Symmetric q-Gamma Function

Hédi Elmonser ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, College of Science and Humanities at Howtat Sudair, Majmaah University, Saudi Arabia.

Author's contribution
The sole author designed, analyzed, interpreted and prepared the manuscript.
Article Information
DOI: 10.9734/ARJOM/2018/44348
(1) Dr. Ruben Dario Ortiz Ortiz, Professor, Facultad de Ciencias Exactas y $\frac{\text { Editor (s): }}{\text { Naturales, }}$

Universidad de Cartagena, Colombia.
(2) Dr. Xingting Wang, Department of Mathematics,Temple University, Philadelphia, USA.

Reviewers:
(1) Kwara Nantomah, University for Development Studies, Ghana.
(2) Erdal Unluyol, Ordu University, Turkey.
(3) Hugo Cruz-Suarez, Benemerita Universidad Autonoma de Puebla, Mexico.
(4) Praveen Agarwal, International Centre for Basic and Applied Sciences, India.
(5) W. Obeng-Denteh, Kwame Nkrumah University of Science and Technology, Ghana. Complete Peer review History: http://www.sciencedomain.org/review-history/27128

Review Article

Received: 12 August 2018
Accepted: 26 October 2018
Published: 08 November 2018

Abstract

In this work we are interested by giving new characterizations of the symmetric q-Gamma function and show that there are intimately related. For that, some special q-calculus technics are used.

Keywords: q-analogue; gamma function; characterization.
2010 Mathematics Subject Classification: 33D05.

1 Introduction

In literature the characterizations of the well known Gamma function are studied by many authors $[1,2]$ and [3]. As same as the Gamma function, the characterization of the q-Gamma function was studied by Elmonser et al. in [4], they proved the following results:

[^0]Theorem 1.1. The q-Gamma function is the unique function $f(x)>0$ on $] 0,+\infty[$ that satisfies the following properties:
a) $f(1)=1$
b) $f(x+1)=[x]_{q} f(x)$
c) $\left.f(x+n)=(1-q)^{[x]_{q}-x} f(n)[n]_{q}^{[x]}\right]_{n}(x)$, where $t_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$.

The second theorem gives the relationship between three different characterizations of the q-Gamma function:

Theorem 1.2. For a $q-P G$ function f, the following properties are equivalent:
(C) $\ln f$ is convex on $] 0,+\infty[$,
(L)L($n+x)=\left([x]_{q}-x\right) \ln (1-q)+L(n)+x \ln (n+1)+r_{n}(x)$,
where $L(x)=\ln f(x+1)$ and $r_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$,
(P) $f(x+n)=(1-q)^{[x]_{q}-x} f(n)[n]_{q}^{[x]_{q}} t_{n}(x)$,
where $t_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$.
A q-PG function f satisfying these properties is equal to $c \Gamma_{q}(x)$, for some constant c.
where the a q-PG function (pre- q-gamma function) is a positive function f on $] 0,+\infty[$ satisfying the functional equation $f(x+1)=[x]_{q} f(x)$.

A generalization of the q-gamma function, called symmetric q-Gamma function, was introduced and studied by K. Brahim and Yosr Sidomou in [5].

In the present paper, we continue the study of this function by giving some new characterizations and prove that they are intimately related.

2 Notations and Preliminaries

We recall some usual notions and notation used in the q-theory $[6,7,8]$ and [9]. Throughout this paper, we assume $q \in] 0,1[$.

For $a \in \mathbb{C}$, the q-shifted factorials are defined by

$$
\begin{gather*}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)=(1-a)(1-a q) \ldots .\left(1-a q^{n-1}\right), \quad n=1,2, \ldots \ldots \tag{2.1}\\
(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right) . \tag{2.2}
\end{gather*}
$$

We also denote

$$
\begin{gather*}
{[x]_{q}=\frac{1-q^{x}}{1-q}, \quad x \in \mathbf{C},} \tag{2.3}\\
\widetilde{[x]_{q}}=\frac{q^{x}-q^{-x}}{q-q^{-1}}=, \quad x \in \mathbf{C}, \tag{2.4}\\
{[n]_{q}!=\prod_{k=1}^{n}[k]_{q}=\frac{(q ; q)_{n}}{(1-q)^{n}}, \quad n \in \mathbf{N} .} \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left.\widetilde{[n]_{q}}!=\prod_{k=1}^{n} \widetilde{[k]}\right]_{q}, \quad n \in \mathbf{N} . \tag{2.6}
\end{equation*}
$$

One can see that

$$
\begin{equation*}
\widetilde{[x]_{q}}=q^{-(x-1)}[x]_{q^{2}} \tag{2.7}
\end{equation*}
$$

3 The symmetric q-Gamma function:

The q-Gamma function $\Gamma_{q}(x)$, a q-analogue of Euler's gamma function, was introduced by Thomae [10] and later by Jackson [11] as the infinite product:

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}(1-q)^{1-x}}{\left(q^{x} ; q\right)_{\infty}} \quad, x>0 \tag{3.1}
\end{equation*}
$$

where q is a fixed real number $0<q<1$.
Recently, K. Brahim and Yosr Sidomou [5] introduced the symmetric q-Gamma function as follows:

$$
\begin{equation*}
\widetilde{\Gamma}_{q}(z)=q^{-\frac{(z-1)(z-2)}{2}} \Gamma_{q^{2}}(z), \quad, z>0, q>0, q \neq 1 \tag{3.2}
\end{equation*}
$$

where

$$
\Gamma_{q}(z)= \begin{cases}\frac{(q, q) \infty}{\left(q^{x}, q\right) \infty}(1-q)^{1-x}, & \text { if } 0<q<1 \tag{3.3}\\ \frac{\left(q^{-1}, q^{-1}\right) \infty}{\left(q^{-x}, q^{-1}\right) \infty}(1-q)^{1-x} q^{\frac{x(x-1)}{2}}, & \text { if } q>1\end{cases}
$$

They proved that it is symmetric under the interchange $q \leftrightarrow q^{-1}$ and satisfies a q-analogue of the Bohr-Mollerup theorem for $q \neq 1$:

Theorem 3.1. Let $q>0, q \neq 1$. The only function $f \in C^{2}((0, \infty))$ satisfying the conditions:
(a) $f(1)=1$.
(b) $f(x+1)=\widetilde{[x]}_{q} f(x)$.
(c) $\frac{d^{2}}{d x^{2}} \log f(x) \geq|\log q|$ for positive x, is the symmetric q-Gamma function.

In Elmonser et al. [4], the author proved the following relation

$$
\begin{equation*}
\Gamma_{q}(x)=\lim _{n \rightarrow+\infty}(1-q)^{[x]_{q}-x} \frac{[n]_{q}^{[x]_{q}}[n]_{q}!}{[x]_{q}[x+1]_{q} \ldots[x+n]_{q}}, \quad x>0 \tag{3.4}
\end{equation*}
$$

Using the relation (3.2) and (3.4), we derive the following relation:

$$
\begin{equation*}
\widetilde{\Gamma}_{q}(x)=\lim _{n \rightarrow+\infty} q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x \frac{[n]_{q^{2}}^{[x]_{q^{2}}}[n]_{q^{2}}!}{[x]_{q^{2}}[x+1]_{q^{2}} \ldots[x+n]_{q^{2}}}, \quad x>0,0<q<1 \tag{3.5}
\end{equation*}
$$

4 Characterization of the q-Gamma Function

As it is proved in Elmonser et al. [4] and Laugwitz and Rodewald [12] we establish new characterizations of the symmetric q-Gamma function. The first characterization is given by the following theorem:

Theorem 4.1. The symmetric q-Gamma function $\widetilde{\Gamma}_{q}(x)$ is the unique function $f(x)>0$ on $] 0,+\infty[$ that satisfies the following properties:
a) $f(1)=1$
b) $f(x+1)=\widetilde{[x]}_{q} f(x)$
c) $f(x+n)=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x[n]_{q^{2}}^{[x]} f(n) t_{n}(x)$, where $t_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$.

Proof.
First we prove that $\widetilde{\Gamma}_{q}(x)$ satisfies conditions (a), (b) and (c).
From Theorem 3.1, the symmetric q-Gamma function satisfies the condition (a) $\widetilde{\Gamma}_{q}(1)=1$, and the condition (b) $\widetilde{\Gamma}_{q}(x+1)=\widetilde{[x]}{ }_{q} \widetilde{\Gamma}_{q}(x)$.

As a consequence of the two properties, we get $\left.\widetilde{\Gamma}_{q}(n)=\widetilde{[n-1}\right]_{q}$!
(c) Let $s_{n}(x)=\frac{\tilde{\Gamma}_{q}(x)}{q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2-x} \widetilde{\Gamma}_{n, q}(x)}$,

then $\widetilde{\Gamma}_{q}(x)=s_{n}(x) q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x \widetilde{\Gamma}_{n, q}(x)$ and $\lim _{n \rightarrow+\infty} s_{n}(x)=1$.
For $n \in \mathbf{N}$ and $x>0$, we apply (b) n times to get

$$
\begin{aligned}
& \widetilde{\Gamma}_{q}(x+n)=[x \widetilde{x+n-1}]_{q} \cdots[\widetilde{x+1}]_{q} \widetilde{[x]} \widetilde{\Gamma}_{q}(x) \\
& =\frac{\widetilde{[x+n]_{q} \cdots[\widetilde{x+1}]_{q} \widetilde{[x]}} \tilde{q}^{q}}{\left[\widetilde{x+n]_{q}}\right.} \cdot q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]]_{q^{2}}-x} \frac{[n]_{q^{2}}^{[x]} q^{2} \widetilde{[n]_{q}}!}{q^{n x+x-1}[\widetilde{[x]}]_{q}[\widetilde{x+1}]_{q} \cdots\left[\widetilde{x+n]_{q}}\right.} \cdot s_{n}(x) \\
& =q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x[n]_{q^{2}}^{[x]} q^{2} \widetilde{\Gamma}_{q}(n) t_{n}(x) \text {. }
\end{aligned}
$$

Where $t_{n}(x)=q^{-x} \frac{\widetilde{[n]}}{[x+n]_{q}} . s_{n}(x)$. Thus, $\widetilde{\Gamma}_{q}(x+n)=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x[n] q^{[x]} q^{2} \widetilde{\Gamma}_{q}(n) t_{n}(x)$ and $t_{n}(x) \rightarrow 1$ as $n \rightarrow+\infty$.

To show uniqueness, we assume $f(x)$ is a function that satisfies (a), (b) and (c). From properties (a) and (b), we have

$$
\begin{gather*}
f(n)=\widetilde{[n-1}]_{q}! \tag{4.1}\\
\left.f(x+n)=[\widetilde{x+n-1}]_{q}[\widetilde{x+n-2}]_{q} \cdots[\widetilde{x+1}]_{q} \widetilde{x x}\right]_{q} f(x) . \tag{4.2}
\end{gather*}
$$

Combining (4.1),(4.2) and (c) together, we have

$$
\begin{aligned}
f(x) & =q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]_{q^{2}}-x} \frac{\left.[n]_{q^{2}}^{[x]} q^{2} \widetilde{[n-1}\right]_{q}!}{\left[\widetilde{[x+n-1]_{q}[x+n-2]_{q} \cdots[\widetilde{x+1}]_{q}[\widetilde{x x}}\right]_{q}} t_{n}(x) \\
& =q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q_{q^{2}}-x \widetilde{\Gamma}_{n, q}(x) \cdot s_{n}(x),
\end{aligned}
$$

where $s_{n}(x)=q^{x} \frac{\widetilde{[x+n]_{q}}}{[n]_{q}} t_{n}(x) \rightarrow 1$ as $n \rightarrow+\infty$. Therefore $f(x)=\widetilde{\Gamma}_{q}(x)$ and hence f is uniquely determined. This completes the proof.

5 Relationship between Characterizations

In what follows, we will adopt the terminology of the following definition.

Definition 5.1. A function f is said to be a $q s$-PG function (pre-symmetric- q-gamma function), if f is positive on $] 0,+\infty[$ and satisfies the functional equation
$f(x+1)=\widetilde{[x]}{ }_{q} f(x)$.
In the previous section we showed that the property

$$
f(x+n)=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]} q^{2-x}[n]_{q^{2}}^{[x]} q^{2} f(n) t_{n}(x)
$$

characterizes the q-gamma function. In this section we will give three properties which are equivalent to one another for a $q s$-PG function and characterize the symmetric q-gamma function.

Theorem 5.1. For a $q-P G$ function f, the following properties are equivalent:
(C) $\ln f$ is convex on $] 0,+\infty[$,
(L) $L(n+x)=-\frac{x^{2}+2 n x-3 x}{2} \ln q+\left([x]_{q^{2}}-x\right) \ln \left(1-q^{2}\right)+L(n)+[x]_{q^{2}} \ln [n+1]_{q^{2}}+r_{n}(x)$, where $L(x)=\ln f(x+1)$ and $r_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$,
(P) $f(x+n)=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x[n]{ }_{q^{2}}^{[x]} q^{2} f(n) t_{n}(x)$,
where $t_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$.
A qs-PG function f satisfying these properties is equal to $c \widetilde{\Gamma}_{q}(x)$,for some constant c.
Proof. .
(a) $(P) \Leftrightarrow(L)$. We have

$$
\begin{aligned}
(P) \Leftrightarrow & f(x+(n+1))=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x] q_{q^{2}}-x} f(n+1)[n+1]_{q^{2}}^{[x]} q^{2} t_{n+1}(x), \\
& t_{n+1}(x) \rightarrow 1 \\
\Leftrightarrow & \ln f(x+(n+1))=-\frac{x^{2}+2 n x-3 x}{2} \ln q+\left([x]_{q^{2}}-x\right) \ln \left(1-q^{2}\right)+\ln f(n+1) \\
& +[x]_{q^{2}} \ln [n+1]_{q^{2}}+\ln t_{n+1}(x), t_{n+1}(x) \rightarrow 1 \\
\Leftrightarrow & L(x+n)=-\frac{x^{2}+2 n x-3 x}{2} \ln q+\left([x]_{q^{2}}-x\right) \ln \left(1-q^{2}\right)+L(n) \\
& +[x]_{q^{2}} \ln [n+1]_{q^{2}}+r_{n}(x), r_{n}(x) \rightarrow 0 \\
\Leftrightarrow & (L) .
\end{aligned}
$$

(b) $(C) \Longrightarrow(P)$. Let $m<x \leq m+1$, where $m=0,1,2, \ldots$ For any natural $n, n+m-1<n+m<$ $n+x \leq n+m+1$. The convexity of $\ln f$ gives us (we write $L_{m}=\ln f(n+m)$)

$$
\begin{gathered}
\frac{L_{m}-L_{m-1}}{n+m-(n+m-1)} \leq \frac{\ln f(n+x)-\ln f(n+m)}{(n+x)-(n+m)} \leq \frac{L_{m+1}-L_{m}}{(n+m+1)-(n+m)} \\
\Leftrightarrow(x-m) \ln \left[n \widetilde{+m-1]_{q}} \leq \ln \frac{f(n+x)}{f(n+m)} \leq(x-m) \ln [\widetilde{n+m}]_{q}\right. \\
\Leftrightarrow\left[\widetilde{(m-1]_{q}} \leq \frac{f(n+x)}{[n \widetilde{+m-1}]_{q}[\sqrt{n+m-2}]_{q} \cdots[\widetilde{n}]_{q} f(n)} \leq[\widetilde{n+m}]_{q}^{x-m}\right. \\
\left.\Leftrightarrow[\widetilde{(n+m-1}]_{q}^{x} T_{m} \leq \frac{f(n+x)}{f(n)} \leq \widetilde{[n+m}\right]_{q}^{m} T_{m} \frac{[n+m-1]_{q}}{[\widetilde{n+m}]_{q}^{m}}
\end{gathered}
$$

where $T_{m}=\frac{\left[n \widetilde{[n-1]_{q}}[\widetilde{n+m-2}]_{q} \cdots \widetilde{[n]}\right.}{[n+m-1]_{q}^{m}}=q^{\frac{m(m-1)}{2}} \frac{[n+m-1]_{q^{2}}[n+m-2]_{q^{2}} \cdots[n]_{q}{ }^{2}}{[n+m-1]_{q^{2}}^{m}}$.
Therefore, we have

$$
\lim _{n \rightarrow+\infty} q^{n x} \frac{f(n+x)}{f(n)}=\frac{q^{-\frac{x^{2}-3 x}{2}}}{\left(1-q^{2}\right)^{x}},
$$

by the squeezing theorem. If we let

$$
t_{n}(x)=\frac{q^{\frac{x^{2}+2 n x-3 x}{2}} f(n+x)}{\left(1-q^{2}\right)^{[x]_{q^{2}}-x} f(n)[n]_{q^{2}}^{[x]} q^{2}},
$$

then

$$
f(n+x)=q^{-\frac{x^{2}+2 n x-3 x}{2}}\left(1-q^{2}\right)^{[x] q_{q^{2}}-x} f(n)[n]_{q^{2}}^{[x]_{q^{2}}} t_{n}(x),
$$

where $t_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$. This proves that f satisfies (P).
(c) $(P) \Longrightarrow(C)$. From the uniqueness part of the proof of the Theorem 1.1 we have $f(x)=f(1) \lim _{n \rightarrow+\infty} q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2-x} \Gamma_{n, q}(x)$.

Using the fact that the limit function of a convergent sequence of convex functions is convex, it suffices to show that $\ln \left(q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x \Gamma_{n, q}(x)\right)$ is convex.
Now

$$
\begin{aligned}
& \ln \left(q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x\right. \\
&\left.\Gamma_{n, q}(x)\right)=-\frac{(x-1)(x-2)}{2} \ln q+\left([x]_{q^{2}}-x\right) \ln \left(1-q^{2}\right) \\
&+[x]_{q^{2}} \ln [n]_{q^{2}}+\ln \left([n]_{q^{2}}!\right)-\ln [x]_{q^{2}}-\ldots-\ln [x+n]_{q^{2}} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
&\left(\operatorname { l n } \left(q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x\right.\right. \\
&\left.\left.\Gamma_{n, q}(x)\right)\right)^{\prime}=\left(-x+\frac{3}{2}\right) \ln q+\left(-2 \frac{\ln q}{1-q^{2}} q^{2 x}-1\right) \ln \left(1-q^{2}\right) \\
&+\left(-2 \frac{\ln q}{1-q^{2}} q^{2 x} \ln [n]_{q^{2}}\right)+\frac{2 \ln q}{1-q^{2}} \frac{q^{2 x}}{[x]_{q^{2}}}+\ldots \\
&+\frac{2 \ln q}{1-q^{2}} \frac{q^{2(x+n)}}{[x+n]_{q^{2}}} .
\end{aligned}
$$

And so

$$
\begin{aligned}
&\left(\operatorname { l n } \left(q^{-\frac{(x-1)(x-2)}{2}}\left(1-q^{2}\right)^{[x]} q^{2}-x\right.\right. \\
&\left.\left.\Gamma_{n, q}(x)\right)\right)^{\prime \prime}=-\ln q-4 \frac{(\ln q)^{2}}{1-q^{2}} q^{2 x}\left(\ln \left(1-q^{2}\right)+\ln \frac{1-q^{2 n}}{1-q^{2}}\right) \\
&+4 \frac{(\ln q)^{2}}{1-q^{2}}\left[\frac{q^{2 x}[x]_{q^{2}}+\frac{q^{4 x}}{1-q^{2}}}{[x]_{q^{2}}^{2}}+\ldots\right. \\
&\left.+\frac{q^{2(x+n)}[x+n]_{q^{2}}+\frac{q^{4(x+n)}}{1-q^{2}}}{[x+n]_{q^{2}}^{2}}\right] \\
&=-\ln q-4 \frac{(\ln q)^{2}}{1-q^{2}} q^{2 x}\left(\ln \left(1-q^{2 n}\right)\right) \\
&+4 \frac{(\ln q)^{2}}{1-q^{2}}\left[\frac{q^{2 x}[x]_{q^{2}}+\frac{q^{4 x}}{1-q^{2}}}{[x]_{q^{2}}^{2}}+\ldots\right. \\
&\left.+\frac{q^{2(x+n)}[x+n]_{q^{2}}+\frac{q^{4(x+n)}}{1-q^{2}}}{[x+n]_{q^{2}}^{2}}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \\
& \left(\ln \left((1-q)^{[x]_{q}-x} \Gamma_{n, q}(x)\right)\right)^{\prime \prime}>0 .
\end{aligned}
$$

This completes the proof.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Bohr H, Mollerup J. Laerebog i mathematisk analyse. Kopenhage. 1922; III:149-164.
[2] Laugwitz D, Rodewald B. A simple characterization of the gamma function. Amer. Math. Monthly. 1987;94:534-536.
[3] Shen Y. On characterizations of the Gamma Function. Mathamatical Association of America. 1995;68(4):301-305.
[4] Elmonser H, Brahim K, Fitouhi A. Relationship between characterizations of the qGammafunction. Journal of Inequalities and Special Functions. 2012;3(4):50-58.
[5] Brahim K, Yosr Sidomou. On some symmetric q-Special functions. Le Mathematiche. 2013;LXVIII-Fasc.II:107-122.
[6] Askey R. The q-Gamma and q-Beta functions. Applicable Anal. 1978;8(2):125-141.
[7] Koelink HT, Koornwinder TH. q-Special Functions, a Tutorial, in deformation theory and quantum groups with applications to mathematical physics. Contemp. Math., Editors: M. Gerstenhaber and J. Stasheff, J Amer. Math. Soc., Providence, 1992;134:141-142.
[8] Gasper G, Rahman M. Basic hypergeometric series, 2nd Edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge. 2004;96.
[9] Kac VG, Cheung P. Quantum calculus. Universitext, Springer-Verlag, New York; 2002.
[10] Thomae J. Beitrage zur Theorie der durch die Heinesche Reihe. J. Reine Angew. Math. 1869;70:258-281.
[11] Jackson FH. On a q-Definite integrals. Quarterly Journal of Pure and Applied Mathematics. 1910;41:193-203.
[12] Laugwitz D, Rodewald B. A simple characterization of the gamma function. Amer. Math. Monthly. 1987;94:534-536.
(C) 2018 Elmonser; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sciencedomain.org/review-history/27128

[^0]: *Corresponding author: E-mail: h.elmonser@mu.edu.sa

