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ABSTRACT 
 

This study contributes to the fields of Statistics and Numerical Analysis by considering the Least 
Square method to develop new regression functions. Based on the chronological, discrete dataset 
for the national and international population with diabetes mellitus from 1980 through 2015, we 
examine the accuracy of various traditional regression functions. Moreover, in order to emphasize 
the importance of more recent, past data to the future outputs, the article suggests a weighted 
Least Square Method. The weight vector is developed by appropriately transforming the standard 
logistic function σ(t) on the given timeline while counting the number of node points, Then the root 
mean square error (RMSE) is re-defined along with these components and the derived weighted 
regression functions work more coincident than the non-weighted ones to predict the near future 
values. The obtained regression functions are employed again to predict the near (2016) and 
remote (2030) future populations of patients with diabetes and outputs are analyzed with their 
unique properties. 
 

 
Keywords: Regression curves; weighted regression; nonlinear regression; population with diabetes; 

least square methods; weighted least square methods. 
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1. INTRODUCTION  
 
1.1 Diabetes Mellitus  
 
The 2016 World Health Organization (WHO)’s 
global report [1] describes that “Diabetes mellitus 
(DM) is a chronic disease caused by inherited 
and/or acquired deficiency in production of 
insulin by the pancreas, or by the ineffectiveness 
of the insulin produced. Such a deficiency results 
in increased concentrations of glucose in the 
blood, which in turn damages many of the body's 
systems, in particular the blood vessels and 
nerves”. That is why diabetes can be a major 
cause of many serious complications including 
kidney failure, neuropathy, heart disease, 
blindness, stroke, diabetes foot ulcers, and so 
forth [2]. 
 
According to the WHO’s Fact Sheet, the number 
of people of all ages with diabetes has risen 
worldwide up from the 108 million in 1980 to 422 
million in 2014 [3,4]. See the chronological 
numbers in Section 2. The International Diabetes 
Federation (IDF) predicts that the number of 
population with diabetes will reach 642 million by 
2040 [5], which means 1 in 10 adults will have 
diabetes. The global prevalence of diabetes 
among adults over 18 years of ages has been 
rapidly rising up to 8.5% in 2014. The 2015 
Diabetes Atlas shows that there were 5 million 
deaths worldwide directly caused by, or 
attributable to, diabetes. That is, every 6 seconds 
one person dies from diabetes. This number also 
indicates a remarkable increase from the 3.9 
million deaths in 2012 [1,5]. 
 
On the other hand, The US National Centers for 
Disease Control and Prevention (CDC) state that 
the number of Americans with diagnosed 
diabetes has a fourfold increase, from 5.5 million 
in 1980 to 22.0 million in 2014 [6,7] (see the 
chronological data for the number of US adults 
with diabetes in Section 2). It stands about one 
out of every 11 US adults has diabetes. The 
report also states that there are an additional 8.1 
million US people with diabetes (i.e., 27.8% of 
people with diabetes) who are still undiagnosed. 
According to the American Diabetes Association 
(ADA) through the National Vital Statistical 
Report (NVSR) there were a total 76,488 deaths 
directly caused by diabetes for the year 2015. 
Additionally, a total of 234,051 were direct or 
contributed deaths by diabetes, which represents 
the 7th leading cause of death in the United 
States in 2014 [8]. The CDC also identifies about 
86 million US adults who have prediabetes, 

whom are likely to become the diabetes in 10 
years or less without intervention. Furthermore, 
90% of those with pre-diabetes are unaware of 
the onset they face [9]. 
 
One of the outcomes that result from increasing 
emergence of diabetes is the financial burden 
placed on healthcare systems in various 
countries. In terms of economics, the Harvard 
School of Public Health estimates that the global 
expenditure for directly treating diabetes is 825 
billion dollars per year in 2016, including 105 
million dollars in the US [10]. Meanwhile, the 
ADA estimated the total direct and indirect cost 
at 245 billion dollars on March 6, 2013 [7,11]. 
 

1.2 Mathematical Background  
 
In statistics, regression analysis is a study for 
predicting the relationships among dependent (or 
random or response) variables and related 
independent (or predictor) variables. The 
objective function to express these relationships 
is called the regression function, and the 
regression curve is its graphical representation. 
Regression analysis has been widely used where 
the statistical anticipation based on the informed 
data are demanded or when it is of interest to 
explore the trends of the relationships among 
variables. (Some real practical applications are 
sought in [12].) In particular, establishing 
population models in social sciences and income 
or sales revenue modeling in business 
emphasize the importance of regression 
analysis.  
 
Many methods for performing regression 
analysis have been developed from the simple 
linear regression method to various nonlinear 
approaches, and much literature has also joined 
to propose the usefulness of these methods with 
distinct techniques (e.g., see [13]). Nevertheless, 
the purpose of regression functions is eventually 
to find the maximum likelihood functions known 
as curve fitting such that the total summation of 
differences in the distances of data points from 
the curve is minimized. Thus most regression 
curves are sought through the Least Square 
Method (LSM), although some curves drive from 
alternative approaches, such as exponential 
trend function in MS office [14].  
 
The Least Square Method is a numerical 
approach to find an approximate function using 
the root-mean-square error (RMSE) [15,16,17, 
18]. That is, we are looking for a fitting function 
�� (�) such that minimizes 
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RSME ≔ �
�

�
∑ ��� − ��(��)�

��
���                  (1) 

 

for sampling discrete data (��,  ��)  for � =

1,  ⋯ ,  � . Here ∑ ��� − ��(��)�
��

���  in Eq. (1) is 

commonly called the sum of squared deviations 
in statistics. If the data are given in the format of 
continuous function ��(�)  on the interval [�, �] , 
then ��(�) is defined by minimizing  
 

RSME ≔ �
�

���
∫ ���(�) − ��(�)�

�
��

�

�
.           (2) 

Alongside those startling numbers of national 
(US) and international populations with diabetes, 
we examine traditional regression curves in 
linear, exponential, and powered function forms 
in Section 2. In Section 3 a reasonable weight 
vector is introduced, and the weighted regression 
functions are created on the basis of this vector.  
The resultant outputs are then compared to ones 
in their accuracy in Section 2. Section 4 predicts 
the number of persons with diabetes in 2016 and 
2040, respectively using both non-weighted and 
weighted methods and the following arguments 
are addressed. 
 

2. DATA AND TRADITIONAL NON-
WEIGHTED EXPERIMENTS 

 
2.1 Data  
 
The international chronological populations of 
adults aged 18 or older with diagnosed and 
undiagnosed diabetes are shown in the Table 1 
[5,19,20,21,22,23,24]. Each data has about 
±30 % uncertainty percentage points due to 
mostly inaccurate counting of the number of 
underrepresented patients.  

 

Table 2 also shows the chronological data of the 
adult (18+) populations with diagnosed diabetes 
in the United States during 1980 – 2014 [6]. Each 
data set includes an around ±5% error bound. 
Since the numbers in Table 2 include only the 
diagnosed patients, it has less error than ones in 
Table 1.  
 
In addition, the data of the more recent, past has 
the most accuracy. It seems remarkable that 
there were decreases in numbers in 1996, 2011 
and 2014. 
 

2.2 Traditional and Non-weighted Least-
square Methods  

 
The traditional trend curves for the data between 
1994 and 2014 from Table 1 using Microsoft 
Excel formula are shown in Fig. 1. According to 
these regression functions, the worldwide 
population of age 20+ with diabetes in 2015 are 
predicted to be 373 million, 297 million, and 409 
million, respectively in linear, powered, and 
exponential functions. 
 
When the data is applied to the LSM, we have 
the natural exponential function as � = 9.7579 ×
e�.����� which estimates the population in 2015 to 
be 420 million. The RMSE (simply, the average 
error for each data) is 17.812 (million). As shown 
in Table 4, the exponential approach looks more 
fitting to data. As mentioned, the natural 
exponential function and powered function using 
LSM are slightly different from ones using 
Microsoft Excel formula. Table 4 shows more 
details. The other exponential function with an 
unknown exponential base is given by � =
97.579 × 10.655�  in million, and it is interesting 
that the predicted number in 2015 and RMSE are 
exactly the same as the natural exponential

Table 1. The number of International adults (20+) with diagnosed and undiagnosed diabetes 
mellitus 

 

                        (Unit: millions) 
Year 1994 1995 1997 2000 2002 2003 2005 2007 2010 2011 2014 2015 
No. 110 135 124 151 171 194 200 246 284 366 386 414 

 

Table 2. The number of adults (18+) with diagnosed diabetes mellitus in the United States 
 
          (Unit: millions) 
Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 
No. 5.5 5.6 5.6 5.5 5.9 6 6.4 6.5 6 6.3 6.2 7.1 
Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
No. 7.3 7.7 7.6 8.5 7.5 10 10.4 10.8 11.9 13 13.4 14 
Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014  
No. 15.1 16.2 17.1 17.3 18.7 20.5 21 20.6 21.3 22.2 21.9  



 
 
 
 

Oh et al.; JSRR, 12(5): 1-10, 2016; Article no.JSRR.30368 
 
 

 
4 
 

case. This phenomenon amazingly happens in 
other data. (See Table 7.) Thus we stop finding 
other exponential functions with an unknown 
base as experimental targets. Clearly, the LSM 
linear regression function is identical to the one 
from Excel. These described functions have the 
starting year 1994 as � = 1 and 2015 as � = 22.  
 

Unlike the data for international patients, the data 
of the US population with diabetes are 
sequentially given without missing years since 
1980. Fig. 2 shows the traditional trend lines 
created in linear and natural exponential forms 
with Microsoft Excel. They predict the population 
in 2014 at 20.8 million and 23.4 million. The 

powered function in Excel is given by � =
2.8798 × ��.���� and its graph shows much lower 
populations than other functions which point to 
15.8 million in 2014. Meanwhile, the powered 
function using LSM is given as � = 1.0400 ×
1.0529� with RMSE 1.4196 million and it reaches 
24.6 million in 2014. (See Table 5 for details.) 

 
2.3 Remark  
 
A common difficulty occurring in the calculation 
of regression in LSM is to find the optimized 
solution for the systems of nonlinear equations. 
As shown in the sample contour graph in Fig. 3, 

 

 
 

Fig. 1. The number of international populations of adults of aged 20 - 79 with diagnosed and 
undiagnosed diabetes and the trend curves 

 

 
 

Fig. 2. The number of US populations of adults of aged 18+ with diagnosed diabetes and the 
trend curves 
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Fig. 3. The pattern example of optimization solutions occurring in the least square method for 
nonlinear approaches 

 
the complex functional properties of squared 
exponential or powered functions makes the 
decision of exact critical points (in the dark blue 
regions in Fig. 3) difficult. It thus requires a lot of 
calculation cost, or the built-in solvers from 
Maple or MATLAB frequently get into overflow or 
underflow status. 
 

3. WEIGHTED REGRESSION AND 
ACCURACY 

 
3.1 Weights  
 
In order to develop a more accurate predicting 
tool on the basis of past chronological 
information, it sounds reasonable to emphasize 
the importance of more recent, past data to the 
future outputs. We thus suggest a weighted 
Least Square Method in the form of a 
combinational LSM with weights.  To define a set 
of weights, we consider a logistic function, in 
particular, the standard logistic function �(�) =

��

����  . (Its graph is shown in Fig. 4) Since its 

output always takes values between zero and 
one, it is also interpretable as a probability. Then 
the weight vector is sought by evenly restricting 
the domain [−�, �]  and appropriately 
transforming the function �(�)  considering the 
given timeline and the number of node points as 
like  

     �� ≔
����∙

�����
�����

�����

∑ ����∙
�����
�����

������
���

                           (3-1) 

 

and 
 

��(�)
: = ��(�)

/ ∑ ��(�)

�
�                                (3-2) 

 

for � = 1, 2, ⋯ , �  and � = 1, 2, ⋯ , �  with � ≤ � . 
Here the equilateral node points ��, ��, ��, ⋯ , �� 
may include some fake points while 
��(�)

, ��(�)
, ��(�)

, ⋯ , ��(�)
 represent the actual 

node points. 
 

For instance, Table 1 has 12 (node point) years 
of data over a 22-year interval [0, 22] when we 
set �� = 0 for 1993 and �� = 22 for 2015. With 
the arbitrary selection of � =  3, the weight for 
each year is given in Table 3. The first sum of 
weights is 54% in the last column of the second 
row because the missing years also take their 
own weight portions. Again, dividing the sum of 
actual node weights, we have the final weight as 
in the third row.   
 

Then the root-mean-square error (RMSE) is re-
defined along with these weight components by  
 

Weighted RMSE: =  �∑ �� ∙ ��� − �(��)�
��

���    (4) 

 

for the discrete data (��,  ��) for � = 1,  ⋯ ,  �. 
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Fig. 4. The standard logistic function �(�) 
 

3.2 Remark  
 
We note that since the x-variable represents the 
year, the logistic regression analysis (in which 
more than one dependent variables are 
categorical) does not fit to this model. However, 
observation of characteristics of the potential 
diabetes factors (e.g. the prevalence of obesity, 
the increase of fast-food markets, the indexes of 
various blood tests, etc.) can be employed in the 
determination of weights. 
 

3.3 Weighted Regressions  
 
The results of applying the weight (written in 
Table 3) to the weighted RMSE and 
implementing the linear, powered function and 
natural exponential functions for the international 
data are shown in Table 4. Clearly they show 
different functions but mostly improved functions 
in that the predicted estimation is more 
coincident to the existing data value in 2015. For 
example, while the non-weighted linear function 
has a 10 % relative difference error in prediction 
of population in 2015, the weighted linear 
function � = 16.650� + 26.617 marks 393 million 
in 2015, which is a 5.1% relative difference from 
the actual data 414 million in 2015. In particular, 
in the approach with powered functions in                     
the form of � = � ∙ �� , the non-weighted 
functions, � = 90.218 × ��.���� from Excel and 
� = 49.624 × ��.����  in LSM with relative                   
errors 28.3% and 14.3%, respectively,                        
are remarkably improved to a weighted                   
function with an error of 3.4%.  Since the 
deterioration from 1.3% to 5.1% in natural 
exponential approaches is not serious 
considering the counting error boundary of 
populations, we conclude that the weighted 
models have more accuracy in the near future 
prediction than the non-weighted ones. 
 

In the case of the US populations with diabetes, 
we also confirm the generally enhanced 
accuracy for predicting the population in 2014, 
especially in the powered type functions. (See 
Table 5.) It is impossible to directly compare the 
exponential regression from Excel with the 
weighted (or non-weighted) exponential 
regression in LCM because they adopt different 
techniques for building functions. Table 5 also 
shows that the RMSE and weighted RMSE both 
remain stable at the level of 1 – 2 million. 
 
The result shown in Tables 4–5 justifies that we 
could well adopt the weighted regression 
functions as an alternative to or as a more 
improved approach, than non-weighted 
functions. 
 
4. PREDICITON OF THE TREND IN 2030 
 
The global population with diabetes is anticipated 
to range from 389 million to 450 million in 2016, 
and more than 600 million by 2030 as shown in 
Table 6 and Fig. 5. Here, the significant volume 
of numbers in exponential cases reflect the rapid 
increasing property of exponential function with a 
base of greater than 1. Meanwhile, powered 
functions estimate a slow increase in 2015 and 
even by a remote future year 2030, which point 
to 548 million in non-weighted powered and 688 
million in the weighted powered one. As a 
reference, Whiting et al. anticipated that the 
global population of 20+ ages with diabetes 
would rise to 552 million by 2030 from the 336 
million in 2011 [25]. 
 

Table 7 also shows the prediction of the US 
population with (diagnosed) diabetes in 2016 and 
in 2030. Two linear functions estimate that 21.5 
million and 22.9 million in 2016, and 29.7 million 
and 32.9 million in 2030, respectively, will have 
diabetes. Following the trends of exponential 
functions, the patients may reach 53 million by 
2030. 
 
Overall, the weighted regression analysis 
generally forecasts the largely increased 
numbers better than the non-weighted one in the 
global case. This fact may imply that the diabetes 
population increases more rapidly during recent 
years than the remote past. Nevertheless, the 
prediction using an exponential graph looks less 
realistic for remote future populations. One 
possible reason is that the human population has 
been growing in very constrained environments 
unlike bacteria. 
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Table 3. Weight values according to the year 
 

Year 1994 1995 1997 2000 2002 2003 2005 2007 2010 2011 2014 2015 Sum 
1

st
 weight 0.5% 0.7% 1.1% 2.2% 3.2% 3.8% 5.0% 6.1% 7.3% 7.6% 8.2% 8.3% 54.0% 

Weight 0.9% 1.3% 2.0% 4.1% 5.9% 7.0% 9.3% 11.3% 13.5% 14.1% 15.2% 15.4% 100% 
 

Table 4. Comparison of regression methods for International population of age (20-79) with diabetes in 1994–2014 
 

  Unit: million 
 Non-weighted Weighted 
Methods y = ax + b y = a ∙ x� 

in Excel 
y = a ∙ e�� 
in Excel 

y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

y = ax + b y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

Function y = 13.628x + 
72.723 

y = 90.218* 
x0.3854 

y = 102.64* 
e0.0628x 

y = 49.624* 
x0.6366 

y = 97.579* 
e0.0663 

y = 16.650x 
+ 26.617 

y = 19.467* 
x 0.9779 

y = 92.361* 
e 0.0695x 

RMSE 28.416 NA NA 38.878 17.812 27.014 28.332 20.956 
No. in 2015 373 297 409 355 420 393 400 427 
Rel Diff fr. 2015 -10.0% -28.3% -1.3% -14.3% 1.45% -5.1% -3.4% 3.1% 

 
Table 5. Comparison of regression methods for US population of age 18+ with diagnosed diabetes in 1980–2013 

 
  Unit: million 

 Non-weighted Weighted 
Methods y = ax + b y = a ∙ x� 

in Excel 
y = a ∙ e�� 
in Excel 

y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

y = ax + b y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

Function y = .5439x  
+ 1.7968 

y = 2.8798* 
x0.4796 

y = 4.3110* 
e0.0483x 

y = 1.0400* 
1.0529x 

y = 4.040* 
e0.0516x 

y = 0.6685x -
1.1258 

y =0 .2977* 
x 1.2249 

y = 3.9749* 
e0.0522x 

RMSE 1.6696 NA NA 1.4196 0.8074 1.2454 1.0574 0.8088 
No. in 2014 20.8 15.8 23.4 24.6 24.6 22.3 23.2 24.7 
Rel Dif fr. 
 2014 

-5.0% -27.8% 6.8% 12.3% 12.3% 4.9% 5.9% 12.9% 
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Table 6. Comparison of regression methods for International population of age (20 - 79) with 
diabetes in 1994 – 2014 and predicted numbers in 2016 and 2030 

 
  Unit: million 
 Non-weighted Weighted 
Methods y = ax + b y = a ∙ e�� 

in Excel 
y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

y = ax + b y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

Function y = 
14.341x 
+66.681 

y = 
10.215* 
e

0.0628x
 

y = 
40.864* 
x

0.7189
 

y = 
98.235* 
e

0.0657x
 

y = 
17.354x 
+19.011 

y = 
17.772* 
x

1.0126
 

y = 
95.104* 
e

0.0675x
 

RMSE 29.075 NA 39.598 17.110 25.776 26.473 19.710 
No. in 2016 406 433 389 446 410 425 450 
No. in 2030 613 1043 548 1120 661 688 1158 

 

 
 

Fig. 5. The weighted and non-weighted regression curves for prediction of international 
population of aged 20 -79 with diabetes in 2030 

 
Table 7. Comparison of regression methods for US population of age 18+ with diagnosed 

diabetes in 1980 – 2014 and predicted numbers in 2015 and 2030 
 

  Unit: million 
 Non-weighted Weighted 

Methods y = ax + b y = a ∙ x� 
in LSM 

y = a ∙ b� 
in LSM 

y = a ∙ e�� 
in LSM 

y = 
ax + b 

y = a ∙ x� 
in LSM 

y = a ∙ e�� 
in LSM 

Function y = 
0.5490x 
+ 1.7358 

y = 
0.6600* 
x 

0.9818
 

y = 
4.1629* 
(1.0513)

x
 

y = 
4.1629* 
e

0.0516x 
 

y = 
0.6647x 
-1.0444 

y = 
0.3282* 
x 

1.1939
 

y = 
4.2338* 
e 

0.0495x
 

RMSE 1.6544 1.8584 0.8914 0.8914 1.2151 1.0627 0.9660 
No. in 2015 21.5 2.7 25.2 25.2 22.9 23.7 25.2 
No. in 2030 29.7 31.3 53.5 53.4 32.9 35.9 53.0 

 

5. CONCLUSION 
 
We examined the accuracy of various traditional 
regression functions and newly defined weighted 
regression functions based on the chronological, 
discrete dataset for the national and international 

population with diabetes mellitus from 1980 
through 2015 that is released by the CDC and 
IDF. As we compare them, the exponential 
approach has a smaller RMSE, which better fits 
to the data both nationally and internationally. 
The weighted regression functions are defined 

Non-weighted Powered 

Non-weighted Linear 

Weighted Linear 

Weighted Powered 

Non-weighted Exp 

Weighted Exp 
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on the basis of a weight vector which takes the 
advantage of the standard logistic function σ(t). 
Then they more strongly reflect the trend of more 
recent data and so work very properly in the 
prediction of the near future values. In addition, 
the following observation of these regression 
functions forecasts that the population of 
diabetes patients will exceed 600 million 
worldwide and 30 million in the United States in 
2030 without intervention. 
 
The experiments show that while the exponential 
function can well reflect the drastic increasing 
and near future prediction, the linear and 
powered function can better express the slower 
or gentle increasing trends. Nevertheless, using 
only a single type function as a regression tool 
for the remote future still is untrustworthy. Thus 
we finally suggest that a well-organized 
combination of several type functions can be an 
alternative so that it can reflect the overall trends 
in increase or decrease as well as more subtle 
movement. 
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