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Abstract 
 

Non-constant error variance in Normal Linear Regression Model (NLRM) is an econometric problem 
generally referred to as heteroscedasticity. Its presence renders statistical inference invalid. Classical 
approach to its detection, estimation and remediation are widely discussed in the econometric literature. 
However, estimation of a NLRM using the Bayesian approach when heteroscedasticity problem is present 
is a major gap in the existing stock of knowledge on this subject. This approach has grown widely in 
recent times because it combines out-of-sample information with observed data. The study derived 
Bayesian estimators of the NLRM in the presence of functional forms of heteroscedasticity. Variance was 
treated as a linear function and as an exponential function of exogenous variables. The estimators are 
found to be unbiased and consistent and the precision values tend to zero. The estimates obtained from 
the estimators approximately 95% draws fall within each of the corresponding credible interval. 
Therefore, the results obtained for the derived Bayesian estimators for different functional forms of 
heteroscedasticity considered are similar, thus, providing a credible alternative to the existing classical 
methods which depend solely on the sample information. 
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1 Introduction 
 
Non-constant error variance in Normal Linear Regression Model (NLRM) is an econometric problem 
generally referred to as heteroscedasticity. Classical approach to its detection, estimation and remediation are 
widely discussed in the econometric literature (White [1]; Gujarati [2]; Cribari-Neto [3]) amongst others. 
The consequence of the presence of heteroscedasticity in NLRM renders the classical inference invalid.             
For instance, the classical Ordinary Least Squares (OLS) estimators of the NLRM parameters are no            
longer efficient. That is, they are no longer best estimators. In addition, the covariance matrix of the 
estimated coefficients of the NLRM is no longer consistent and therefore the tests of hypotheses are no 
longer valid. 
  
These effects cannot be ignored as earlier noted by Geary [4], White [1], Pasha [5], and Hadri and Guermat 
[6] amongst others.  
 
The work of White [1] possibly marked the beginning of investigation into the problem of statistical 
inference in econometrics. In literature, White [1] was the most cited article in economics between 1980 and 
2005 with 4,318 cites. The paper introduced what is now regarded as a ‘revolutionary’ idea of inference that 
is robust to the heteroscedasticity of unknown form. This initial idea has since been extended to other robust 
inference combining both heteroscedasticity and autocorrelation of unknown forms. Many developments 
took place rapidly in the frequentist (or classical) literature following the publication of White [1]. Notable 
ones include: the heteroscedasticity-consistent covariance matrix (HCCM) estimators by MacKinnon and 
White [7], Davidson and MacKinnon [8], Cribari-Neto [3], the heteroscedasticity and autocorrelation 
consistent (HAC) covariance estimator include Hansen [9], White and Domowitz [10], Newey and West 
[11]. 
 
In recent times, the application of Bayesian principles in econometrics has witnessed tremendous growth. 
The principle is based on a degree-of-belief interpretation of probability contrary to the relative-frequency 
interpretation of the classical methods. The Bayesian principle assumes that coefficients and covariance 
matrix of the NLRM have prior distributions. This approach is very attractive to applied econometricians 
because it combines out-of-sample information with observed data. Estimation of a NLRM using the 
Bayesian approach in the presence of heteroscedasticity is a relatively new area being explored in the 
econometric literature. Recent papers connected to heteroscedasticity consistent covariance estimators using 
the Bayesian approach include: Muller [12], Poirier [13], Norets [14], Startz [15] and Koop [16]. 
 
Sequel to the above progress in the econometric literature, the identifiable gap in the stock of knowledge is 
the lack of understanding of the nature of Bayesian inference when the structure or form of the 
heteroscedasticity is known rather than being unknown or assumed in estimating the NLRM. For a NLRM 
with heteroscedastic errors, the Generalized Least Squares (GLS) of the frequentist is affected and similarly, 
the mean of the posterior distribution which is the Bayesian equivalent is also affected. To the best of our 
knowledge, a little work have been carried out on the Bayesian parameters estimation in linear regression 
model especially when the error variances differ across observation. It is therefore the objective of the paper 
to examine the behaviour of the spread of the posterior density when the structure of the heteroscedasticity is 
linear and exponential. 
 
The rest of the paper is structured as follows. Following this introduction, section 2 derives the Bayesian 
estimators of the parameters of the NLRM with heteroscedastic error term. In section 3, the linear and the 
exponential error structures in the covariance matrix of the NLRM are formulated. In section 4, a simulation 
experiment is conducted and the results discussed. Finally, summary and concluding remarks are given in 
section 5. 
 
 



 
 
 

Oseni et al.; AJPAS, 4(2): 1-13, 2019; Article no.AJPAS.50036 
 
 
 

3 
 
 

2 Bayesian Estimation of NLRM with Heteroscedasticity Error Term  
 
We consider a linear regression model;  
 

 
y X U 

                                                                                                                                 (1)
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 y is a ( 1)N   vector of the dependent variable, X  is a ( 1)N k  matrix of explanatory variables 

values (including a column of ones for the regression constant),   is an ( 1) 1k  
 
parameters vector and 

U  is an ( )N N  positive definite matrix and h  is the precision given as 
1 2

i ih   . 
 

2.1 The likelihood function 
 
Once an appropriate model or distribution has been specified to describe the characteristics of a set of data, 
the immediate issue is one of finding desirable parameter estimates. From a classical perspective the ideal is 
the Maximum Likelihood Estimator (MLE) which provides a general method for estimating a vector of 

unknown parameters in a possibly y  in a random variable with probability density function ( )f y  which I 

characterized by a set of p  unknown parameters  

 
1

1 2( , , , ).p      A random sample of T  observations 1 2( , , , )Ty y y  is available and the 

likelihood ,L  is defined as the joint density of the observations, that is, 

1 2( , , , ) ( ; ).T iL f y y y f y    The attraction of MLE is that subject to fairly minor conditions, it 

has very desirable properties in large samples (asymptotically).  
 
In this study, using the definition of the Multivariate Normal density, the likelihood of model (1) when the 
variance differs across observations can be written as; 
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Maximizing the likelihood function in (2) to have 
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 ' 1 1 ' 1ˆ ( )X X X y                                                       (3) 
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                                                                                         (4) 

 

The equations (3) and (4) above represent the Generalized Least Squares (GLS) of the frequentist. 
 
It proves convenient to re-write the likelihood in (2) in a slightly different way. The product

' 1( ) ( )y X y X     in (2) can be expressed in terms of the Ordinary Least Squares (OLS) estimator 

̂  of .   

 
Thus, we then have 
 

' 1 ' 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )y X y X y X X X y X X X                     

 

where ' 1 1 ' 1ˆ ( )X X X y      and then  

 ' 1 ' 1 ' ' 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) (5)y X y X y X y X X X                     

 

From (4), 
2 ' 1ˆ ˆ( ) ( ) ( ) (6)N k s y X y X        

 
Substituting (6) in (5), the likelihood function in (2) then becomes  
 

2
2 ' ' 1 '

2

ˆ( | , , ) exp ( ) ( ) ( ) (7)
2

(2 )

N

N

h h
P y h N k s X X    



  
           

 

 

(7) can be separated into two by setting N v k   which leads to 
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The first expression in the curly bracket in (8) resembles the kernel of the multivariate Gaussian density 
while the second expression also looks like the kernel of the Gamma density. The result simply suggests a 
Normal-Gamma prior for the likelihood.

 
 

3 Linear and Exponential Heteroscedasticity Error Structures and the 
Posterior Densities 

 
The list of the forms of heteroscedasticity structures is not exhaustive, but in this study, two most prevalent 
forms of heteroscedasticity structures in econometric literature were investigated. The first form of 
heteroscedasticity structure considered variance is a linear function of exogenous variables is,

'( , ),i iw h z  where 
'

1 2( , , , )i i i ipz z z z  is a 1p  vector of observations on a set of exogenous 
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variables related to the regressors and 
'

1 2( , , , )p      is a 1p  vector of parameters. The linear 

model remains y X U   with 
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The justifications of linear function are linearity and additivity of the relationship between dependent and 
independent variables, statistical independence of errors, homoscedasticity (constant variance) of the errors 
and normality of the error distribution. 
 
The second form of heteroscedasticity structure by Harvey’s [17] considered variance as an exponential 
function of exogenous variables. This variance as an exponential function is a very flexible, general model 
that includes most of the useful formulations as special cases. The general formulation is, 

* '(exp( , )),i iw h z   where '
iz  and   are as earlier defined. 

 

The specification of the linear model is the same model in (1), with ( ) 0E U   
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where (.)h  is a positive function which depends on parameters   and explanatory variables, iz . The 

structures described above were substituted into the likelihood to obtain the likelihood function in (8). 
 

3.1 The priors and their distributions 
 
The most substantial aspect of Bayesian analysis is the specification of appropriate prior distribution for the 
parameters. In specifying, the following questions should be asked and answered. When should prior come 
from? How should they be determined and to what extent can they be justified? Probability distributions

( )p  , ideally representing someone’s prior information about parameter values are likely to describe the 

sampling distribution. Priors are meant to reflect any information that researcher has before seeing the data 
which he wishes to incorporate in the data analysis. Hence, prior can take any form (informative and non 
informative). There are several ways to choose priors in Bayesian analysis, depending on the available 
information and the specific form of model (8). For a fully Bayesian analysis, hyper priors for variances are 
introduced in a further stage. In our study, estimates of hyper priors are available from a previous analysis. 
We use these estimates, along with expert knowledge of estimation of parameters in NLRM in the presence 

of heteroscedasticity structures to elicit 0  and 0.  However, it is necessary and common in literature to 
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choose particular classes of priors that are easy to interprete and / or which make computation easier 
(Gelman, [18]). Hence, natural conjugate priors have both advantages. The conjugate prior is the one which 
when combined with the likelihood yields a posterior that falls in the same class of distributions (Raifa and 
Schlaifar [19]). The likelihood in (8) suggests that Normal-Gamma prior are appropriate for the parameters

 and h  in this study. 

 

Prior for   condition on h is of the form: 
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 in (9) and (10) are the priors for   and integrating constant respectively. 

So that the joint prior for   and h  then becomes 
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The above expression is written in compact form as: 
 

2
0 0 0 0( , ) ( , | , , , )NGp h f h s v    

                                                                                     (12) 
 

We finally specify non-informative uniform prior for ,  that is, 0( ) 1p  

 

 

3.2 The posterior distributions 
 
Combining the prior distributions in (11) and the likelihood function in (8), we can obtain the posterior 

distribution. Then, from the joint density ( , | )p h y  is given by 
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From the joint posterior distributions in (14), the following three conditional densities were obtained.  
 

(i) The conditional posterior density of 
 
is; 

( | , , ) ( , )n nP h y N   
                                                                                                     (15)
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4 Data Generation Process and Discussion of Results 
 
4.1 Data Generation Process 
 
We specify a linear regression model  
 

0 1 1 2 2 3 3 4 4 ,y X X X X U           where 
1(0, ).U N h   y  could not be determined 

except values are set for 0 1 2 3, , ,     and 4  and ,U  we therefore arbitrarily set 2, 4, 6, 8 and 10 

respectively. i  was simulated from a unit Gaussian density, i.e. (0,1),i N  so that  
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The disturbance terms to be used are generated by specifying the variance-covariance matrix for the error 

terms, the diagonal N N  matrix, the squares OLS residuals with robust standard errors are obtained by 

taking the square root estimated variance-covariance matrix 
' ,PP  since   is a symmetric positive 

definite matrix, we decompose it by a non-singular matrix P  such that  
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The error term U  is then generated by 1U P . We also generate explanatory variables 1 2 3, ,X X X  and 

4X  from uniformly distributed, that is, (0,10)X U  for 1,2,3,4.i   However, the following 

transformations are made depending on the form of heteroscedasticity to be introduced using 

0 1 1 2 2 3 3 4 4 ( ( ))iy X X X X U h X    


      , where ( )ih X is the forms of 

heteroscedasticity. The following forms of ( )ih X are specified. Given as; 
'( , )ih z  and

'(exp( )).ih z
 

 

We then resort to the equation 
0 1 1 2 2 3 3 4 4y X X X X U           to determine the values of .y  

 
The following hyper parameters were used in estimating the model parameters. 
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Table 1. Posterior mean for , h ,  ..Std devs . and 95% 'HPDI s  for n=25 

 

Heteroscedasticity (Linear and Exponential function) 
Parameters  Linear function  

  
 Exponential function 
  

Means( S.D’s ) 95$ HPDI’s  Means (S.D’s) 95% HPDI’s 

0

1

2

3

4

1

2

3

4

h



















 

 
 

 

 
 

 

 

0.06874(0.9947) 1.5637 1.7142

3.8122(0.0032) 3.8070 3.8175

6.1586(0.1219) 5.9591 6.3589

8.2626(0.2668) 7.8278 8.7013

10.1423(0.1471) 9.9055 10.3782

0.0000(0.0000) 0.0000 0.0000

0.2515(0.3838) 0.4545 0.5893

0.1333(0.180





  

 

 

4) 0.3204 0.2637

0.0469(0.5601) 1.0963 0.9545

0.1866(0.3433) 0.4314 0.5363



 

 

 

 
 
 
 

 
 
 

0.06945(1.2548) 1.9787 2.1174

3.8122(0.0032) 3.8070 3.8175

6.1593(0.1862) 5.8646 6.4561

8.2607(0.2138) 7.9041 8.6178

10.1420(0.2331) 9.7734 10.5148

0.0000(0.0000) 0.0000 0.0000

0.1369(0.7004) 0.9761 1.4044

0.0943(0.768





  
 
 

6) 1.3567 1.2973

0.0382(1.1085) 1.5507 1.8521

0.0659(0.5138) 0.8294 0.6567



 

 

 
 

The table above shows the posterior means for 's  , Standard deviation (parentheses) , h  and also 95%  

credible interval. 
 

Table 2. Posterior mean for , h ,  ..Std devs . and 95% 'HPDI s  for n=50 

 

Heteroscedasticity (Linear and Exponential function) 
Parameters  Linear function   Exponential function 

Means( S.D’s ) 95$ HPDI’s  Means (S.D’s) 95% HPDI’s 

0

1

2

3

4

1

2

3

4

h



















 

 
 
 
 

 
 

 

2.0669(0.3856) 1.4352 2.6977

3.9391(0.0032) 3.9338 3.9443

5.9772(0.0598) 5.8782 6.0763

8.0883(0.0528) 8.0010 8.1751

9.9713(0.0587) 9.874 10.0679

0.0000(0.0000) 0.0000 0.0000

0.1117(0.2575) 0.0000 0.7073

0.0020(0.0047) 0.00 
 
 

00 0.0128

0.0812(0.1848) 0.5062 0.000

0.0792(0.1825) 0.4999 0.000



 

 

 

 
 

 
 

 
 

2.0669(0.3851) 1.4352 2.6977

3.9390(0.0032) 3.9338 3.8175

5.9772(0.0598) 5.8783 6.0763

8.0883(0.0528) 8.0010 8.1751

9.9713(0.0587) 9.8748 10.0679

0.0000(0.0000) 0.0000 0.0000

0.1369(0.7004) 0.97611.4044

0.0943(0.7686)



  

 
 

1.35671.2973

0.0382(1.1085) 1.5507 1.8521

0.0659(0.5138) 0.8294 0.6567

 

 

 

 

The table above shows the posterior means for 's  , Standard deviation (parentheses) , h  and also 95%  

credible interval. 
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Table 3. Posterior mean for ,h ,  ..Std devs . and 95% 'HPDI s  for n=100 

 
Heteroscedasticity (Linear and Exponential function) 

Parameters  Linear function   Exponential function 
Means( S.D’s ) 95$ HPDI’s  Means (S.D’s) 95% HPDI’s 

0

1

2

3

4

1

2

3

4

h



















 

 

 
 

 
 

 
 

2.2035(0.6386) 1.1533 3.2461

4.0029(0.0032) 3.9977 4.0082

5.9749(0.0628) 5.8713 6.0786

8.1097(0.0709) 7.9932 8.2263

9.8697(0.0761) 9.7439 9.9950

0.0000(0.0000) 0.0000 0.0000

0.5045(0.8949) 0.8054 2.2449

0.2355(0.6212) 0.6 
 

 

820 1.4877

0.4838(1.0896) 2.9223 0.7535

0.1949(0.5330) 0.97520.6625

 

 

 

 

 
 

 
 

 
 

2.2035(0.6386) 1.1533 3.2461

4.0029(0.0032) 3.9977 4.0082

5.9749(0.0628) 5.8713 6.0786

8.1097(0.0709) 7.9932 8.2263

9.8697(0.0761) 9.7439 9.9950

0.0000(0.0000) 0.0000 0.000

0.1369(0.7004) 0.9761 1.4044

0.0943(0.7686) 1.



  
 

 

3567 1.2973

0.0382(1.1085) 1.5507 1.8521

0.0659(0.5138) 0.8294 0.6567

 

 

 

 

The table above shows the posterior means for 's  , Standard deviation (parentheses) , h  and also 95%  

credible interval. 
 

Table 4. Posterior mean for , h ,  ..Std devs . and 95% 'HPDI s  for n=150 
 

Heteroscedasticity (Linear and Exponential function) 
Parameter
s 

 Linear function    Exponential function  
Means( S.D’s )  95$ HPDI’s  Means (S.D’s) 95% HPDI’s 

0

1

2

3

4

1

2

3

4

h



















 

 
 

 
 

 
 
 

1.6212(0.4810) 0.8318 2.4078

3.8990(0.0032) 3.8937 3.9042

6.0510(0.0549) 5.9603 6.1419

7.9805(0.0577) 7.8856 8.0755

10.1059(0.0546) 10.0157 10.1961

0.0000(0.0000) 0.0000 0.0000

0.0404(0.4514) 0.4041 0.7180

0.1369(0.5515



  
 

 

) 1.0890 0.2655

0.2573(0.4355) 0.3419 1.0417

0.3063(0.4910) 0.9133 0.8907





 

 

 
 

 
 

 
 
 

1.6212(0.4810) 0.8318 2.4078

3.8990(0.0032) 3.8937 3.9042

6.0051(0.0549) 5.9603 6.1419

7.9805(0.0577) 7.8856 8.0755

10.1057(0.0546) 10.0157 9.9950

0.0000(0.0000) 0.0000 0.0000

0.1369(0.7004) 0.9761 1.4044

0.0943(0.7686)



  
 

 

1.3567 1.2973

0.0382(1.1085) 1.5507 1.8521

0.0659(0.5138) 0.8294 0.6567



 

 

 
 

The table above shows the posterior means for 's  , Standard deviation (parentheses) , h  and also 95%  

credible interval. 
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Table 5. Posterior mean for ,h ,  ..Std devs . and 95% 'HPDI s  for n=200 

 
Heteroscedasticity (Linear and Exponential function) 

Parameters  Linear function    Exponential function  
Means( S.D’s ) 95$ HPDI’s  Means (S.D’s) 95% HPDI’s 

0

1

2

3

4

1

2

3

4

h



















 

 

 
 

 
 

 
 

2.2945(0.4721) 1.5193 3.0666

4.0568(0.0032) 4.0516 4.0621

5.9254(0.0524) 5.8389 6.0122

7.9463(0.0489) 7.8656 8.0265

10.0083(0.0476) 9.9297 10.0868

0.0000(0.0000) 0.0000 0.0000

0.1997(0.0857) 0.2365 0.0000

0.2242(0.0962)

 

 
 

 

0.0000 0.0000

0.2033(0.0873) 0.0000 0.2408

0.3844(0.1650) 0.4552 0.0000 

 

 

 
 

 
 

 
 

2.2945(0.4721) 1.5193 3.0666

4.0568(0.0032) 4.0516 4.0621

5.9254(0.0524) 5.8389 6.0122

7.9463(0.0489) 7.8656 8.0265

10.0083(0.0476) 9.9297 10.0868

0.0000(0.0000) 0.0000 0.0000

0.1369(0.7004) 0.97611.4044

0.0943(0.7686)



  
 

 

1.3567 1.2973

0.0382(1.1085) 1.5507 1.8521

0.0659(0.5138) 0.8294 0.6567



 

 

 

 

The table above shows the posterior means for 's  , Standard deviation (parentheses) , h  and also 95%  

credible interval. 
 

4.2 Discussion of results 
 
In this section, an R code was written for the implementation of the Gibbs sampling and Metropolis-Hasting 
algorithms for the Bayesian estimation of parameters of a Normal Linear Regression Model with 

heteroscedasticity structures considered. Normal prior was specified for the coefficients   while Gamma 

prior was specified for precision h , such that the resulting posterior has a Normal-Gamma density for 
homoscedasticity version of the model. The derived Bayesian estimators for the homoscedasticity version 

are in closed forms ( | , ) ( , )n np y h N   and
2( | , ) ( , )n np h y N s v 

.The derived Bayesian 

estimators for heteroscedasticity of known forms are also in closed forms; ( | , , ) ( , )n np h y N    

and 
2( | , , ) ( , ).n np h y G s v 

 
The Bayesian linear regression models of these two cases were fitted to 

each data set and parameter estimates yielded by each case are presented in Tables 1 to 5. 
 
The two scenarios described above using derived Bayesian estimators for the normal linear regression model 
in (1) based on the Monte Carlo experiment were presented. Five different sample sizes n   25, 50, 100, 
150 and 200 using the data generation process presented in section 4.1 were considered.  
 

For the two scenarios, the posterior means for 
's  are unbiased and consistent for all the sample sizes 

considered as shown in the tables 1 to 5 above. The value of precision h  tends to zero in all cases as 

expected. The estimated coefficients of 
's approximately 95% draws fall within each of the corresponding 

credible interval. Finally, the difference in the Bayesian estimators derived is noticed in the highest posterior 
density intervals (HPDI’s).  
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5 Conclusion 
 
This paper has attempted to fill some noticeable gaps in econometric literature. Bayesian estimators of 
heteroscedasticity structures were derived in normal linear regression model. The estimators are found to be 
unbiased and consistent with the initial values specified. This confirms the validity of the derived estimators, 
thus providing a credible alternative to the existing classical methods which depend solely on the sample 
information. 
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