works(Matthaeus et al. 2010, 2016; Servidio et al.
2011; Narita et al. 2013; Narita 2017; Weygand et al. 2013).
For instance, BP19 found that the Eulerian decorrelation in
simulations is consistent with spectral broadening associated
with pure hydrodynamic sweeping by the large-scale eddies,
combined with a Doppler shift associated with Alfvénic

propagation along the background magnetic field in strong
MHD turbulence.
In this Letter we present a practical application of the model

proposed in BP19 to reproduce the reduced energy spectrum in
the plasma frame beyond the TA. For this purpose we analyze
turbulent signals measured by Helios 2 near 0.6 au. In Section 2
we calculate the power spectra of the antisunward propagating
Elssaser field and the fluid velocity field in the spacecraft frame
through the correlations functions. In Section 3, we reproduce
the reduced field-perpendicular power spectrum and the
broadening in the field-perpendicular wavenumber k⊥, using
the model proposed in BP19, and then using the TA. Finally,
we summarize and discuss the obtained results in Section 4.

2. Data and Methodology

In our analysis we use combined plasma-field data provided
by Helios 2 with a time resolution of about 40.5s. We focus on
the analysis of plasma and magnetic field signals measured
within the time period 1976 March 15 (00:00:30.00) to 1976
March 18 (22:58:12.00). During this time period the spacecraft
is passing mostly through fast solar wind as we can see in
Figure 1.
In this analysis we aim to reproduce the reduced energy

spectrum ( ) ( ) òp=^ ^ ^E k k h k k dk2 ,0 in the inertial range.
Here ( ) ^h k k,0 is the plasma-frame three-dimensional power
spectrum corresponding to the antisunward propagating
Elssaser field d d d pr= --z v b 4 , where dv is the fluctuat-
ing bulk velocity vector, db is the fluctuating magnetic field
vector, and ρ is the proton mass density. We define the local
mean magnetic and velocity vectors as the moving average
over a period T around time tj, i.e.,

( ) ( ) ( ) ( )å= -B bt
N

W t t t
1

, 1j
j i

T j i i0
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( ) ( ) ( ) ( )å= -V vt
N

W t t t
1

, 2j
j i

T j i i0

where Nj is the number of averaging samples and WT(t) is a
windowing function that vanishes everywhere except at
∣ ∣ t T 2, in which case it is equal to one. The period
T;9 minutes is chosen to be close to the corresponding time
decorrelation for which the value of the normalized correlation
function is less than 0.2 (Figure 2). The magnitudes of the local
mean velocity and local magnetic field are shown as red lines in
Figure 1. The corresponding angle θb(t) between the two
vectors ( )V t0 and ( )B t0 is plotted as a function of time t in the
bottom panel of Figure 1.

In the following analysis we estimate the power spectra
( )w qP , isc and ( )w qP ,v

isc that correspond to z− and v, respectively,
along a sampling angle θb;θi, where θi are the angle bins of
width Δθ=10° centered at the following angle values θ0=20°,
θ1=30°, θ2=40°, θ3=50°, and θ4=60°.

Generally, the power spectrum of a fluctuating vector
quantity ( )a t can be obtained through the Fourier transform
of its autocorrelation function ( ) ⟨ ( ) · ( )⟩t t= +a aC t t0 0 (see,
e.g., Bourouaine & Chandran 2013), where τ is the time lag.
In our analysis, the empirical power spectra ( )w qP , isc and

( )w qP ,v
isc are then obtained as the Fourier transform of the

following conditioned correlation functions:

( ) ( ( ) ) · ( ( ) ) ( )t q t= á - + - ñqv v v vC t t, , 3v i V R, ,i 0

( ) ( ( ) ) · ( ( ) ) ( )t q t= á - + - ñq- - - -z z z zC t t, , 4z i V R, ,i 0

where á ñq V R, ,i 0 denotes the ensemble average, computed over
many realizations (or averaged over time t) conditioned by the
angle bin θi, mean velocity V0, and the transverse ratio

( )d d= -
^
-R z z 2. Here, the perpendicular and the parallel

components of the fluctuations d -z are defined with respect to
the local mean magnetic fieldB0. As we are interested in fast solar
wind and transverse fluctuations, we calculate correlation functions
by considering only the statistics of those two times t and t+τ in
Equations (3)and(4) for which the corresponding values of the
mean velocity V0�600 km s−1 and the ratio R<0.2. v and -z
were obtained through averaging over all considered points in the
calculation of the correlation functions.
Note that the correlation functions in Equations (3)and(4)

are calculated using global mean vectors v and -z instead of
local mean vectorsV0 andB0, respectively. This is done in
order to capture the frequency power spectrum of the outer
scale (i.e., scales that are larger than period T), which then
allows us to properly estimate the rmsspeed of the energy-
containing eddies required for the reproduction of the reduced
energy spectrum E(k⊥) according to the BP19 model.
It is worth mentioning that there are two main advantages of

calculating the power spectra through the correlation functions:
(1) we can be selective and avoid any unwanted points,
including gaps of bad measurements in the calculation of the
correlation functions, and (2) we can check the statistics
that correspond to the estimation of the correlation functions
for each time-lag τ including the statistics of the outer scale for
large τ.
Figure 2 shows the curves of the normalized correlation

functions ( ) ( ) ( )t q t q qG = C C, , 0,v i v i v i and ( )t qG =,z i
( ) ( )t q qC C, 0,z i z i as a function of time-lag τ. For all θi the

Figure 1. Time period of the signal is from 1976 March 15 (00:00:30.00) to
1976 March 18 (22:58:12.00) near 0.6 au. Top panel: proton number density.
Middle top panel: solar wind speed V (black line) and local mean speed V0 as
defined in Equation (2) (red line). Middle bottom panel: magnetic field
magnitude B (black line) and local mean field B0 as defined by Equation (1)
(red line). Bottom panel: sampling angle θb between vectors V0 and B0. All
signals are plotted as functions of time t.

Figure 2. Normalized correlation functions ( )t qG ,v i (top) and ( )t qG ,z (middle)
for different θi. The bottom panel shows the number of points used in the
statistical ensemble average of the correlation functions for given time-lag τ.
All plotted for different binned values of θi.
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normalized correlations Γv and Γz drop sharply for τ12minutes,
and they practically vanish when τ30minutes. As shown in the
bottom panel of Figure 2, all the correlations, except those
corresponding to θ4=60°, were measured with reasonably good
statistics, with a minimum number of points higher than 100.
Therefore, we do not consider the analysis for θ4=60° due to a
lack of reliable statistics.

Figure 3 displays power spectra ( )w qP ,v
isc and ( )w qP , isc

computed through the Fourier transform of the corresponding
correlation functions (Figure 2) for each angle bin θi. The four
spectra in this figure have been artificially offset for easier
viewing. We excluded the part of the power spectra (for
f6×10−3) that is affected by the noise due to the time
resolution of the plasma experiment. Also, we plotted the very
low frequency part only for the power spectra ( )w qP ,v

isc as we
will use it to estimate the rmsof the outer-scale bulk velocity.

The power spectrum ( )w qP ,v
isc seems to steepen for

frequencies above ∼2.5×10−3 Hz showing a spectral index
of about −1.4. The outer scale of the velocity field (frequency
below f1∼2.5×10−3 Hz) follows a power law that is
comparable to or steeper than f−1. We estimate the value of
the outer-scalermsbulk speed, δui,0, for each power spectrum

( )w qP ,v
isc as

( ) ( )òd p p q=u P f df4 2 , . 5i

f
v

i,0
0

sc
1

The right panel of Figure 3 displays the power spectrum ( )w qP , isc

within the frequency range between 10−3 Hz and 10−2 Hz. The
power spectra are fitted to power laws in the inertial range (within
the frequency range [ ]Î ´ ´- -f 2.5 10 , 6 103 3 Hz), of the
form ( )w q w= a-P D, i isc for both α=3/2 and α=5/3. The
values obtained for the energy constant Di for each value of α
are listed in Table 1.

3. The Reduced Spatial Power Spectrum

3.1. Derivation of E(k⊥) Using BP19 Model

We estimate a reduced energy spectrum E(k⊥) associated
with each measured spacecraft-frame ( )w qP , isc . According to
the BP19 model, for the strong turbulence case, the spectral
index of the reduced power spectrum E(k⊥) in the inertial range
will be the same as the spectral index of their corresponding
frequency spectrum ( )w qP , isc ; therefore, ( ) = a

^ ^
-E k C ki where

Ci is expected to be the same constant for each sampling angle

θi if the turbulence is strong and highly anisotropic. From
the BP19 model we have the following relationship:

( ) ( )
⎛
⎝⎜

⎞
⎠⎟w q

w
= L

a

^ ^

-

P
C

V V
, , 6i i

i

i i
sc

, ,

where

( ) ( )ò aL =
¥

f x dx, , 7i
0

i

( ) ¯ ( ) ( )a = a-
 f x x g x, , 81

i i

and ¯ ( )g x is a function of the dimensionless parameter
w= ^ ^x k Vi, that is connected to the probability distribution g

(y) of outer-scale velocities (assumed to be a Gaussian distribution)
as follows:

¯ ( ) ( )
⎛
⎝⎜

⎞
⎠⎟òp

f
f=

+p

 g x g
x

d
2 1 cos

, 9
i i0

i

where

( ) ( )
p

= -g y e
1

2
10y1

2
2

and the parameter ( )d= ^ u V2i i i,0 , with q=^V V sini i i, ,0 is
the field-perpendicular velocity of the spacecraft as seen in the
plasma frame, and Vi,0 is computed through averaging over all
points of V0 considered in the calculation of the correlation
functions in Equations (3) and (4) for a given angle bin. All the
empirical values of the above parameters are given in Table 1.
The angle f in Equation (9) is the direction of the wavevector
k̂ in the field-perpendicular plane. By replacing the power-law
fits ( )w q w= a-P D, i isc in Equation (6), we get

( )=
L

a
^
- +C

D
V . 11i

i

i
i,

1

Equation (11) can now be used to find the values of Ci,
summarized Table 1, that correspond to the reduced power
spectra E(k⊥) in the inertial range. Interestingly, the values of
Ci are all around 6×105 (6×104) in SI units for α=3/2
(α=5/3), and there is no dependency on the sampling angle

Figure 3. Spacecraft-frame power spectra for velocity ( )w qP ,v
isc (left panel) and

for Elssaser field z−, ( )w qP , isc (right panel). All power spectra were plotted as a
function the frequency ( )w p=f 2 measured in the spacecraft frame. All
spectra were fitted to power-law functions within the frequency range
[2.5×10−3, 6×10−3] Hz (inertial range). The different curves have been
offset vertically for easier viewing. We also excluded the part of the power
spectra that is affected by noise for f>6×10−3 Hz.

Table 1
Relevant Measured Parameters Used to Reconstruct Power Spectrum E(k⊥)

from the BP19 Model

i 0 1 2 3
θi 20° 30° 40° 50°

^Vi, (km s−1) 219 319 404 482

´ -D 10i
8 (SI) (α=5/3) 1.5 2.2 2.3 2.7

´ -D 10i
8 (SI) (α=3/2) 2.6 3.3 3.8 4.6

dui,0 (km s−1) 32 38 41 43

òi 0.10 0.08 0.07 0.06
Λi (α=5/3) 0.71 0.71 0.71 0.71
ΛTA (α=5/3) 0.71 0.71 0.71 0.71
Ci×10−4 (SI) (α=5/3) 6.0 5.8 5.7 6.0
Ci×10−5 (SI) (α=3/2) 6.0 6.0 6.2 6.7

´ -C 10i,TA
4 (SI) (α=5/3) 6.0 5.8 5.7 6.0

´ -C 10i,TA
5 (SI) (α=3/2) 6.0 6.0 6.2 6.7

xi,0 (α=5/3, 3/2) 0.2 0.2 0.2 0.2
xi,1 (α=5/3, 3/2) 1.1 1.1 1.0 1.0

Note.The mean Alfvén velocityvA=80 km s−1.
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θi. This is a strong signature that the turbulence is strong and
anisotropic as found in many previous works(Horbury et al.
2008; Podesta 2009; Chen et al. 2011).

The top left panel of Figure 4 displays the function ( )af x,
i

for the empirical parameters òi. The values of Λi were obtained
through Equation (7) and summarized in Table 1. The curves of

( )af x,
i

are seen to be broad in w= ^ ^x k Vi, . According
to BP19, TA can be recovered when ò = 1 and its accuracy
worsens when the broadening of ( )af x,

i
becomes significant,

as we discuss in the next subsection. The broadening in x will
basically lead to broadening in the field-perpendicular
wavenumber k⊥. This means that the energy ( )w qP , isc at a
small frequency bin around ω corresponds to the energy in the
wavenumber range [ ]D =^k k k,i i i, ,min ,max according to the
energy power E(k⊥). This broadening can be determined from
the broadening [ ]D =x x x,i i i,0 ,1 of the function ( )af x,

i
. The

values of xi,0 and xi,1 can be estimated from the following two
prescriptions: (1) the integral

( ) ( )ò a h= Lf x dx, 12
x

x

i
i

i

i
,0

,1

captures a desired fraction (e.g., η;0.9) of the Λi parameter,
and (2)

( ) ( ) ( )ò òa a=
¥

 f x dx f x dx, , . 13
x x

0

i
i

i
i

,0 ,1

With this prescription one then obtains the broadening in k⊥ for
each frequency as

( ) ( ) ( )/ /w w= =^ ^k x V k x Vand 14i min i i i max i i, ,1 , , ,0 ,

corresponding to each power spectrum ( )w qP ,i i,sc . Using
η=0.90 in this analysis leads to the values of xi,0 and xi,1
summarized in Table 1. For all considered θi, the broadening
seems to be the same for the empirical values of òi0.1.
In the top right panel of Figure 4 we illustrate1 the

broadening in k⊥ that contributes to the power spectrum
( )w qP , isc 0 for frequency w p= f20 0, where f0=4.5×10−3 Hz.

It is worth mentioning that the methodology proposed in BP19
can be used to reconstruct the reduced energy spectrum as long
as q d u vtan b A0 , i.e., q tan 20b for the data set considered
in this work.

3.2. Derivation of E(k⊥) Using the Taylor Approximation

As suggested in the BP19 sweeping model, the TA can be
recovered in the limit when  0. It is straightforward to show
from Equation (9)

¯ ( ) ( )
⎪

⎪

⎧
⎨
⎩

=
< <

p


-


g x
x

lim
0 1

0 otherwise
, 15x

0

2

1 2

from where it follows that using Equations (7)and(8)

( )
( )

( )òp p
L =

-
=

G

G

a
a

a

-

+

x

x
dx

2

1
, 16TA

0

1 1

2

2

1

2

where Γ(x) is the Gamma function. Thus the relationship that
connects the reduced power spectrum ( )  a

^ ^
-E k C ki,TA

i and
the spacecraft-frame power spectrum ( )w qP , isc given in
Equation (6) will become

( ) ( )
⎛
⎝⎜

⎞
⎠⎟w

w
= L

a

^ ^

-

P
C

V V
. 17i

i i
sc TA

,TA

, ,

The values of ΛTA and the corresponding energy constants
Ci,TA for the spectral indices α=3/2 and 5/3 are listed in
Table 1. The results from this analysis show that for C Ci i,TA
in SI units (and L Li TA) for both values of α, suggesting that
the TA is still a good approximation for empirical values of
òi0.1. The function ( )a =f x3 2,0 that is used to
compute ¯ ( )g x0 in Equation (15) in TA are plotted in the
bottom left panel of Figure 4. Even when ò=1 (TA) there is
still some broadening that is caused by the integration over
angle f. The estimation of the broadening in x for the TA case
provide the same values of xi,0 and xi,1 as found using the BP19
methodology.
The analysis we present suggests that the BP19 model and TA

provide a similar prediction for the energy constant. However, the
TA obtained from BP19 in the limit of  0 takes into account
the broadening in k̂ for a corresponding angular frequency ω,
which arises from the angular integration of the wavevector in the
field-perpendicular plane. To the best of our knowledge, the effect
of this broadening within TA approximation has not been taken
into account in solar wind observations. As our results show, for
observations with ò0.1, both the energy constant and broad-
ening are the same as with the TA. For larger values of ò, this is
not necessarily the case. For instance, in the bottom right panel of
Figure 4 we estimate the parameter Λ and the corresponding
values of x0 and x1 assuming α=3/2 and varying ò from 10−3 to
4. Interestingly, the parameter Λ remains roughly constant for

Figure 4. Top left: the functions ( )af x,
i

plotted as a function of the
dimensionless variable x for the empirical values of òi and α=3/2. Top right:
part of the inertial-range power-law fits ( )pµ a-D f2i (colored solid lines) that
correspond to ( )w qP ,sc i . The dashed colored lines are the corresponding reduced
power spectra µ a-C fi (where ( )p= ^ ^f k V 2i, ). The different power-law curves
have been offset vertically for easier viewing. The broadening in k⊥ that corresponds
to frequency f0=4.5×10

−3 Hz is shown in the frequency-domain interval (gray
areas) as [ ] ( ) [ ] [ ]p =^k k V f x f x f f, 2 , 0.2, 1.1i i i i i,min ,max , 0 ,1 0 ,0 0 0 (see
Equation (14)). Bottom left: curves represent the function ( )af x,0 plotted for
α=3/2. Bottom right: curves of Λ (solid line), x0 (dot line), and x1 (dash line)
plotted vs. ò all estimated for α=3/2.

1 In the figure we rescaled E(k⊥) by various factors for clarity.
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ò0.5, which means that we would expect the same values for
the energy constant whether applying the BP19 model or TA for
this range of ò. The parameter Λ begins to change appreciably
when ò0.5. This value of ò0.5 might be obtained near the
Sun region when dealing with time signals near the Sun region
where PSP is going to explore. The broadening seems to not
change dramatically when ò0.1; however, when ò>0.1 the
curves of x0 and x1 begin to change. We conclude that for ò0.1
both TA and BP19 lead to the same energy constant and
broadening, for 0.1ò0.5 the TA properly captures the
energy constant but not the broadening, while for any value of
ò>0.5 the TA can no longer be justified.

4. Conclusion

In this analysis we applied the methodology proposed
recently by BP19 to reproduce the reduced power spectra E(k⊥)
in the inertial range (in the plasma frame of reference) from the
empirically measured power spectra ( )w qP , isc for each binned
angle θi. The values of the constants Ci seem to be independent
of the sampling angle θi. This conclusion is clearly consistent
with the fact that the studied turbulence is strongly anisotropic.
Interestingly, we found that, when ò0.1, the estimated
energy constant Ci from the BP19 model is comparable to the
one obtained through TA, but at any value of ò, including when
 0 (for TA), there will always be a significant broadening in

k⊥ associated with a given frequency ω. The broadening in k⊥
that appears when  0 is due to the integration over the f
angle. Many previous works considered the integration over f
using TA in the estimation of the energy spectrum E(k⊥) (e.g.,
Bourouaine & Chandran 2013; Vech et al. 2017; Martinović
et al. 2019). Broadening due to sweeping of the large scale will
be more significant as ò increases. The application of the BP19
model provides a significant difference in the evaluation of the
energy constant C than when TA is used if ò is larger than 0.5,
which may very well occur in the solar wind, namely, near the
Sun region where PSP is expected to explore.
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