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Abstract 
 

Count data often violate the assumptions of a normal distribution due to the fact that they are bounded by 
their lowest value which is zero. The Poison distribution is sometimes suggested but when the assumption 
of equal mean and variance is violated due to over-dispersion and presence of zeros we tend to look in the 
direction of other models. Zero-inflated data falls in this category. The zero-inflated and hurdle models 
have been found to fit this scenario. The proportions of zero in the data often affect the choice of the 
models. Our study used the Monte Carlo design to sample 1000 cases from positively skewed distribution 
with 1.25 as mean vector and 0.10 as zero-inflation parameter. The data was analysed using the method of 
the maximum likelihood estimation. The Zero-Inflated Poisson, Zero-Inflated Negative Binomial and 
Zero-Inflated Geometric were fitted; the standard error and Akaike Information Criterion were obtained 
as measures of model validation with ZIP outperformed ZINB and ZIG. 
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1 Introduction 
 
In any statistical data analysis, it is necessary to determine the type of data being analysed. The data would 
assume to fulfill a basic assumption of normal distribution. Many other distributions equally exist. When the 
distribution assumed is at variance with the actual distribution of the data, the validity of the results will 
show in the dissimilarity between the data and the distribution assumed in the analysis [1,2]. It is therefore 
imperative for researchers to choose a distribution similar to that which the data possesses. Counts data 
belongs to the class of data which is at variance to the assumption of a normal distribution; this is because of 
the fact that counts data are bounded by their lowest value which is zero. Therefore, Poisson distribution 
with a log link is often been assumed and preferred over and against normal distribution with Gaussian link. 
The use of Poisson distribution may not guarantee valid results due to the fact that other features inherent in 
the data may invalidate Poisson assumption thereby paving the way for researchers to examine more 
accurate and valid model [3]. Among such models are the two-part models such as the hurdle model and 
zero-inflated models. They are class of models that can handle data with excess zeros [3]. 
 

2 Literature Review 
 
Count data are constraint by their lower bound zero value, this however makes it difficult in analyzing a 
count data because assumptions of normality become invalid because the data is either positively skewed or 
negatively skewed depending on the proportion of zero that is in the data. The data is heteroscedastic in 
nature with variance increasing as the count increases (Jeffrey 2007). Under this circumstance it is therefore, 
inappropriate to use model like ordinary least square regression which is strictly based on the assumption of 
normality [4]. That is the residuals are distributed normally with a mean zero and standard deviation of one. 
Invariably Cameron and Triverdi (1998) have found the OLS regression to be suitable for count data only 
when the mean of the count is high. 
 
However, in handling zero inflated data many solutions were prescribed in the literature. One of the simplest 
of solutions was to delete all cases having responses of zero on the variable of interest. A large proportion of 
total responses would then be removed from the total dataset. This method would result in loss of useful and 
valuable information and would have adverse consequence on statistical conclusion validity (Tooze, 
Grunwald, & Jones, 2002). However, the sample size may become too small for analyses. Another solution 
prescribed was to ignore the zero-inflation, assume asymptotic normality, and analyze the data using 
standard techniques such as ordinary least squares regression [1,5]. 
 

�� = � + ���� + ⋯ + ���� + ��                  (1) 
 

The model assumes that the residuals for �� are distributed normally with a mean of zero and a common 
variance, σ2. For the first equation, y is a vector of responses, X is a design matrix for the explanatory 
variable responses, β is a vector of regression coefficients relating y to X, and ε is a vector of residuals 
measuring the deviation between the observed values of the design matrix and those predicted from the fitted 
equation.  
 
However, since we are dealing with nonlinear models, these phenomena belong to the class of generalized 
linear models (GLM) such as the Poisson Regression, Negative Binomial regression, ZIP, ZINB, ZIGP and 
hosts of others [3]. 
 
Poisson and negative binomial regression models are designed to analyze count data. The “rare events” 
nature of crime counts are controlled for in the formulas of both Poisson and negative binomial regression. 
However, Poisson and negative binomial regression models differ in regards to their assumptions of the 
conditional mean and variance of the dependent variable. Poisson models assume that the conditional mean 
and variance of the distribution are equal. Negative binomial regression models do not assume an equal 
mean and variance and particularly correct for over-dispersion in the data, which is when the variance is 
greater than the conditional mean (Osgood, 2000; Paternoster & Brame, 1997) [6,7,8]. 
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3 Methodology 
 
Zero-Truncated Negative Binomial Regression Model 
 
Let Yi be the nonnegative values random variable and suppose Y = 0 is observed with a frequency 
significantly higher than can be modeled by the usual Poisson model. Thus the regression model is defined 
by 
 

�(�� = ��/��, ��)  = �
�� + (1 − ��)�(0, ��),    �� = 0

(1 − ��)�(   ��, ��),    �� > 0
�               (2) 

 
When �(   ��, ��), yi = 0,1,2, … is the pdf of Yi and  0 < �� < 1. �ℎ� �������� �� = ��(��) satisfies logit 
(��) = log(��(1 − ��)��) = ∑ �����

�
���  where �� = (���, ���, … , ���) the ��� row of the covariate matrix Z 

and � = (��, ��, … , ��) are the unknown m-dimensional column vector of parameters. The nonnegative 
function ��is modeled via logit link function that allows �� being negative may be used.  
 
We consider a zero-inflated negative binomial regression model in which a zero-inflated negative binomial 
regression model in which the response variable Yi (i= 1, 2, …, n) has the distribution 
 

⎩
⎨

⎧ �� + (1 − ��) �
���

������
�

���

, �� = 0

(1 − ��)
 (������)

 (����) (���)
�

���

������
�

���

�
��

������
�

��
, �� > 0

�                                                                (3) 

 
Where α(≥ 0)is a dispersion parameter that is assumed not to depend on covariates. Furthermore the model 
in 2 reduces to the ZIP distribution when parameter α → 0 and parameter ��(��)��� ��satisfy  
 
log(��) = ∑ �����

�
��� ��� � < �� < 1.  The mean and the variance of the distribution are E(Yi) = (1 − ��)��  

and Var(Yi) = (1 − ��)��(1 + ���� + ���). 
 
Consider variable Yi as a response variable which follows by a discrete distribution Pr(Yi=yi). For some 
observations, the value of Yi may be truncated. If truncated for the ith observation, we have Yi ≥ y� (right 
truncation) and that observation is omitted to analyze from the data set. Thus the probability function for a 
right truncated variable �� can be written as 
 

�� = (�� = ��) =
�(��,��)

���(�����)
  , i=1, …, k                                                         (4) 

 

When k is the number of observations after truncation, we can write the log likelihood of the truncation 
count regression model as 
 

����(��, ��) =  ∑ (log �(��, ��) − log (1 − Pr (�� ≥ ��)�
�� )                (5) 

 

By taking partial derivatives with respect to  � and equal to zero we can obtain the parameter estimation. 
However, if we replace the function �(��, ��) into the negative binomial distribution model, the distribution 
with right truncation will be obtained as follow: 
 

Pr(�� = ��) =

⎩
⎪
⎨

⎪
⎧ ���(����)�

���

�����
�

���

��∑ (��∞
����

��)�(��;�,�)
,    � = 0

(����)�(��;�,�)

��∑ (��∞
����

��)�(��;�,�)
,   1 < �� < ��

�                 (6) 
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Where 
 

�(��;  ��, �) =
 (������)

 (����) (���)
�

���

������
�

���

�
��

������
�

��
  

 
And ti is the truncation point for yi which means that when yi>ti we truncate the response variable. We can 
obtain the log-likelihood function for ZINB regression model with right truncations as follows: 
 

��(�����) = ∑
��{���� log ��� + (1 − ��) �

���

������
�

���

�� − ����1 − ∑ (1 − ��)�∞
������� �

+�{�������
��log(1 − ��) + ���� − log �1 − ∑ (1 − ��)�∞

������� ���

              (7)�
���   

 
Where k is the number of observation after truncation and the expression log �(��; ��, �) can be obtained as 
follow: 
 

log �(��; ��, �) = ∑ log (� +
����
��� ���) − �����! + �������� − ��log (1 + ���)              (8) 

 
The parameters estimation is obtained by MLE method. By taking the partial derivatives of the likelihood 
function and setting them to zero, the likelihood equations for estimating the parameters are obtained thus: 
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                                                                                                                 (11) 
 

4 Data Simulation 
 
The dependent variable y was simulated by the zero-inflation Poisson by setting the vector of mean as 1.25 
and the zero-inflated parameter as 0.1. at n=15, proportion of zero was 0.2 with expected value equal 1.467 
and variance equal 1.552. At n=25, p=0.32, expected value of 1.4 and variance equal1.75. At n=50, p=0.42, 
mean equal 1.14 and variance equal 1.551. At n=100, p=0.41, mean equal 0.96 and variance equal1.069. At 
n=150, p=0.33, mean equal 1.267 and variance equal 1.489. At n=300, p=0.377, mean equal equal 1.177 and 
variance equal 1.49. At n=500, p=0.366, mean =1.104, variance equal 1.199 and at n=1000, p=0.539, mean 
equal 1.77 variance equal 1.311.    
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5 Results and Discussion 
 
The results from the simulation showed that all the distributions were characterized with over dispersion 
with varying degrees of zero fractions. 
 

Table 1a. Estimates of parameters and the AIC for the count part 
 

Sample (n) Model           AIC 
   (ZIP) 0.08246 -0.6843 0.08334 0.32819 0.07095 44.881 
15  (ZINB) 0.08773 -0.6847 0.08205 0.32806 0.07036 45.880 
   (ZIG) -0.2832 -0.59 0.1623 0.1099 0.2391 53.575 
   (ZIP) -1.4194 -0.6718 0.3958 0.1969 0.3675 64.473 
25  (ZINB) 0.08773 -0.6847 0.08205 0.32806 0.07036 45.880 
   (ZIG) -1.3432 -0.7826 0.4339 0.367 0.2383 76.479 
   (ZIP) -0.6449 0.05723 0.30813 -0.3019 0.30557 106.77 
50  (ZINB) -0.6067 0.07636 0.30223 -0.3131 0.30306 107.62 
   (ZIG) -0.7065 0.02159 0.31286 -0.3655 0.37457 139.45 
   (ZIP) -0.6492 -0.0695 0.3597 0.09444 0.01734 225.39 
100  (ZINB) -0.6494 -0.0696 0.35977 0.09441 0.01739 226.40 
   (ZIG) -0.951 -0.2346 0.4235 0.1737 0.0558 292.26 

 
Table 1b. Estimates of parameters and the AIC for the count part 

 
Sample (n) Model           AIC 
   (ZIP) -0.9222 -0.1738 0.40683 0.14862 0.0728 329.70 
150  (ZINB) -0.9228 -0.1737 0.40695 0.14866 0.07281 330.69 
   (ZIG) -1.1435 -0.199 0.4508 0.1576 0.1087 422.50 
   (ZIP) -0.8382 -0.1146 0.37551 0.11045 0.05904 1075.1 
300  (ZINB) -0.8382 -0.1147 0.37554 0.11065 0.05894 1076.1 
   (ZIG) -1.0433 -0.1337 0.4187 0.13711 0.07907 1359.0 
   (ZIP) -0.8832 0.34639 0.40085 0.02528 -0.0371 1702.23  
500  (ZINB) -0.84 0.36778 0.39238 0.00553 -0.0364 1703.13  
   (ZIG) -1.0569 0.45453 0.44898 0.01929 -0.045  1924.56 
   (ZIP) 0.15591 0.14495 0.02814 0.13906 0.11985 2123.2 
1000  (ZINB) 0.15632 0.14471 0.02848 0.1395 0.11953 2124.2 
   (ZIG) 0.24095 0.22059 0.05501 0.20946 0.17963 2706.6 

 
In Tables1a and 1b, we have the estimates of the parameters and the Akaike information criterion (AIC) for 
the count part at sample sizes of 15, 25, 50 and 100. The results shows that the parameters estimates of ZIP 
and ZINB has very close values when n=15, 50, 150, 300, 500 and when n= 1000. There was a slight 
disparity when n=25. By these results it showed the relationship between ZIP and ZINB. The estimates of 
the ZIG were not in any way similar to that of ZIP and ZINB because of the nature of ZIG model One of the 
important property of this distribution is the lack of memory property and in case of its truncation, situations 
arise practically in cases where the ability to record, or even to know about, occurrences is limited to values 
which lie above or below a given threshold or within a specified range.  
 

Furthermore, the values AIC of the ZIP and ZINB were closely related unlike the AIC of ZIG which were 
far higher to that of ZIP and ZINB. However, the values of the AIC for ZIP were smaller than that of ZINB 
in all the sample sizes. These values indicated that ZIP outperformed he ZINB particularly when that zero-
inflated parameter � = 0.1 ��� �ℎ� ������ �� ��� − �������� ���� � = 1.5. 
 

Table 2a and 2b consist of the parameter estimates for the Zero part of the models./ Also closely related is 
the estimates between the ZIP, ZINB and ZIG when the sample size was 15.when sample size increases from 
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15 to 25 and other subsequent increase it showed that disparities exist among the estimates of the three 
models. 
 
The standard errors (SE) of the models at the count part showed that ZIP has the least standard errors closely 
followed by ZINB. Though, at some points the SE of ZINB was higher than ZINB and ZIP almost equal ZIP 
when sample size was 25. From the plots, ZIP has the least SE as the plots fall below ZINB and ZIG at 
different sample sizes (see plots 1 and 2) 

 

Table 2a. Estimates of parameters for the zero models 
 

Sample (n) Model ��  ��   �� ��   ��  
   (ZIP) 47.066 -11.996 -16.453 5.336 -8.335 
15  (ZINB) 47.87 -6.76 -20.121 2.713 -8.028 
   (ZIG) 47.794 -6.946 -18.982 2.995 -8.374 
   (ZIP) 19.039 -15.877 -19.123 -10.909 9.573 
25  (ZINB) 47.87 -6.76 -20.121 2.713 -8.028 
   (ZIG) 24.58 -27.05 -38.1 -14.58 14.45 
   (ZIP) 72.96 -41.66 -63.18 -62.42 41.61 
50  (ZINB) 47.31 -11.85 -37.87 -32.48 16.85 
   (ZIG) 53.4 -30.43 -46.77 -44.29 29.41 
   (ZIP) 33.184 28.234 -39.144 -32.979 5.442 
100  (ZINB) 31.06 26.151 -37.028 -30.907 5.449 
   (ZIG) 22.769 5.56 -43.488 -22.536 7.985 

 

Table 2b. Estimates of parameters for the zero models 
 

Sample (n) Model ��  ��   �� ��  ��  
   (ZIP) 25.9884 24.2166 -26.138 -17.416 -0.8887 
150  (ZINB) 28.0406 27.4256 -28.205 -19.529 -0.8942 
   (ZIG) 36.426 41.259 -40.807 -36.743 3.545 
   (ZIP) 24.819 12.348 -26.597 -17.047 1.944 
300  (ZINB) 25.58 12.656 -27.351 -17.397 1.939 
   (ZIG) 31.109 12.763 -36.081 -22.847 4.515 
   (ZIP) 7.229 -54.426 -65.474 2.646 16.791 
500  (ZINB) 24.062 -38.748 -48.638 1.22 8.933 
   (ZIG) 11.0064 -54.116 -56.078 0.9726 17.0123 
   (ZIP) 47.336 134.824 45002.9 54.4 47.223 
1000  (ZINB) 13.517 17.883 23.221 5.402 6.153 
   (ZIG) 15.6281 95.8137 125.528 32.9698 35.9045 

 

Table 3a. Estimates of standard error for the count part 
 

Sample (n) Model ��  ��  �� ��  ��  
   (ZIP) 2.46021 0.6926 0.62872 0.79232 0.63549 
15  (ZINB) 4.53711 0.77268 1.14323 0.82297 0.69727 
   (ZIG) 3.7662 1.1321 0.9512 1.2598 1.0297 
   (ZIP) 0.9228 0.587 0.1456 0.5665 0.5015 
25  (ZINB) 4.53711 0.77268 1.14323 0.82297 0.69727 
   (ZIG) 1.4055 0.9429 0.2542 0.998 0.8534 
   (ZIP) 0.49113 0.40026 0.08207 0.36556 0.32889 
50  (ZINB) 0.45699 0.39434 0.08332 0.30861 0.2568 
   (ZIG) 0.7524 0.65681 0.14932 0.61606 0.54811 
   (ZIP) 0.29445 0.23931 0.05479 0.23518 0.20329 
100  (ZINB) 0.2935 0.23927 0.05477 0.23384 0.20203 
   (ZIG) 0.4649 0.4008 0.1069 0.355 0.3078 



Table 3b. Estimates of standard error for the count part

Sample (n) Model ��  

   (ZIP) 0.27174

150  (ZINB) 0.27193

   (ZIG) 0.4245

   (ZIP) 0.15718

300  (ZINB) 0.15728

   (ZIG) 0.23443

   (ZIP) 0.15591

500  (ZINB) 0.15632

   (ZIG) 0.24095

   (ZIP) 0.09743

1000  (ZINB) 0.09734

   (ZIG) 0.16288
 

Fig. 1. Plots of standard errors (Count Part) at n= 15, 25, 50 and 100
 
The standard errors (SE) of the models at the zero part showed that ZIP has 
followed by ZINB. Though, at some points the SE of ZIP was higher than ZINB and ZIG. At sample sizes of 
500 and 1000, ZINB outperformed the ZIP and ZIG (see plots 3 and 4).
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stimates of standard error for the count part 
 

��   �� ��  

0.27174 0.21293 0.06137 0.19394 

0.27193 0.21294 0.06138 0.19407 

0.4245 0.3537 0.107 0.3146 

0.15718 0.12618 0.02824 0.12228 

0.15728 0.12625 0.02826 0.1223 

0.23443 0.1993 0.05326 0.18545 

0.15591 0.14495 0.02814 0.13906 

0.15632 0.14471 0.02848 0.1395 

0.24095 0.22059 0.05501 0.20946 

0.09743 0.08345 0.01766 0.08113 

0.09734 0.08345 0.01766 0.08113 

0.16288 0.14032 0.03649 0.12769 

 
Fig. 1. Plots of standard errors (Count Part) at n= 15, 25, 50 and 100 

The standard errors (SE) of the models at the zero part showed that ZIP has the least standard errors closely 
followed by ZINB. Though, at some points the SE of ZIP was higher than ZINB and ZIG. At sample sizes of 
500 and 1000, ZINB outperformed the ZIP and ZIG (see plots 3 and 4). 

 
 
 

; Article no.AJPAS.46795 
 
 
 

7 
 
 

��  

0.16428 

0.16433 

0.2672 

0.10536 

0.10536 

0.16135 

0.11985 

0.11953 

0.17963 

0.07145 

0.07142 

0.11344 

 

the least standard errors closely 
followed by ZINB. Though, at some points the SE of ZIP was higher than ZINB and ZIG. At sample sizes of 



Fig. 2. Plots of standard errors 
 

Table 4a. E

Sample (n) Model �� 
   (ZIP) 320.391
15  (ZINB) 314.848
   (ZIG) 318.325
   (ZIP) 185.753
25  (ZINB) 314.848
   (ZIG) 697.01
   (ZIP) 614.16
50  (ZINB) 69.79
   (ZIG) 160.82
   (ZIP) 107.555
100  (ZINB) 70.382
   (ZIG) 78.243

 
Table 4b. Estimates of standard error for the zero part

Sample (n) Model �� 
   (ZIP) 71.3294
150  (ZINB) 82.7997
   (ZIG) 150.145
   (ZIP) 29.084
300  (ZINB) 32.575
   (ZIG) 42.134
   (ZIP) 47.336
500  (ZINB) 13.517
   (ZIG) 15.6281
   (ZIP) 105.686
1000  (ZINB) 35.4013
   (ZIG) 87.479

Adarabioyo and Ipinyomi; AJPAS, 4(2): 1-10, 2019; Article no.

 

standard errors (Count Part) at n= 150, 300, 500 and 1000 

Estimates of standard error for the zero part 
 

  ��  �� ��  
320.391 353.747 81.418 117.004 
314.848 448.317 372.484 206.387 
318.325 290.854 182.575 170.321 
185.753 164.901 187.018 197.766 
314.848 448.317 372.484 206.387 
697.01 2195.2 NA 1864.37 
614.16 NA 272.88 599.52 
69.79 160.26 54.39 165.65 
160.82 281.58 142.14 273.83 
107.555 98.436 116.115 107.714 
70.382 56.211 82.974 71.336 
78.243 3832.22 3648.11 3830.34 

Table 4b. Estimates of standard error for the zero part 
 

  ��   �� ��  
71.3294 60.0753 71.4479 46.0728 
82.7997 89.0968 82.899 63.4025 
150.145 162.593 159.746 158.588 
29.084 20.781 29.193 21.024 
32.575 22.291 32.672 22.474 
42.134 29.177 44.042 34.865 
47.336 134.824 45.9 54.4 
13.517 17.883 23.221 5.402 
15.6281 95.8137 125.528 32.9698 
105.686 39.1409 105.919 36.7716 
35.4013 13.4138 35.9497 13.9835 
87.479 38.871 98.01 24.435 
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��  
73.409 
62.976 
130.51 
152.048 
62.976 
1809.89 
NA 
161.36 
252.23 
19.79 
19.873 
3826.95 

��  
3.5575 
3.6493 
49.976 
2.964 
2.946 
13.147 
47.223 
6.153 
35.9045 
3.1779 
2.84322 
18.619 



Fig. 3. Plots of Standard Errors (Zero Part) at n= 15, 25, 50 and 100
 

Fig. 4. Plots of Standard Errors (Zero Part) at n= 150, 300, 500 

6 Conclusion 
 
Consequently, the plots of the standard errors and the AIC showed some disagreement on which model best 
fit at some points such as when sample size was 50, 100, 500 and 1000. The sizes of AICs for ZIP were 
lesser than ZINB which show superiority in terms of model fitting. However we can conclude that ZIP 
outperformed the ZINB in the Count part whereas ZINB at some points when the sample size rises above 
300 outperformed the ZIP and ZIG in accounting for the zero part of the model.
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