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Abstract

This paper considers the development of an efficient Stormer-Cowell-Typed method for the direct
solution of second order ordinary differential equations using the method of interpolation of the
combination of Cheybeshev and Legendre polynomials approximate solution and collocation of the
differential system to develop our scheme. The method derived was tested and confirmed to be consistent,
stable within the region of absolute stability and zero-stable. The method was tested on some numerical
examples and found to give a better approximation.

Keywords: General second order; interpolation; Chebyshev,; Legendre,; collocation; order; zero stability,
consistent.

1 Introduction

Several fields of applications, notably in science and engineering yield initial value problems of second
order differential equations are of the form
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Countless of such problem may not easily be solved analytically, thus numerical schemes are developed to
solve (1). These equations are usually reduced to systems of first-order ordinary equations and numerical
scheme of the first order differential equation are employed to solve them. Linear multistep methods are an
influential numerical method for solving differential equation than the explicit method. Kayode and Adeyeye
[1] reported that literature revealed that some researchers have attempted the direct solution of (1) using
linear multistep method (Lambert [2], Brown [3], Awoyemi [4], Adesanya et al. [5], Kayode [6], Alabi et al.
[7], Kayode and Obarhua [8]) with the various order of accuracies. It was also reported in Kayode and
Adeyeye [1], that lower order method was developed by Kayode [9], Yahaya and Badmus [10], Majid et al.
[11], Ehigie et al. [12], Kayode and Adeyeye [13], to solve (1). Kayode and Adeyeye [1] proposed two-step
two-point hybrid methods for general second order ordinary differential equations which chebyshev
polynomial of the first kind was used as basis function and the method was of order six. The method was
used to solve the same problem treated by the method of Awoyemi [14], Yahaya and Badmus [10] and
Ehigie et al. [12] the error compared favourably well to that of Awoyemi [14], Yahaya and Badmus [10] and
Ehigie et al. [12]. Recently, Omole and Ogunware [15], worked on 3-

Point Single Hybrid Point Block Method (3PSHBM) for direct solution of General second order initial value
problem of ordinary differential equations. The method was found to be zero stable, consistency and
efficient for solving initial value problems accurately.

This work made use of Chebsyshev and Legendre polynomials as basis function in generating the

interpolation and collocation equations for the development of a continuous Linear multistep method of
Stormer-Cowell type for the direct solution of (1) which is of the higher order.

2 The Derivation of the Method

In this section, we apply the interpolation and collocation technique and we chose our interpolation (i) and
our collocation points (c) at grid points. We considered the combination of Chebyshev and Legendre
Polynomials in the form

c+i-1

y(x)=Y a{7,(x)+P(x) } )

Jj=0
where Tj(x)is the Chebyshev polynomial of the first kind ande(x)is the legendre polynomial. Equation
(2) is the basis function with a single variable X , where X € (a, b) , a' s are real unknown parameter to
be determined, ¢ and i are the number of collocation and interpolation points respectively.

The second derivative of (2) is
c+i-1
y"(x)= Zaj{Tj”(x)+ Pj"(x)} 3)
j=0
Combining (3) in (1) to have

c+i—1 il

20,7 () + a8 1) @
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Collocated (4) at x
equations

fn+l

f;1+2

f;1+3

f;1+4

fn+5

n+i?

i = 0(1)5 and interpolated (2) at X

waiol = 3,4 give rise to the following set of
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3 13
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Equation (5) is solved by Gaussian elimination method to attain the value of the unknown parameters a j» J=

0(1)7as follows
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coefficients are given as follows

a, =t

a,=—(t+1)
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The a j’S are replaced back into (2) and simplifying to give a continuous method of the type
k=1 , &
yn+k(x)= Zajyn+j(x) + h Zﬁl (x)f;z+j (7)
Jj=k-2 j=0
. . . X — xn+k—l 1
Applying the transformation in Kayode & Obarhua (2013), ¢ = P and dt = Zdh , the

J
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The first derivative of (8) gives
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Evaluating (9) and (10) at # = 1 which implies that X = X 145 gives discrete scheme
2

h
yn+5 = 2yn+4 _yn+3 +T40(18fn+5 +209fn+4 +4fn+3 +14fn+2 _6fn+l +fn) (10)

The first derivative is

h (3218 foos +13093 7., = 2876 f, , +2470 fMj

, 1
s = —(=y, + —
s h( yitrs) 10080 (—934f . +149f

(In

The Predictor
2

Pues = 2yn+4—y,,+3+2’fﬁ(299f,, 1761, 41941, 96 £, +197,)  (12)

with its first derivative as

Vnes = %(— yi+y,) +ﬁ (41691, —50081,., +4950f,,, —2432f,, +481f,) (13

Other explicit systems were generated to evaluate the remaining values using Taylor series.

Yoy = v, + Gy, + UnY [ Uh) {af" yo oy g D }+o(h4)

2! 3! |ox oy, oy n
and
| Ghy [of, o 3
nt h L4y, ’ y
Vi =Y+ (h)f, +— TRES +y ay”+fnay” +0(n*)

3 Analysis of the Basic properties of the Method

3.1 Order and error constant of the method

We embrace the method proposed by Lambert [2], in finding the order, with the operator:

We associate the linear operator L with the continuous multistep method (7) and defined as

{ } Zk: {a Y x+]h h,Bjy"(x+jh)}

Jj=0
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where & ; and p ; are both non-zero and y(x) is an arbitrary function, continuously differentiable on the

interval [a, b].If we assume that y(x) has many higher derivatives as we required, then on Taylor series

expansion about X, we obtain

L{y(x).h]=C,y(x)+ Chy' (x)+ C,h*y? +...CPh”y(”)(x) (14

where the C » ir constants.

Therefore we say that the method has order P if,

C,=C=C,=.C,=C,,=0,C,,#0

Then, CP+2 is the error constant, and it implies that the principal local truncation error is given by
2 2

(/1P+2thr y(l’+ )(xn)

For our method

Therefore the derived scheme is of order 6

4 The Consistency of the Method

For our method to be consistent, the following conditions must be satisfied

(i) theorder p =1

k
i) 2, @; =0
i=0

i) o =p 1) =0
v p (=2 o)

Condition (i) is satisfied since the scheme is of order 6
Condition (ii) is satisfied since oy + o, + ¢, +a; +a, +a5;=0; 0+0+0+1-2+1=0

5 4 3 4 3 2
Condition (iii) is satisfied since P(7)=r" —2r" +r°and p'(r)=5" -8 +3r

whenr=1;p(l")=p'(r):()

Condition (iv) is satisfied since
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£ (r)=20r* =24/ + 6r and o{r) = ﬁ (187° +209 + 477 + 141> — 61 +1)

2x1=2

18 209 4 14 6 1 240
—t— + -—— =2 x —=
240 240 240 240 240 240 240

whenr =1; 0(1)22! x (

Therefore P (” ) =2 !G(r ) =2
Hence the four conditions are satisfied, the method is consistent

S Zero Stability

Definition: A linear multistep method is said to be zero-stable, if no root of the first characteristics

polynomial ,0(7” ) has a modulus greater than one and if every root of modulus one has multiplicity not
greater than two. The scheme is zero stable when no root of the first characteristics polynomial has a

modulus greater than one that isH < 1

k k
A method is zero stable if p(x)zz a, = (0, where @ are the coefficients of z Y.,
j=0 j=0
k
a,=ay,ta+a,+ra;+a,+a;=0+0+0+1-2+1=0
=0
p(r): PP =2rt 4+ =0
(r*=2r+1)=0
(r—r)(r-1)=0

r=1 twice

Thus, the method is zero stable.

6 The Region of Absolute Stability

The Equation (11) is said to be stable if for a given / all the roots Z , of the characteristics

z| <1, s=12....n where h=7h

N

Polynomial & (z,%)= p(z) + ho(z) =0 satisfies

We adopted the boundary locus method to determine the stability interval. Substituting the test equation

\ r .
y =—Ayinto equation (11) gives h(r,h) = % . Writing r = e . After simplification, the stability
o(\r
interval gives [0, —4.615,]after evaluating i(», h) at interval 30°. Hence the method is p-stable in
nature.



Kayode et al.; ARJOM, 11(3): 1-12, 2018, Article no.ARJOM.44676

7 Implementation of the Method

Problem 1

v o=y y0) =0, (0)=-1 h=0.1
Analytical solution . y(x)= 1-exp(x)

Problem 2

vy =x(¥)=0y(0) = 1, y'(o)zé h = 0.003125

Analytical  solution . y(x)z 1+ LIn 2+ x
2 2-x

7.1 Numerical solutions to problem 1-2 as shown in Table 1-2

The computational errors of our method tested on problems 1-2 compared to other researchers. Problem 1
was compared with Kayode and Adeyeye [1]. Problem 2 was compared with Awoyemi [14] and Kayode and

Adeyeye [13].
8 Results and Discussion

Table 1. Table for problem 1

X Error in Kayode and Adeyeye [1] Error in New method
0.2 8.17176E-07 -
0.3 3.10356E-06 -
0.4 6.56957E-06 -
0.5 1.14380E-05 5.709190E-9
0.6 1.79656E-05 2.084567E-9
0.7 2.64474E-05 3.066035E-9
0.8 3.72222E-05 5.020548E-9
0.9 5.06786E-05 5.320548E-9
1.0 6.72615E-05 8.021400E-9

Table 2. Table for problem 2
X Error in Awoyemi [14] Error in Kayode and Adeyeye [13]  Error in New method
0.0063 0.26075253e-09 4.831380e-11 9.325873e-15
0.0094 0.19816704e-08 3.382836e-09 1.865175e-14
0.0125 0.65074122e-08 1.580320e-08 2.797762e-14
0.0156 0.15592381e-08 4.333951e-08 3.730349e-14
0.0188 0.31504477e-08 9.391426e-08 4.662937e-14

9 Conclusion

In this work, we have derived, analysed and implemented an efficient stormer-cowell-type method for the
solution of general second order ordinary differential equations by adopting a combination of Chebyshev

10



Kayode et al.; ARJOM, 11(3): 1-12, 2018, Article no.ARJOM.44676

and Legendre polynomials as the basis function. Collocation and interpolation methodology is adopted for
the derivation of the method. In Table 1, our method performs better than the method of Kayode and
Adeyeye [1], likewise Table 2; showed better accuracy than Awoyemi [14] and Kayode & Adeyeye [13].
Thus, the method developed in this paper is efficient and compared favourably well. The stability region
shows that the method is P-stable.
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