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Abstract

The classification of operator matrices has attracted a great deal of research in the recent past.
To the class of such matrices belongs; the Normal, Binormal, Hypernormal, Hamadard, Toeplitz,
Pythagorean matrix operators among others. These operator matrices demonstrate many classical
properties on dealing with them in connection to algebraic structural properties. In the case of
pythagorean matrices in which the column entries are the entries of the triplets(right triangle)
of consecutive integers, the shift operator matrix preserves the order and nature of the original
matrix. These classes of operators have been studied before to a fair extent, however, from
the documented literature, normal operator matrices that result from matrix products in direct
sums of Hilbert spaces have not been characterized before. In particular, there is no mention in
literature of a classification of normal matrices resulting from a combination of Hadamard and
Khatri-Rao decompositions on Hilbert spaces. On the other hand, the matrix products have
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found applications in Information Science( signal sensing), Coding Theory(quantum error
computation) among other areas. In this paper, we characterize a special class of normal
operator matrices of pythagorean type, which are newly constructed as the Khatri-Rao(which
generalizes Hadamard products) products whose entries are the block matrices of pythagorean
triplets of class C1 and extend the findings to an arbitrary Cn completed normal matrix of
the same category. We provide detailed survey on the normality and subnormality conditions,
positivity and boundedness, and prove new forms of numerical and spectral radii properties as
well as the inherent structural relationships of the constructed matrix operator.

Keywords: Normal matrices; subnormality/hyponormality; numerical (resp. spectral) radii; positivity.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

We denote by H− the complex separable Hilbert space, B(H)− the Banach space of bounded linear
operators, Mn− the set of special classes of normal matrices constructed and embedded in the class
C1, ω− the numerical radius of the operator defined by either T or A ∈ Mn ∈ C1, γ−the spectral
radius of an operator. Other notations are standard and can be obtained from the references or
will be defined from time to time.

A lot of classes of Hilbert spaces operators are defined around the notion of Normal operators.
For example, in [1], Paul Halmos, motivated by the successful development of Normal operators,
extended the notion of subnormality and hyponormality for the bounded Hilbert space operators in
an attempt to enrich the basic facts of the spectral theory of the Normal operators. Those classes of
the operators have been the subject of much investigations for quite some time and many important
developments in the operator theory have dealt with them (see for instance [2, 3, 4, 5]). As a result,
certain successes have been felt, for instance the proof of the non-existence of non-trivial subspaces,
construction of the functional calculus and description of the spectral picture in the cyclic case for
subnormal operators among others.

A complex square matrix A is Normal if A∗A = AA∗ where A∗ is the conjugate transpose of A. A
real square matrix A is thus normal iff A∗ = AT so that ATA = AAT . Such matrices are unitary
equivalent to diagonal matrices and therefore, every normal matrix is diagonalizable. Unitary,
Hermitian, Skew-Hermitian matrices are some of the examples of complex normal matrices. Some
classes of such matrices have been studied independently and the results around them are standard
(cf.[6]). Other approaches can also be used to construct new forms of normal matrix operators.
In view of this, there are a number of matrix products that have proved fundamentally important
in many areas such as engineering, natural and social sciences, matrix theory, statistics, system
theory and other areas. The Hadamard, Khatri-Rao, Kronecker and several related non-simple
matrix products and their properties have been studied by Liu and Trenkler [7]. They gave an
equality connection between the Hadamard and Kronecker products and observed that the Khatri-
Rao product generalizes the notion of Hadamard product for partitioned matrices hence exhibiting
wider applications. In signal processing, the space-time coding techniques exploit the spatial
diversity afforded by multiple transmitting and receiving antennas to achieve reliable transmission in
scattering-rich environments. Sidiropoulos and Budampati [8] proposed a broad new class of space-
time codes based on the Khatri-Rao product, KRST codes, for short. They reported that KRST
codes are linear block codes designed to provide several benefits, which yield better performance
than linear dispersion codes at high signal-to-noise ratio and than linear constellation precoding
codes using a lower order constellation. Consider the multi-antenna system with M transmitting
antennas and N receiving antennas. The wireless channel is assumed to be quasi-static and and
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fading. The discrete-time baseband-equivalent model for the received data is given (when the
channel is constant for at least K channel uses) by

X =

√
ρ

M
HC +W,

where X is the N × K received signal matrix, C is the M × K transmitted code matrix, W is
the N ×K additive noise matrix, H is the N ×M channel matrix which has i.i.d. N(0, 1) entries
being mutually independent from X and W , and ρ is the signal-to-noise ratio. The model can be
improved further and applied the channel assumed to be constant for block time T to obtain the
following (noiseless) vectorized model.

Based on the Khatri-Rao product, Wang et’ al [9] considered a similar data model and proposed
a novel Khatri-Rao unitary space-time modulation design. Their idea was to use the Khatri-
Rao product to obtain a decomposition result to find a simplified maximum likelihood detection
algorithm for their design. Upon the decomposition, the new detector needs to perform only a vector
multiplication, instead of a matrix multiplication which the original detector needs to perform. As
reported, the new design does not require any computer search and can be applied to any number
of transmitting antennas, among other improvements. Despite these marvelous attempts to explore
the applications of matrix products, the majority of applications of the Khatri-Rao product is still
based on only the column-wise partitioned situation.

Arnon and Patrawutt [10] have provided a beautiful extension of the works in [7, 8, 9] generalized the
tensor product of operators to the Khatri-Rao product of operator matrices acting on a direct sum
of Hilbert spaces. They investigated fundamental properties of this operator product. Algebraically,
this product is compatible with the addition, the scalar multiplication, the adjoint operation, and
the direct sum of operators. By introducing suitable operator matrices, they proved that there
is a unital positive linear map taking the Tracy-Singh product A � B to the Khatri-Rao product
A�B. Hence, the Khatri-Rao product can be viewed as a generalization of the Hadamard product
of operators. It can be noted that this product is closed and the resultant matrix can be associated
to a normal matrix, however, the results of [10] do not present complete classification. Motivated
by these findings, this paper addresses a characterization of certain spectral properties of a class of
normal operator matrix related to the Khatri-Rao product matrix but uniquely constructed such
that the blocks are made up of entries which are pythagorean triplets.

Further, Hirzallah et’ al [11, 12], Kittaneh [13] and Hou [14] have studied the numerical radii
properties of certain unclassified operator matrices while Yamazaki [15] has set the upper and
lower bounds of the numerical radii inequalities conditions while Aupetit [2] has characterized
the normal matrix operators by their exponents. Motivated by these developments, based on the
constructions in [10], we formulate and classify a class of Normal matrices called a special class
of O.M.O Normal matrices which are constructed as the Khatri-Rao products whose entries are
the block matrices of pythagorean triplets of class C1, characterize them by the numerical radii
properties, the relationship between the numerical and spectral radii as well as the necessities for
their positivity and boundedness.

2 Fundamental Principles

Proposition 2.1. An operator T ∈ B(H) is normal if and only if ∥ Tx ∥=∥ T ∗x ∥ for every x ∈ H

Proof. Since the zero operator s ∈ B(H) is the unique operator with the property ⟨sx, x⟩ = 0 for
every x ∈ (H), then the proof follows immediately from the identity.
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Using Liouville’s Theorem, Fuglede Putman in 1950 gave a nice characterization of the general
normal operators.The proof to his result was however not given.

Theorem 2.1 (Fuglede). An operator T ∈ B(H) is normal if and only if T ∗s = sT ∗ for every
operator s ∈ B(H) such that Ts = sT.

Proof. Let T be an operator in B(H). For every positive integer n, let Tn = T + T
1!
+ T2

2!
+ ....+ Tn

n!
,

clearly Tn is a bounded operator in B(H) and the sequence (Tn)n converges in B(H) to an invertible
operator denoted by eT and its inverse is e−T i.e (eT )−1 = e−T . In addition,for an operator s ∈ B(H)
that commutes with T, we have that eT s = seT and consequently eT+s = eT es = eseT . Let
s be an operator in L(H) such that Ts = sT. Then, it follows that s = e−iZT seiZT for every

Z ∈ C and so, for every Z ∈ C, eiZT∗
seiZT∗

= e−iZT∗
e−iZT seiZT eiZT∗

= e−i(ZT∗+ZT )sei(ZT∗+ZT ).

Since the operator ei(ZT∗+ZT ) is unitary and its adjoint is e−i(ZT∗+ZT ), then e−iZT∗
seiZT∗

=

(ei(ZT∗+ZT ))∗sei(ZT∗+ZT ); thus the following operator valued function defined on C by ϕ(Z) =
e−iZT∗

seiZT∗
is a bounded analytic function by Liouvilles’ Theorem, it is a constant function. In

particular its derivative ϕ′ is zero so

ϕ′(Z) = −iT ∗e−iZT∗
seiZT∗

+ e−iZT∗
s(iT ∗)eiZT∗

.

= −iT ∗ϕ(Z) + e−iZT∗
seiZT∗

(iT ∗).

= −iT ∗ϕ(Z) + ϕ(Z)(iT ∗).

= 0.

Hence T ∗ϕ(Z) = ϕ(Z)T ∗ for every Z ∈ C. Thus T ∗s = sT ∗ because ϕ(0) = s

Definition 2.1. (cf.[6]) An operator T ∈ B(H) is called subnormal if it has a normal extension,
that is, if there exists a normal operator s on a Hilbert space K such that H is a closed invariant
subspace of s and the restriction of s to H coincides with T. A normal extension s on a Hilbert
space K of a subnormal operator T ∈ B(H) is called a minimal normal extension if there is no
closed invariant subspace for s on which the restriction on s is normal operator;such an extension
always exists by Zorn’s Lemma and it is unique up to an invertible isometry.

Lemma 2.2. Let T ∈ B(H) be a subnormal operator. A normal extension s of T on a Hilbert space
K is a minimal normal extension if and only if K coincides with the closure of the linear subspace
generated by {s∗nx : n ∈ N}

Lemma 2.3. Let s be a normal extension on a Hilbert space K of a subnormal operator T ∈ B(H),
then for every finite family of elements x1, x2.....xn ∈ H, we have :

∥
n∑

i=1

s∗ixi ∥=∥
n∑

i=1

T ∗ixi ∥

Proof. We have that

∥
n∑

i=1

s∗ixi ∥2= ⟨
n∑

i=1

s∗ixi,

n∑
j=1

s∗jxj⟩

=

n,n∑
i=1,j=1

⟨s∗ixi, s
∗jxj⟩ =

∑
1≤i,j≤n

⟨sjxi, s
ixj⟩ =

∑
1≤i,j≤n

⟨T jxi, T
ixj⟩ because sIH = T

=∥
n∑

i=1

T ∗ixi ∥2 .
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Theorem 2.4. Let T ∈ B(H) be a subnormal operator and s be its minimal normal extension on
a Hilbert space H, then σ(s) ⊂ σ(T ). In particular the minimal normal extension of an invertible
subnormal operators is invertible.

Proof. To show that σ(s) ⊂ σ(T ), it suffices to prove that s − λI is invertible for every λ ∈ ρ(T ).
On the other hand,s − λI is a minimal normal extension of the operator s − λI, so,the assertion
reduces to prove that if T is invertible,then its minimal normal extension s is invertible. It is
clear that the closure of the range of s is a closed invariant subspace M for s and its adjoint s∗

therefore,the restriction of s on M is normal. On the other hand,H = TH = SH is contained in
the range of s. Hence it follows from the minimality of s that M = K So s has a dense range.
Thus is suffices to prove that s is bounded from below. Let L be a linear subspace generated by
the set {s∗ixi : i ∈ N, x ∈ H, } we already know from lemma (∗) that L = K, for every finite sum∑

i s
∗ixi ∈ L, we have :

∥ s(
∑
i

s∗ixi) ∥=∥ s∗(
∑
i

s∗ixi) ∥

=∥
∑
i

s∗i+1xi ∥=∥
∑
i

T ∗i+1 ∥∥ T ∗(
∑
i

T ∗ixi) ∥

≥ 1

∥ T ∗−1 ∥ ∥
∑
i

T ∗ixi ∥=
1

∥ T ∗−1 ∥ ∥
∑
i

s∗ixi ∥

thus 1
∥T∗−1∥ ∥ x ∥≤∥ sx ∥ for every x ∈ K and the desired result follows.

Theorem 2.5. For every subnormal operator T ∈ B(H), ∥ T ∗x ∥≤∥ Tx ∥ for every x ∈ H

Proof. We first show that T ∗x = Ps∗x for every x ∈ H where s is a minimal normal extension on
a Hilbert space K and P is the linear projection from K = H ⊕H⊥ onto H. For every x , y ∈ H,
we have:

⟨T ∗x, y⟩ = ⟨x, Ty⟩ = ⟨x, sy⟩ because sIH = T

= ⟨s∗x, y⟩ = ⟨s∗x, py⟩ : PIH = I

= ⟨P ∗s∗x, y⟩ = ⟨Ps∗x, y⟩.

Therefore T ∗x = Ps∗x for every x ∈ H and so

∥ T ∗x ∥=∥ Ps∗x ∥≤∥ s∗x ∥=∥ sx ∥=∥ Tx ∥ because ∥ P ∥= 1

Definition 2.2. The Normal matrix operator M is positive if and only if ⟨Mx, x⟩ ≥ 0 for all x ∈ H
and write M ≥ 0. If DimB(H)H = n < ∞ then M ∈ B(H) in such that M ≥ 0 if it is self adjoint
and its eigenvalues are non-negative.

Remark 2.1. Recall that an operator T is self adjoint if T = T ∗ where T ∗ is the usual involution (
adjoint) on B(H) defined uniquely by the equation ⟨Tx, y⟩ = ⟨x, T ∗⟩ for all x, y ∈ H. Now for the
case where H is not necessarily finite dimensional,then eigenvalues are not useful in investigating
positivity of A = T ∈ Mn. In such a case one needs to look at the spectrum of T ,σ(T ) the set of
complex numbers λ such that λI − T is not invertible. Then T ≥ 0 if and only if T = T ∗ and
σ(T ) ⊂ [0,∞).
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3 The Construction and Formulation of A special O.M.O
Normal Matrix

Denote by Mm,n(C), the set of m-by-n complex matrices and abbreviate Mn,n(C) to Mn(C).

The Kronecker product of M = [ai,j ] ∈ Mm,n(C) and N ∈ Mp,q(C) is given by M⊗̂N = [ai,jN ] ∈
Mmp,nq(C).

The Hadamard product of M,N ∈ Mn(C) is defined by the entry-wise product M⊙̂N = [aijbij ] ∈
Mn(C).

Now, let M and N be arbitrary complex matrices, partitioned into blocks Aij and Bij for each
i, j(for the sizes of Aij , Bij may be different). Then the Khatri-Rao product for M,N is defined
by M�̂N = [Aij⊗̂Bij ]ij . When M and N are non-partitioned so that each has only one block, then
their Khatri-Rao product is just their Kronecker product. If M and N are entry-wise partitioned so
that each block is a 1 by 1 matrix, then, their Khatri-Rao product is just their Hadamard product.

Now, let A = M�̂N = [Aij⊗̂Bij ]ij be given. Suppose, M and N are two square matrices which
are entry-wise partitioned such that each block is a 1 by 1 matrix of pythagorean type, that is,
each entry is a product of the pythagorean triplets, then we can associate with a matrix A, the
Hamadard product of M and N given by A = M⊙̂N = [aijbij ] ∈ Mn(C). This matrix A is a special
type of normal matrix of pythagorean type belonging to a class Cn and referred to in this paper as
A special O.M.O Normal Matrix Operator

Remark 3.1. Let H,K be a complex separable Hilbert spaces and B(H) be the Banach space of
bounded linear operators on H. Suppose A = [Aij ]

m,n
i,j=1 ∈ B(H) and B = [Bij ]

m,n
i,j=1 ∈ B(K) are

two special O.M.O Normal Matrices of the construction, then, merging the partitions of A such
that A = [Akl]r,sk,l=1; r, s ∈ N, r ≤ m, s ≤ n, each operator Akl is of mk × nl block in which, the

(g, h)th block of the operator Akl is the (u, v)th block of A, where u =

{
g, k = 1;∑k−1

i=1 mi + g, k > 1.
,

m =
∑r

k=1 mk, v =

{
h, l = 1;∑l−1

j=1 ni + h, l > 1.
and n =

∑s
l=1 nl. The other matrix B can also

be repartitioned in a similar manner so that, A�̂B = [Akl�̂Bkl] =

A
11�̂B11 · · · A1s�̂B1s

...
...

...

Ar1�̂Br1 · · · Ars�̂Brs

 .

Thus each (k, l)th block of A�̂B is just Akl�̂Bkl.

From the formulation above, we clearly see that the (u, v)th block of A�̂B is Auv⊗̂Buv. Thus, classes

of C1 matrix considered in the sequel are of the form C1 =

 A11⊗̂B11 · · · A1n1⊗̂B1n1

...
...

...
Am11⊗̂Bm11 · · · Am1n1⊗̂Bm1n1

 .

Moreover, the direct sum of such matrices Ai ∈ B(H); i = 1, · · · , n is defined to be the matrix

A = A1 ⊕ · · · ⊕An =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . . 0

0 0 · · · An

 .

Example 3.1. Consider A =

[
2 1 + i

1− i 3

]
. We can unitarily diagonalize A by finding a unitary

matrix U and a diagonal matrix D such that A = UDU−1. To do this, we want to change the basis
to one composed of orthonormal eigen vectors for T ∈ B(C2) defined by Tv = Av for all v ∈ C2.
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To find such an orthonormal basis, we start by finding the eigen spaces of T

Now, Tv =

[
2 1 + i

1− i 3

]
v is self adjoint or Hermitian and it can be checked that the eigen

values are λ = 1, 4 by determining the zeros of the polynomial

p(λ) = (2− λ)(3− λ)− (1 + i)(1− i) = λ2 − 5λ+ 4

so that D =

[
1 0
0 4

]
. Hence

C2 = Null(T − I)⊕Null(T − 4I) = span((−1− i, 1))⊕ span(1 + i, 2))

Now, applying the Gram-Schmidt procedure to each eigen space to obtain the columns of U, that is

A = UDU−1 =

[
−1−i√

3

1+i√
6

1√
3

2√
6

][
1 0
0 4

] [−1−i√
3

1+i√
6

1√
3

2√
6

]−1

=

[
−1−i√

3

1+i√
6

1√
3

2√
6

][
1 0
0 4

] [−1+i√
3

1√
3

1−i√
6

2√
6

]−1

The diagonal decomposition allows us to compute the powers and exponentials of the matrix A as
follows:

A = UDU−1

An = (UDU−1)−1 = UDnU−1

exp(A) =

∞∑
k=0

1

k(k − 1)() · · · (k − (k − 1))
Ak

= U

(
∞∑

k=0

1

k(k − 1)() · · · (k − (k − 1))
Dk

)
U−1 = U(exp(D))U−1.

4 Results and Discussion

In the sequel, we consider certain examples of special O.M.O normal matrices of the construction
above, characterize their numerical and spectral radii . Further, we provide a survey on their
positivity and boundedness.

Proposition 4.1. Let B(H) be a class of bounded linear operators, suppose M,X ∈ B(H) such

that X is an arbitrary operator and M ∈ C1 is defined as M =

 0 A 0
B 0 C
0 D 0

 where A, B, C and

D are block matrices of the construction above , then M is normal and

w(M) =
1√
2

√√√√√
∥∥∥∥∥∥
B∗B +AA∗ 0 B∗C +AD∗

0 A∗A+D∗D +BB∗ + CC∗ 0
C∗B +DA∗ 0 C∗C +DD∗

∥∥∥∥∥∥
Proof. Let M,X ∈ B(H), then

7
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= 1
2
⟨NX,X⟩ whereN− is normal operator. Now taking the supremum for all unit vectors and

considering that N is normal operator we have by ⟨X,X⟩ = ∥X∥
1
2 that

w(M) =
1√
2

√√√√√
∥∥∥∥∥∥
B∗B +AA∗ 0 B∗C +AD∗

0 A∗A+D∗D +BB∗ + CC∗ 0
C∗B +DA∗ 0 C∗C +DD∗

∥∥∥∥∥∥

Theorem 4.1. Let M ∈ B(H) and define M =

X 0 Y
0 Y 0
Y 0 X

 ∈ C1, then w(M) = max(w(X +

Y ), w(X − Y ), w(Y )).

Proof. Let

U =

 I 0 I

0
√
2I 0

−I 0 I

 .

Then U is unitary and

UMU∗ =

X + Y 0 0
0 Y 0
0 0 X − Y

 .

8
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Since numerical radius is a weakly unitary invariant, it means that w(UMU∗) = w(M). But

w(UMU∗) = Max(w(X + Y ), w(Y ), w(X − Y ))

,that means that
w(M) = Max(w(X + Y ), w(X − Y ), w(Y ))

Theorem 4.2. Let T,M ∈ B(H) be normal matrix operators of the construction considered above

and defined by T =

E A F
B G C
H D I

 and M =

 0 A 0
B 0 C
0 D 0

 where A,B,C,D,E,F,G,H and I are block

matrices of pythagorean type, then

w(T ) ≤ Max(w(E), w(G), w(I)) + w(M) +
∥ F ∥ + ∥ H ∥

2

Proof.

T =

E 0 0
0 G 0
0 0 I

+

 0 A 0
B 0 C
0 D 0

+

 0 0 F
0 0 0
H 0 0


This implies that

w(T ) ≤ w

E 0 0
0 G 0
0 0 I

+ w

 0 A 0
B 0 C
0 D 0

+ w

 0 0 F
0 0 0
H 0 0


then, from w

[
0 X
Y 0

]
≤ ∥X∥+∥Y ∥

2
and w

[
X 0
0 Y

]
= Max(w(X), w(Y ))

w(T ) = Max(w(E), w(G), w(I)) +
1

2

√
∥ BB + CC ∥ + ∥ AA+DD ∥ +

∥ F ∥ + ∥ H ∥
2

The next Theorem generalizes the lower bound for all diagonal operator matrices considered in the
construction.

Theorem 4.3. For a special diagonal normal matrix operator of the construction and given by

M =


0 0 0 A1

0 0 A2 0

0
. . . 0 0

An 0 0 0

 , the following properties hold:

(i) If n is even, we have

w(M) ≥ 2n

√
Max(w(AiAn−(i+1))n, w(An−(i+1)Ti)n), i = 1 . . . , n

(ii) For n is odd, then

w(M) ≥ 2n

√
Max(w(AiAn−(i+1))n, w(An−(i+1)Ai)n, w(An+1

2
)), i = 1 . . . n, i ̸= n+ 1

2
,

Proof.

9
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(i) Let M be of the construction given. Suppose n is an integer, then

M2 =



A1An 0 0 0 0 0 0 · · · 0
0 A2An−1 0 0 0 0 0 · · · 0

0 0
. . . 0 0 0 0 · · · 0

0 0 0 An
2
An

2
+1 0 0 0 · · · 0

0 0 0 0 An
2
+1An

2
0 0 · · · 0

0 0 0 0 0
. . . 0 · · · 0

0 0 0 0 0 0 An−1A2 · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · AnA1


which implies that

M2n =



(A1An)
n 0 0 0 0 0 0 · · · 0

0 (A2An−1)
n 0 0 0 0 0 · · · 0

0 0
. . . 0 0 0 0 · · · 0

0 0 0 (An
2
An

2
+1)

n 0 0 0 · · · 0

0 0 0 0 (An
2
+1An

2
)n 0 0 · · · 0

0 0 0 0 0
. . . 0 · · · 0

0 0 0 0 0 0 (An−1A2)n · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · (AnA1)
n


.

For n = 1, 2 . . . and so on

Max(w(AiAn−(i+1))
n, w(An−(i+1)Ai

)n) = w(A2n) ≤ w2n(A),

which is simply the inequality given by

w(M) ≥ 2n

√
Max(w(AiAn−(i+1))n, w(An−(i+1))n).

(ii) Next, let M be of the given construction. For an odd n, it is clear that

M2 =



A1An 0 0 0 0 · · · 0 0
0 A2An−1 0 0 0 · · · 0 0

0 0
. . . 0 0 · · · 0 0

0 0 0 An+1
2

An+1
2

0 · · · 0 0

0 0 0 0
. . . · · · 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · An−1A2 0
0 0 0 0 0 · · · 0 AnA1


.
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which implies that

M2n =



(A1An)
n 0 0 0 0 · · · 0 0

0 (A2An−1)
n 0 0 0 · · · 0 0

0 0
. . . 0 0 · · · 0 0

0 0 0 (An+1
2

An+1
2

)n 0 · · · 0 0

0 0 0 0
. . . · · · 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · (An−1A2)
n 0

0 0 0 0 0 · · · 0 (AnA1)
n


.

4.1 Relationship between Numerical and Spectral radii of the Normal
operator matrices of our construction

Theorem 4.4. Consider Mn(C∗) where (C∗) is an algebra, and Mn is a set of matrices of the
construction in section 3, then every matrix A1, A2, B1, B2 ∈ Mn(C∗) is algebraic over (C∗).
Moreover, the spectral radius γ and the numerical radius ω of the operators satisfy the relationship

γ(A1B1 +A2B2) ≤
1

2
(w(B1A1) + w(B2A2)) +

1

2

√
(w(B1A1)− w(B2A2)2 + 4 ∥ B1A2 ∥∥ B2A1 ∥

Proof. Intuitively

γ(A1B1 +A2B2) = γ

[
A1B1 +A2B2 0

0 0

]
= γ

( [
A1 A2

0 0

] [
B1 0
B2 0

] )
= γ

( [
B1 0
B2 0

] [
A1 A2

0 0

] )
= γ

[
B1A1 B1A2

B2A1 B2A2

]
≤ w

[
B1A1 B1A2

B2A1 B2A2

]
Now, for any normal operators A,B,C,D ∈ Mn, it is well known that,

w

[
A B
C D

]
≤ 1

2
(w(A) + w(D)) +

1

2

√
(w(A)− w(D))2 + (∥ B ∥ + ∥ C ∥)

and consequently,γ(A1B1 +A2B2) = w

[
B1A1 B1A2

B2A1 A2A2

]
≤ 1

2
(w(B1A1) + w(B2A2)) +

√
(w(B1A1)− w(B2A2))2 + (∥ B1A2 ∥ + ∥ B2A1 ∥)2.

Corollary 4.5. Let A,B ∈ Mn then

γ(A+B) ≤ 1

2
(w(A) + w(A)) +

1

2

√
w(A)− w(B)2 + 4min(∥ AB ∥∥ BA ∥)

Proof. The proof follows from the proof of the previous Theorem with some few modifications

Theorem 4.6. Let A,B ∈ Mn, then

γ(AB ±BA) ≤ w(AB) +
√

min(∥ A ∥∥ AB2 ∥, ∥ B ∥∥ A2B ∥).

and
γ(AB ±BA) ≤ w(BA) +

√
min(∥ A ∥∥ B2A ∥, ∥ B ∥∥ BA2 ∥).

Proof. Easy

11



Onyango et al.; ARJOM, 11(3): 1-15, 2018; Article no.ARJOM.45115

5 Positivity and Boundedness

In this section, we are interested in B(H)+, the cone of the positive special normal operators on
H. We consider T = A where A is a normal matrix of our construction. So A ∈ B(H)+, ⇐⇒
A = N∗N ,N ∈ B(H). In fact A ∈ B(H) if and only if A = N2 for a self adjoint N ∈ B(H). This

operator N can be chosen to also be positive so that we write it as A
1
2 and it is unique.Positivity

is related to underlying algebra to the spectral theory of A and to the operator norm ∥ A ∥=
sup∥ Ax ∥: x ∈ Hand ∥ x ∥≤ 1.

Lemma 5.1. Let A ∈ Mn(B(H)) be a special normal matrix of our construction,

(i) If A ≥ 0,then ∥ A ∥= max(σ(A)).

(ii) ∥ A ∥≤ 1 if and only if the operator on H
⊕

H taking (x, y) to (x+Ax,A∗x+ y) is positive.

(iii) A has a polar decomposition A = U | A | where | A |= (A∗A)
1
2 ≥ 0.

Proof.

(i)Let DimB(H)H = n < ∞ then (λi......λn) define the eigenvalues of A ∈ B(H). Now ∥ A ∥=
max(λi) : λi ∈ B(H) are eigenvalues implying that ∥ A ∥= maxσ(A) for a general H which is
not necessarily finite dimensional,σ(A) ⊆ [0,∞),so any α ∈ [0,∞) ⇒ A ≥ 0 for if α ∈ [0,∞) then
0 ≤ α < ∞.

(ii)Since A = A∗ ⇒ ∥ A ∥≤ 1 ⇒ −1 ≤ A ≤ 1. Now

A : (x, y) → (x+Ax,A∗x+ y)

⇒ A(x, y) = (x+Ax,A∗x+ y) = (x+Ax,Ax+ y)(Ax,Ay) ≥ 0 ∀x, y ≥ 0

⇒ A ≥ 0

(iii)Let U be unitary. This means that U−1 = U∗ or a partial isometry that is U = UU∗U. Now

| A |= (A∗A)
1
2 | A |= (A2)

1
2 = A ≥ 0 So A satisfies partial isometry and it positivity.

Now, consider a matrix of the construction 3, A = [aij ] =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 in Mn(B(H)).

This matrix can be viewed as an operator on Hn
a11 a12 · · · a1n

a21 a22 · · · 22n
...

...
...

...
an1 an2 · · · ann



x1

x2

...
xn

 =


∑

y1kxk∑
y2kxk

...∑
ynkxk


If the later operator is positive then we write [aij ] ≥ 0. That is Mn(B(H)) has a natural cone. For
A ∈ C∗ − algebra then so is Mn and thus there exists a natural cone Mn(A)+. Now any map say
T : A → B(H) is completely positive if and only if

[T (aij)] ≥ 0∀[aij ] ∈ Mn(A)+n ∈ N

Important in this theory is the notion of dilation. For T : A → B(H), then a dilation of T is the
map T : X → B(K) for the Hilbert space K containing H, with

T ∗ =

[
T (∗) ∗
∗ ∗

]
: X ∈ A

Here T : A → B(K) dilates T if there is an isometry say V : H → K such that T = V ∗T
′
(.)V on A

12
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Example 5.2. Any representation on C∗ algebra A that is (∗ − homomorphic);Π : A → B(H) is
positive and completely positive. Further the amplification of π to Mn(A) is positive ∀n ∈ π.

Theorem 5.3. A linear map T : A → B(H) is positive and hence completely positive if it can be
dilated to a representation of π of A on B(K) such that B(H) ⊆ B(K)

Proof. We need to find an inner product defined on a simple space containing H on which A has a
natural algebraic representation. In this case,the space is A ⊕H and we define the representation
of A by:

π(a)(b⊕ x) = ab⊕ x : a, b ∈ A, x ∈ H.

We define the inner product on S = A⊕H by ⟨a⊕ y, b⊕ x⟩ = ⟨T (b∗a)y, x⟩, a, b ∈ A and x, y ∈ H
When A = K, then the map π is such that π : A → B(K) as required.

Definition 5.1. [2] An operator T ∈ B(H) is called positive-normal ( posinormal)if there exist a
positive operator say p ∈ B(H) called interrupter such that TT ∗ = T ∗PT.

Proposition 5.1. A ∈ Mn(B(H)) is posinormal whenever there exists another C ∈ Mn(B(H)),
C ≥ 0 such that AA∗ ≤ A∗CA

Proof. It suffices to show that there exists a positive operator C ∈ Mn(B(H)) such that AA∗ ⊆
A∗CA, then A ≥ 0 A− normal. Let η ∈ H. So

∥ A∗η ∥= ⟨AA∗η, η⟩
1
2

∥ A∗η ∥2= ⟨AA∗η, η⟩ ≤ ⟨A∗CAη, η⟩ = ⟨
√
CAη,

√
CAη⟩ ≤∥

√
C ∥2∥ Aη ∥2

⇒∥ A∗η ∥≤∥
√
C ∥2∥ Aη ∥2⇒∥ A∗η ∥≤∥

√
C ∥∥ Aη ∥: η ∈ (H)

setting α =∥
√
C ∥ . then for any η ∈ H we have

∥ A∗η ∥≤ α ∥ Aη ∥ .

Thus
AA∗ ≤ αA∗A : α ≥ 0

Again by the normality conditions,there exists some B ∈ Mn(B(H)) such that A = A∗B

⇒ AA∗ = (A∗A)(B∗A) = A∗(BB∗)A.

So A is a positive,normal matrix with an interrupter BB∗

Proposition 5.2. Let A ∈ Mn(B(H)) be positive normal matrix,then,Ker(A) = Ker(A2).

Proof. Ker(A) ⊆ Ker(A2). We need to show that Ker(A2) ⊆ Ker(A) so that Ker(A) = Ker(A2).
Recall Ker(A) = {x : Ax = 0}. If x ∈ Ker(A2), then A2x = 0. Hence Ax ∈ Ker(A). Since
Ker(A) ⊂ Ker(A∗), Ax ∈ Ker(A∗). Hence A∗Ax = 0. Now

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨A∗Ax, x⟩ ≤ ∥A∗Ax∥∥x∥ = 0

So Ax = 0 and so Ax ∈ Ker(A). Ax ∈ Ker(A) and A ∈ Ker(A2)

⇒ Ker(A) = Ker(A2).

Theorem 5.4. Let A ∈ Mn(B(H)) be positive-normal and B ∈ Mn(B(H)) be such that AA∗ =
A∗BA and M ∈ Lat(A), then A|M is also a positive normal.

13
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Proof. Let M ∈ Lat(A). Let π : A → M be the dilation of H into M. then ∀m ∈ M

⟨(A|M )∗m,m⟩ = ⟨m,A|Mm⟩ = ⟨m,Am⟩ = ⟨A∗m,m⟩ = ⟨A∗πm,m⟩

Hence (A|M )∗ = A∗π on M, ∀m ∈ M, ∥(A∥M )∗m∥ = ∥A∗πm∥ = ∥(
√
BA)∥Mm∥. Hence A|M is

positive normal.

Lemma 5.5. Let A ∈ Mn(B(H)) be completely positive normal and let λ, β ∈ σp(A) where λ ̸= β.
If x, y are eigenvalues of λ and β respectively,then ⟨x, y⟩ = 0

Proof. Ker(A−B) ⊂ Ker(A∗ −B). We see that

λ⟨x, y⟩ = ⟨λx, y⟩ = ⟨Ax, y⟩ = ⟨x,A∗⟩ = ⟨x, βy⟩ = β⟨x, y⟩ ⇒ ⟨x, y⟩ = 0.

6 Conclusion

This study was set up with the main objective of characterizing a special class of normal operator
matrix. Motivated by the various applications of normal matrices in operator theory, engineering
and information theory, the intention of this research was to provide substantial extension on the
spectral theory of matrices resulting from matrix products restricted to certain Hilbert spaces. In
fact, the normal operators have been used before via the subnormality and hyponormality properties
to provide the proof of the non-existence of non-trivial subspaces, construction of the functional
calculus and description of the spectral picture in the cyclic case for subnormal operators among
others. First, we constructed a class of Normal matrices A ∈ Mn resulting from Khatri-Rao
products of matrices in direct sums of Hilbert spaces. This class of normal matrices is regarded as
a special class because the blocks of the resultant matrix product formulated consists of entries of
pythagorean type. So the class of consideration is taken to be the class C1 of pythagorean triplets.
The Algebraic and spectral properties concerning the Numerical radii, the spectral radii, positivity
and boundedness of selected special normal matrices constructed were then studied into details,
the proofs of the results provided where necessary. We also provided the relationship between
the spectral radii and the numerical radii of the matrix constructed. This provides an Algebraic
approach to the study of operators hence enriching the two fields. Finally, we extended the study
and investigated the subnormality and hyponormality conditions of the operator matrix constructed
in relation to an arbitrary operator T . We observe that our results on the normality conditions
compare perfectly well with the existing results hence a beautiful extension of the study of Normal
matrix operators. The results on the numerical norm, numerical radii and spectral radii are however
unique and apply to the selected classes of the special normal operators. The results also enrich
the study of Matrix products hence more possible applications. In particular, from the results in
this paper, one can develop further operator identities/inequalities parallel to matrix results for
Khatri-Rao products in an endeavour to explore more applications of this class of operator matrices
in Coding Theory and Cryptography.
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