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ABSTRACT 
 

The biocontrol potential of Bacillus spp. clearly indicated by several authors are presented crop 
wise. The understanding of mechanism of action of Bacillus spp. against phytopathogens is 
essential to support their biocontrol potential. In this regard the various mechanism of action of 
Bacillus is elaborately discussed with suitable subheadings along with their plant growth promoting 
ability. The available literature presented below as review strongly emphasized their distinct 
biocontrol potential coupled with plant growth promoting effect through their various behavioral, 
biological, biochemical, induction of resistance, role of antimicrobial peptide genes etc. 
 

 
Keywords: Antibiosis; antimicrobial peptide genes; Bacillus; biocontrol potential; mechanism of 

action. 
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1. INTRODUCTION  
 

The scanning of literature strongly emphasised 
that the endophytic Bacillus spp. have 
tremendous biocontrol potential and possess 
desirable attributes of bioagents. The edophytes 
proved to be amenable to use as biopesticide 
against plant nematodes, fungal and bacterial 
plant pathogens. 
 

2. MECHANISMS OF Bacillus 
 

Several researchers reported the different types 
of mechanism of Bacillus spp. in the 
management of nematode, fungal and bacterial 
pathogens as follows. 
 

3. INHIBITION IN EGG HATCHING OF 
NEMATODES 

 

The culture filtrate of B. firmus significantly 
reduced egg hatching of Meloidogyne Incognita” 
Mendoza et al. [1]. Similar viewpoints put forth by 
Perry [2] and Jones et al. [3] revealed that some 
endophytic bacteria inhibiting egg hatch of potato 
cyst nematode through altering the behaviour of 
nematodes. In the crop rice also Padgham and 
Sikora [4] reported that the plants treated with 
the bacterium B. megaterium reduced the 
attraction of M. graminicola. In support of the 
above findings Reitz et al. [5] also demonstrated 
that “the B43 strain of B. sphaericus reduced the 
egg hatch of G. pallida by 30 per cent. Hence it is 
hypothesised that the high density of bacteria 
found over the root could affect nematode 
attraction by (I) altering root exudates patterns, 
making the root less attractive (II) producing 
metabolites with nematode repellent activity and 
(III) producing high amounts of carbon dioxide 
which attracts nematodes towards plant roots”. 
 

3.1 Mortality of Juveniles 
 

Toxin proteins produced by B. thuringiensis (Bt) 
are the most broadly used natural insecticides in 
agriculture against root knot nematodes. The 
nematicidal effects of spore/crystal proteins of 
ten B. thuringiensis isolates studied in vitro 
against M. incognita exhibited the highest 
nematicidal activity with the mortality range of 86-
100%. In addition, ammonium sulphate cut off 
fraction of vegetative cultures of the most potent 
isolates of Bt 7, Bt 7N, Bt Soto and Bt Den 
examined in vitro for their nematicidal effects 
also showed similar results with 80 to 100 per 
cent mortality of nematodes in general 
Mohammed et al. [6]. Toxic metabolites like 

bacilopeptidase and subtilin E from B. subtilis 
and lactamase from B. cereus. Katz  et al. and 
Paiva Somonen M. [7,8] and non-cellular extracts 
Gokte et al. [9] were attributed for the high 
degree of juvenile mortality of root knot 
nematode. The exposure of three nematodes viz. 
root knot, burrowing and cyst nematodes to the 
pure culture filtrate of B. firmus resulted in 
significant mortality of juveniles of the above 
nematodes. The bioactive compounds of 
secondary metabolites of the bacterium were 
reported to be responsible for its larvicidal effect 
according to Mendoza et al. [1]. In vitro studies 
revealed that bacterial filtrates of Bacillus 
cereus and Bacillus amyloliquefaciens affect the 
mortalities of the dagger nematode Xiphinema 
index 65% and 52% respectively Aballay et al. 
[10]. 

 
3.2 Nematode Penetration 
 
There was report on the reduction in the rate of 
penetration of sedentary and migratory 
endoparasitic nematodes in plants treated with 
endophytic Bacillus spp. The reniform nematode 
Rotylenchulus reniformis penetration in tomato 
was delayed by 44.5 per cent due to B. subtilis 
(isolate Bs) cell suspension with 10

10
 cells / ml 

Niknam and Dhawan [11].  

 
3.3 Nematode Reproductive Potential 
 
Racke and Sikora [12] found that reproductive 
potential of G. pallida significantly reduced 
following treatment with B. sphaericus B43. The 
soaked plant roots of grapevine with bacterial 
mixture suspension i.e; Bacillus 
amyloliquefaciens FR203A, B.megaterium 
FB133M, B. thuringiensis FS213P and FB833T, 
B. weihenstephanensis FB25M, B.frigoritolerans 
FB37BR significantly suppressed Meloidogyne 
ethiopica and Xiphinema index reproduction and 
disease development compared to the untreated 
controls Aballay et al. [13]. 

 
3.4 Nematode Multiplication  

 
The multiplication rate of R .reniformis reduced 
significantly when the B. subtilis isolate Bs 
suspension used as soil drench a week before 
nematode inoculation in tomato Niknaml et al 
[11]. B. pumilis, B. megaterium and B. 
subtilis significantly reduced numbers of galls 
and egg-masses of M. incognita in sugar beet 
roots. The reduction was 73%, 69% and 71% for 
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gall numbers and 74%, 68% and 65% egg 
masses respectively Youssef et al. [14]. 

 
3.5 Nematode Fecundity 
 
The culture fluid, cell-free supernatant and cell-
pelleted residues of each of the four isolates of 
B. thuringiensis viz. Bt 7, Bt 7N, Bt Soto and Bt 
Den were evaluated for their nematicidal 
activities in vivo using tomato plants as host. The 
results showed that both crude suspension and 
cell free supernatant of isolate Bt7N reduced the 
root knot nematode number of egg masses by 78 
and 77 per cent respectively and number of eggs 
by 84 and 76 per cent compared to untreated 
control Mohammed et al. [6]. Nematicidal activity 
against the second stage larvae (J2) of 
Meloidogyne javanica and Heterodera filipjevi 
was demonstrated in vitro by cultural filtrates of 
Bacillus subtilis OKB105 (100%) and Bacillus 
cereus 09B18 (83%) Xia et al and Zhang et al. 
[15,16]. Bacillus subtilis OKB105 and Bacillus 
amyloliquefaciens B3 demonstrated their 
nematicidal activity against the nematodes of 
aerial parts of plants Aphelenchoides besseyi, 
Ditylenchus destructor, Bursaphelenchus 
xylophilus with mortalities of 85%, 79% and 
100%, respectively Xia et al. [15]. 

 
4. INHIBITORY EFFECT ON FUNGAL / 

BACTERIAL PATHOGENS 
 
Ruicheng et al. [17] stated that the endophytic 
bacterium B. subtilis strain Y-1 isolated from 
apple had effect to arrest the hyphal growth of 
Fusarium sp., Rhizoctonia sp, F. oxysporum, F. 
moniliforme, F. proliferatum, F. solani and R. 
solani in vitro and it was to the extent of 64.90 
per cent in apple. Certain isolates viz. Rb29, 
Rb6, Rb12, Rb4, and Rb15 of Bacillus spp. 
capable of producing more volatile metabolites 
inhibited F. oxysporum f.sp. cubens mycelial 
growth by 40 per cent In vitro Zeim et al. [18]. 

  
4.1 Antibiosis 
 
Identification of three lipopeptides antibiotics viz. 
surfactin, fengycin and iturin A in butanolic 
extracts from cell-free culture filtrates of some 
strains of B. subtilis were responsible to affect 
Podosphaera fusca causing powdery mildew in 
cucurbit. In this study Romero et al. [19] pointed 
out that antibiosis could be a major factor 
involving the biocontrol activity of the              
bacterium. 

4.2 Antibiotic Production 
 
The scanning of literature revealed adequate 
information on the influence of antibiotics of 
Bacillus spp. in the management of fungal / 
bacterial plant pathogens but it is almost nil in 
respect of nematodes. 
  

5. INFLUENCE OF ANTIMICROBIAL 
PEPTIDE GENES IN GENERAL 

 
“Many species of Bacillus were capable of 
producing a wide variety of secondary 
metabolites that are diverse in their structure and 
function. The production of metabolites with 
antimicrobial activity is important to control plant 
diseases” Silo-suh et al.  [20]. “In general 
Bacillus spp. express antagonistic activities by 
suppressing the pathogens and numerous 
reports covering this aspect both in vitro and in 
vivo were already documented by several 
authors” Arrebola et al, Chen et al, Joshi and Mc 
Spadden Gardener and Ongena et al.                   
[21-24]. 
 
“Hence if a Bacillus has to perform well under 
field conditions it should posses genes like 
surfactin for sustainable performance against 
plant diseases” according to Ongena and 
Jacques [25]. 
 
“The metabolites of Bacillus spp. can be 
ribosomal compounds such as subtilin  Zuber P 
et al. [26], subtilosin A Babasaki K et al. [27], tas 
A Stöver AG et al. [28] and sublancin Paik SH et 
al. [29]. A variety of nonribosomally produced 
small lipopeptides are belonging to the surfactin 
family: surfactin and lichensysins Kluge W et al.  
[29]; the iturin family: iturin A, C, D and E, 
bacillomycin D, F and L and mycosubtilin Maget-
Dana R et al. [30] and the Fengycin family: 
Fengycin and plipastatins Vanittanakom N et al 
[31]. “Zwittermycin A is belonging to aminopolyol 
group” as reported by Milner et al. [32]. 
 

5.1 Iturin  
 

Antibiotics of iturin family showed strong 
antifungal and haemolytic activities with limited 
antibacterial activity” Nishikori et al.  [33]. “All the 
21 isolates of B. subtilis, B. cereus, B. 
thuringiensis, B. licheniformis, B. mycoides and 
B. amyloliquefaciens evaluated by Athukorala et 
al. [34] were showed positive reaction for the 
antibiotic iturin A”. “Antibiotics from iturin family 
showed strong antifungal and haemolytic 
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activities with limited antibacterial activity” Maget-
Dana R., et al. [35]. Iturin had a broad antifungal 
spectrum and serves as a potential agent for the 
biological control of plant diseases 
Constantinescu F et al. [36]. Iturin A produced by 
B. subtilis had strong antimicrobial action in 
suppressing Pythium ultimum, Rhyzoctonia 
solani, Fusarium oxysporum, Sclerotium 
sclerotiarum and Macrophomina phaseolina . 
 

5.2 Fengycin 
 
The antibiotic fengycin is specifically effective 
against filamentous fungi and inhibits 
phospholipase A2” Nishikori et al. [33]. Liang et 
al. [37] identified “antifungal compound fengycin 
responsible for the growth suppression of F. 
moniliforme”. “B. subtilis SR146 isolated from 
Tunisian salty soil showed antifungal property 
against several species of F. culmorum, 
F.graminearum, F. oxysporum, F. melonis, F. 
equiseti and F.solani. Absolute inhibition of F. 
culmorum spores germination was observed with 
the strain SR146. The compounds which 
responsible for antifungal activity were purified 
and characterized. The GC-MS analysis of the 
compounds showed high similarity coefficient to 
fengycin. This result was confirmed by PCR 
through the detection of the fen A gene of the 
fengycin operon” Hanene R et al [38]. Fengycin 
like antibiotic and Volatile Organic Compounds 
(VOCs) produced by Bacillus amyloliquefaciens 
CPA-8 are controlling pathogens viz. Botrytis 
cinerea, Monilia fructicola, Monilia laxain cherry 
plant Gotor-Vila, A et al [39].  
 

5.3 Surfactin 
 
Surfactin showed antiviral and antimycoplasmal 
activities” Vollenbroich, D et al [40]. All the 21 
isolates of B. subtilis, B. cereus, B. thuringiensis, 
B. licheniformis, B. mycoides and B. 
amyloliquefaciens tested by Athukorala et al. [34] 
were found to be positive for the antibiotic 
surfactin gene. 
 

5.4 Zwittermycin A 
 
Zwittermycin A had structural similarities to 
polyketide antibiotics with broad spectrum of 
action against various microbes Silo-suh L.A. et 
al [20]. The diverse biological activity of these 
antibiotics caused the suppression of 
oomycetous disease of plants and responsible 
for the insecticidal activity of B. thuringiensis 
also” Emmert E.A.B. et al [41]. In addition, the 

biocontrol activity of Bacillus strains against 
multiple plant pathogens have been widely 
reported and well documented Kloepper JW et al 
and Correa OS et al. [42,43]. Silo-suh et al. [15] 
reported that “Zwittermycin A is having a broad 
spectrum activity against certain gram-negative 
bacteria and eukaryotic microorganisms”. “There 
are reports that B. subtilis, B.cereus, B. 
licheniformis and B. amyloliquefaciens were 
effective against plant and fruit diseases caused 
by soilborne, aerial or post-harvest fungal 
diseases” Broggini G et al, Szczech M et al and 
Yoshida S et al [44-46]. “B. subtilis H-08-02, B. 
cereus L-07-01 and B. mycoides S-07-01 
showed strong antifungal activity against F. 
graminearum. Detection of antibiotic production 
by a particular bacterium is important in 
determining its capacity to be a good biocontrol 
agent for the management of plant diseases” 
Fernando WGD et al. [47] and Ramarathnam R 
et al. [48]. 
 

5.5 Combined Influence of Surfactin and 
Iturin A 

 
The biocontrol agent B. subtilis produced several 
classes of broad spectrum lipopeptides 
antibiotics effective against many plant 
pathogens as reported by Ongena and Jacques 
[24] and Nagorska et al. [49]. Both surfactin and 
iturin A were serving as surfactants with a 
hydrophilic ring of seven amino acids and a long, 
hydrophobic hydrocarbon tail. The hydrocarbon 
tail penetrates pathogen cell membranes while 
the amino acid end stays in the soil solution. This 
action creates openings in cell membranes is 
related for inhibiting the growth of many 
pathogens” Ongena and Jacques [24]. “The 
strain YC300 identified as Paenibacillus 
koreensis had strong antifungal activity against 
F. oxysporum, and Colletotrichum lagenarium, S. 
sclerotiorum, R.solani and B. cinerea Chung S et 
al.  [50]. Asaka and Shoda [51] observed a 
significant suppressive activity of iturin A against 
plant pathogens compared to surfactin. Surfactin 
is an acidic cyclic lipopeptide produced by strains 
of B. subtilis are being used as a biosurfactant” 
Maget-Dana R. et al [30]. Surfactin and iturin A 
were the most common among lipopeptide 
antibiotics produced by Bacillus spp. The specific 
surface and membrane active properties of the 
surfactin help bacteria to form biofilm. Therefore, 
surfactin is thought to perform developmental 
functions rather than defense functions in the 
environment. Surfactin also induced a strong 
membrane destabilizing action at concentrations 
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even below its critical micellar concentration and 
induced the formation of ion channels in lipid 
bilayers Heerklotz H and Seelig J [52]. Phae et 
al. [53] reported that “more than 23 types of plant 
pathogens were suppressed in vitro by iturin A 
and surfactin producing B. subtilis isolate”. 
“Surfactins have been reported to be powerful 
surfactants due to their excellent surface 
activities. Surfactins can largely reduce the 
surface tension of water from 72 to 27 milli 
Newton / meter at a concentration of 10 M” 
Peypoux F et al. [54].Compared with 
conventional surfactants, the surfactin had the 
additional advantages of antiviral Itokawa H et al. 
[55] and antibacterial property Beven L et al [56].  
 

5.6 Bacillomycin D 
 

Bacillomycin D which is a member of the iturin 
family along with mycosubtilin and iturin A is 
made of one β-amino fatty acid and seven α-
amino acids exhibited a strong antifungal activity 
against Aphelenchus flavus and a broad range of 
plant pathogenic fungi. The bacillomycin D has 
been reported to inhibit afflatoxin production by 
A. flavus and A. parasiticus Ono M and Kimura N 
[57]. Biosynthesis of bacillomycin D is 
independent of the ribosomal process and the 
enzymes responsible for bacillomycin D 
production were complex peptide synthetases 
Besson M et al. [58]. The bacillomycin D and 
fengycin jointly contributed to the inhibition of 
conidial germination of Monilinia fructicola and 
fengycin played a major role in suppressing 
mycelial growth of the fungal pathogens viz. 
Magnaporthe oryzae, R. solani and Botrytis 
cinerea. Microscopic observations demonstrated 
that the hyphae of the pathogenic fungi treated 
with bacillomycin L showed abnormal growth and 
enlargement in conidia and constricted germ 
tube. Cellular leakage was also observed when 
bacillomycin L used in high concentration Luo et 
al. [59]. 
 

5.7 Combined Influence of Fengycin, 
Iturin A  and Surfactin  

 

The fengycin, iturinA and surfactin produced by 
B. amyloliquefaciens PPCB004 and bacillomycin, 
fengycinand iturin A produced by B. subtilis 
UMAF6614 and UMAF6639 are key factors in 
theantagonism against fungal pathogensviz. 
Alternaria citri, Botryosphaeria sp, Colletotrichum 
gloesporioides, Fusicoccum aromaticum, 
Lasidiplodia theobromae, Penicillium crustosum, 
Phomopsisperse in Orange plants Arrebola et al 
and Zeriouh et al. [60,61] 

5.8 Combined Influence of bacillomycin, 
fengycin and Iturin A   

 
Bacillus subtilis UMAF6614 and UMAF6639 
control the pathogen Podosphaera fusca 
attacking detached melon leaves by producing 
antibiotics / cyclic lipopeptides viz.bacillomycin, 
fengycin and iturin A Zeriouh et al. [61]. 
 
Similarly antibiotics or Cyclic lipopeptide 
biosynthetic genes viz., bacillomycin, fengycin, 
iturin, surfactin produced by Bacillus velezensis 
A17effective against pathogens like Erwinia 
amylovora, Pseudomonas syringae, 
Xanthomonas arboricolain plant environment 
Mora et al and Mora et al. [62,63] 
 

6. INFLUENCE AGAINST DISEASES OF 
SPECIFIC CROPS 

 

6.1 Tomato 
 
The production of antibiotics like iturin and 
surfactin of B. subtilis strain RB14 suppressed 
the damping off disease of tomato Asaka and 
Shoda [64]. The colonization of plant roots by B. 
subtilis is associated with surfactin production 
and biofilm formation which protect Arabidopsis 
thaliana from Pseudomonas syringae on tomato 
Bais and Vivanco [65]. Asaka and Shoda [51] 
observed that antibiotics like iturin A and 
surfactin, produced by B. subtilis RB 14 
suppressed damping off of tomato seedlings 
caused by R. solani. 
 

6.2 Cucurbits 
 

The production of mixtures of bacillomycin, 
fengycin and iturin A by B. subtilis has been 
related to the control of powdery mildew caused 
by Podosphaera fusca in cucurbits by Romero et 
al. [19]. Similarly the production of bacilysin, 
iturin and mersacidin by B. Subtilis (ME488) was 
reported to be responsible for the suppression of 
Fusarium wilt of cucumber. Thus a single strain 
of B.subtilis was found to be effective against 
both Oomycetous and Dueteromycetous fungi 
Chung et al. [66]. Accordingly the strains of 
Bacillus that score positive reaction for AMP 
biosynthetic genes were more effective to inhibit 
the growth of R. solani and Pyhthium ultimum 
than other Bacillus isolates that lack one or more 
of AMP genes Joshi and Mc Spadden Gardener 
[22]. Involvement of iturin and fengycin antibiotics 
from four B. subtilis strains viz. UMAF6614, 
6616, 6639 and 8561 were reported in the 
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suppression of powdery mildew of cucurbits 
caused by Podosphaera fusca Romero et al [19]. 
  

6.3 Beans 
 

The fengycin produced by B.subtilis was effective 
against damping-off of bean caused by Pythium 
ultimum Ongena et al [23]. 
 

6.4 Pepper 
 
The bacilysin, iturin and mersacidin of B. subtilis 
(ME488) were effective for the management of 
Phytophthora blight of pepper Chung et al. [66]. 
 

6.5 Apple 
 
Toure et al and Ongena et al. [67,68] described 
the role of secreted lipopeptides and more 
particularly of fengycin against grey mould of 
apple. 
 

6.6 Banana 
 
Hasinu et al. [69] described the role of secreted 
antibiotics combinedly produced by Bacillus 
subtilis strains SW116b and Bacillus subtilis 
strains HPC2-1  (polypeptide-subtilin, 
gramicidine, bacitracin, polymyxin, phytoactin 
and bulbiformin antibiotics) which are effective 
against Ralstonia solanacearum pathogenin 
banana.Bacillus isolates can produce antibiotic 
compounds capable of suppressing colony 
growth which are toxic to other microbes. 
 

7. LYTIC ENZYMES 
 
The lytic enzymes of B. subtilis strain RB14 was 
capable of suppressing damping off disease of 
tomato according to Asaka and Shoda [64]. In 
vitro studies revealed that M. javanica eggs and 
juveniles were inhibited by the crude antibiotics 
of B. alvei NRC14 and its effect was positively 
correlated with the concentration of the same. 
The strain producing lytic enzymes viz. chitinase, 
chitosanase, proteases as well as other potential 
bioactive metabolites were reasoned for the 
inhibitory effect of the bacterium Abdel Aziz [70]. 
The strain B. alvei (NRC14) producing mycolytic 
enzymes viz. chitinase, chitosanase, ß- 1,3 
glucanase as well as cellulases, proteases and 
potential bioactive compounds were effective to 
suppress several plant diseases, insect pests 
and plant parasitic nematodes due to its 
insecticidal and antimicrobial properties EI 
Shadia [71]. Terefe et al. [72] indicated that the 

B. subtilis strain ToIr-MA has an ability to 
produce proteolytic enzymes. 
 
Huang et al. [73] reported that “chitinolytic 
bacterium B. cereus 28-9 isolated from lily plant 
in Taiwan exhibited biocontrol potential on 
Botrytis leaf blight of lily as demonstrated by a 
detached leaf assay and dual culture assay. At 
least two chitinases (ChiCW and ChiCH) were 
excreted by B. cereus 28-9. The ChiCW 
encoding gene was cloned and moderately 
expressed in Escherichia coli DH5α. Near 
homogenous of ChiCW was obtained from the 
periplasmic fraction of E. coli cells harboring 
ChiCW. Further in vitro assay showed that the 
purified ChiCW posed inhibitory activity on 
conidial germination of Botrytis elliptica, a major 
fungal pathogen of lily leaf blight”. 
 

8. INDUCING SYSTEMIC RESISTANCE 
(ISR) 

 
One of the promising strategies for the 
management of nematodes is use of resistant 
inducers. The resistance inducers or elicitors can 
take the form of a chemical compound or a live 
organism whose function is to activate the plant’s 
defense mechanisms Ariera et al, Wilson et al, 
Van Peer et al, Droby et al and Leeman et al.  
[74-78]. Plant growth promoting rhizobacteria 
(PGPR) belonging to Bacillus spp. are being 
exploited commercially in the field of plant 
protection to induce systemic resistance against 
various pests and diseases. The Bacillus strains 
have resulted in increased efficacy by inducing 
systemic resistance against several pathogens 
attacking the same crop. Seed treatment with 
PGPR like Bacillus spp. causes cell wall 
structural modifications and biochemical / 
physiological changes leading to the synthesis of 
proteins and chemicals involved in plant defense 
mechanisms. Lipopolysaccharides, siderophores 
and salicylic acid are the major determinants of 
PGPR mediated ISR. The performance of PGPR 
has been successful against certain pathogens, 
insects and nematodes under field conditions as 
proved” by Ramamoorthy et al. [79]. 
 
The crop protection resulting from ISR elicited by 
Bacillus spp. has been reported against leaf 
spotting fungal and bacterial pathogens; 
systemic viruses, a crown-rotting fungal, stem-
blight fungal, damping off, blue mould and late 
blight diseases in addition to root-knot 
nematodes. Reductions in field populations of 
three insect vectors have also been observed 
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earlier Kloepper et al. [42]. The induction of 
systemic resistance though the use of Bacillus 
spp. has been demonstrated in different crops as 
follows. 
  

8.1 In Tomato 
 
In an experiment on the management of 
Fusarium wilt of tomato, two strains viz. B. fortis 
IAGS162 and B.subtilis IAGS174 were found to 
trigger the defence enzymatic activities viz.  
Peroxidase (PO), Polyphenoloxidase (PPO) and 
Phenylammonialyase (PAL) and phenolic content 
which helps for the induction of systemic 
resistance against fungal pathogens Akram et al. 
[80]. 
 
The systemic resistance induced by B. subtilis 
(strain Bs) was effective against Rotylenchulus 
reniformis in tomato Niknam and Dhawan [11]. 
The elicitation of ISR by the specific strains of B. 
amyloliquefaciens, B. subtilis, B. pasteurii, B. 
cereus, B. pumilus, B. mycoides and B. 
sphaericus has been demonstrated under 
controlled and field conditions on tomato, bell 
pepper, muskmelon, watermelon, sugarbeet, 
tobacco, cucumber, loblolly pine and two tropical 
crops viz. long cayenne pepper and green kuang 
futsoi  Vanloon LC and Callow JA [81]. 
 

8.2 In Chilli 
 
The induction of systemic resistance by Bacillus 
spp. was responsible for the management of 
blight disease of chilli as reported by Ahmed et 
al. [82]. 
 

8.3 In Potato 
 

Gunther et al. [83] established the systemically 
induced resistance by B. sphaericus as 
mechanism in the management of Globodera 
pallida in potato. The ability of B.sphaericus 
(strain B43) and Agrobacterium radiobacter 
(strain G12) isolated from the potato rhizosphere 
to induce systemic resistance was said to be 
responsible for reducing the rate of root 
penetration and population of juveniles of potato 
cyst nematode G. pallida. 
 

8.4 In Apple 
 

The bacterium B.subtilis strain Y-1 isolated from 
apple induced systemic resistance through 
altered activities of super oxide dismutase 
against Fusarium sp, Rhizoctonia sp, F. 
oxysporum, F. moniliforme, F. proliferatum, F. 

solani and R. solani in apple according to 
Ruicheng et al. [17]. 
 

9. INDUCED BIOCHEMICAL CHANGES 
 

Biochemical changes due to nematode 
infestation and their antagonists in plant system 
was well documented by several authors Tayal et 
al and Ganguly et al. [84,85]. Information on this 
line is much useful to know the biochemical 
mechanism of bioagents used for the 
management of phytonematodes. Plant 
metabolism and hypersensivity reaction in plants 
were explained as possible mechanism of 
bioagents towards the invading pathogenic 
organisms like nematodes. It has been reported 
that polyphenols and polyphenol oxidase 
together in an oxidative process resulted in 
browning reaction. Increase in polyphenol 
oxidase after the entry of nematodes is attributed 
for the triggering of phenol oxidation process as 
defence mechanism Maraite H. [86]. 
 

It is well known that accumulation of phenols in 
plant system is imparting resistance to invading 
plant pathogens including nematodes. The use of 
many biocontrol agents including PGPR resulted 
in accumulation of phenol as biochemical 
changes in favour of plants and against invading 
pathogens like nematodes Pitcher et al. [87]. 
Abdel Aziz et al. [70] reported that the release of 
high level of reducing sugar by B. alvei strain 
NRC14 is responsible for the nematicidal action 
of the bacterium against eggs and juveniles of M. 
javanica. The higher production of Indole Acetic 
Acid (IAA) and Hydrogen Cyanide by the isolates 
viz. B5, B11, B4 and B1 of Bacillus spp. was 
related to their biocontrol potential in the 
management of M. incognita in tomato by Singh 
and Siddiqui [88]. The biocontrol potential of two 
strains of Bacillus viz. B. fortis 162 and B. subtilis 
174 against Fusarium wilt of tomato was studied 
under laboratory conditions. In this study the 
quantification of total phenolic compounds and 
defense related proteins viz. PPO, PAL and PO 
by calometric methods was made. The results 
showed that the strain B. subtilis 174 exhibiting 
higher biocontrol potential resulted in higher 
content of phenolic compounds and enhanced 
defence enzymatic activities of PPO, PAL and 
PO compared to strain B. fortis 162 Akram et al 
[80]. 
 
Three isolates of B. subtilis viz. EXB-123, ENB-
24 and S-9 proved to be promising bacterial 
antagonists against chilli anthracnose pathogen, 
C. capsici were subjected to bioassay study. It 
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clearly indicated the higher level of phenolic 
compounds and the activities of defense related 
enzymes like PO, PPO and PAL following the 
use of B. subtilis against C. capsici in chilli. 
Among the three above bacterial antagonists 
tested, the B. subtilis EXB-123 ranked first in 
inducing biochemical changes as defence 
mechanism in chilli Ramanujam et al [89]. The 
biochemical changes induced by B. subtilis, B. 
firmus and B. coagulans reported to be effective 
against M. javanica in eggplants were observed 
at 15 and 45 days after inoculation. The results 
indicated that all three species of Bacillus were 
capable of accumulating phenolic compounds 
and enhancing defence enzyme activities of PO, 
PAL, guaiacol peroxidase, catalase, ascorbate 
peroxidise and declining super oxide dismutase 
Abbasi et al [90]. 
 

10. PLANT GROWTH PROMOTING 
ABILITY 

 

The PGPR are known to enhance plant growth 
and health through their direct or indirect 
mechanisms. The plant health could be improved 
by controlling a range of plant pathogens 
including bacteria, fungi and nematodes. The use 
of PGPR recently named as plant probiotics to 
control plant pathogens is receiving increasing 
attention as they may represent an alternative 
approach to chemical pesticides EI Shadia et al 
[70]. 
 

The principal mechanisms of Bacillus spp. are 
attributed to the production of growth stimulating 
phytohormones viz. Indole acetic acid and 
Gibberellic acid and solubilization and 
mobilization of phosphate, siderophore 
production leading to the promotion in plant 
growth and thereby imparting tolerance against 
plant pathogens Richardson et al, Idriss et al, 
Gutierrez- Manero et al, Whipps et al [91-94] The 
plant growth promoting ability of Bacillus is 
detailed below crop wise. 

 
10.1 Tomato 
 
The plant growth characters of tomato 
challenged with R. reniformis increased following 
the application of B. subtilis strain Bs [11]. 

  
10.2 Cucumber 
 
The B. subtilis strain BACTO is capable of 
improving the growth and yield of cucumber 
plants besides managing fungal disease caused 

by different pathogens Utkhede RS abd Smith 
EM [94]. 
 

10.3 Safflower 
 

Similarly Liang et al. [30] reported that seed 
treatment with B. polymixa, increased the 
seedling height of safflower. Thus the Bacillus 
spp. has played both the role of crop protection 
as well as crop improvement. 
 

10.4 Maize 
 
In maize four isolates of Bacillus spp. produced 
IAA ranging from 53.1 to 71.1 ppm optimally. In 
this study conducted by Lwin et al. [95] it is 
observed that all the isolates had different 
optimum IAA production periods and strain R1 
was the best IAA producer strain with 121.1 ppm 
[96]. 
 

10.5 Chickpea 
 
The strains BHUPSB13 of B. subtilis, 
BHUPSB17 of Paenibacillus polymyxa and 
BHUPSB19 of B.boronophilus induced 
production of IAA, phosphate solubilization and 
ammonia production in chickpea. Hence Yadav 
et al. [97] opined that the above isolates will be 
useful as biofertilizers to enhance the growth and 
productivity of chickpea. 
  

10.6 Paddy 
 
The efficiency of B.subtilis isolates designated as 
BS 1-10 was studied for IAA, GA, and 
siderophore production in addition to phosphate 
solubilisation. The study carried out by Sivasakthi 
et al. [98] revealed the maximum phosphate 
solubilisation with the isolate BS-8 in paddy. 
  

10.7 Glory Lily (Gloriosa superba) 
 
Phytohormones are plant growth regulators 
which have stimulatory effects on plant growth. In 
medicinal crop, Glorius superba the plant growth 
promoting rhizobacteria including Bacillus spp. 
were able to produce IAA and GA as reported by 
Megala et al. [99]. 
  

10.8 Siderophore Production 
 
Rajendran et al. [100] found that Bacillus strains 
NR4 and NR6 were able to produce 
siderophores and the rhizobial bioinoculant 
IC3123 was able to cross utilize under iron 
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starved conditions. The above bioinoculant 
showed enhanced growth in the presence of the 
Bacillus isolates indicating that siderophore 
mediated interactions might be underlying 
mechanism of beneficial effect of the strains on 
nodulation by IC3123. 
 

11. COMPETITION FOR NUTRIENTS, 
SPACE AND NICHE EXCLUSION 

 

Competition for resources such as nutrients and 
oxygen occurs generally in soil among soil 
inhabiting organisms. Root inhabiting 
microorganisms compete for suitable sites over 
the root surfaces. Thus the competition for 
nutrients especially for carbon is assumed to be 
responsible for the well-known phenomenon of 
fungistasis Alabouvette et al, Paulitz et al, Baker 
R [101-103]. Competition for trace elements such 
as iron, copper, zinc, manganese etc. also 
occurs in soil. For example, iron is an essential 
growth element for all living organisms and the 
scarcity of its bioavailable form in soil habitats 
results in a furious competition between 
pathogens and their antagonistis Loper JE and 
Henkels MD [104]. Suppression of soilborne 
plant pathogens through competition for niche 
and nutrients has been demonstrated for some 
beneficial bacteria such as Pseudomonas spp. 
Haas D and Défago G [105]. In this regard the 
experimental proof available with regard to 
Bacillus is meagre. However, the competitive 
phenomena are speculated to occur with this 
bacterium under natural rhizosphere conditions 
by the above authors. Mochizuki et al. [106] 
described that the Bacillus subtilis strains 
SW116b and Bacillus subtilis strains HPC2-1 
also have a high ability to colonize, so that these 
strains are able to compete in space and nutrition 
with pathogenic bacteria, including soil borne 
pathogens such as R. solanacearum. Space 
competition between Bacillus subtilis strain 
SW116b and Bacillus subtilis strain HPC 2-1 with 
pathogenic bacteria occurs through restriction of 
secondary development and spread of 
pathogenic bacteria by Bacillus subtilis is thus 
widely distributed. In addition, nutritional 
competition also occurs as a result of a high 
population increase of Bacillus subtilis, especially 
in using carbon, nitrogen, and Fe3 + sources for 
growth and activity which can result in limited 
nutrient sources available for pathogen needs. 
 

12. CONCLUSION 
 

The ability of Bacillus spp. for the fixation of 
nitrogen, degradation of cellulose, starch, pectin 

and protein in addition to production of various 
types of antimicrobial compounds were explained 
as probable mechanism of the bacterium for the 
management of plant pathogens Turner et al 
[107]. The bacterium B. subtilis can improve the 
plant growth by producing biologically active 
substances or by transforming unavailable 
mineral and organic compounds into available 
forms to plants Broadbent et al and Silo-such et 
al [108-112]. Thus it may partially compensate 
the losses caused by plant parasitic nematodes 
besides increasing crop yield. 
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